Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
c7c16a71
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c7c16a71
编写于
5月 27, 2018
作者:
L
liuruilong
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'upstream/develop' into develop
上级
cec61f3d
dd04d950
变更
18
显示空白变更内容
内联
并排
Showing
18 changed file
with
315 addition
and
148 deletion
+315
-148
src/framework/op_info.h
src/framework/op_info.h
+5
-11
src/framework/op_registry.h
src/framework/op_registry.h
+5
-5
src/framework/tensor.h
src/framework/tensor.h
+0
-7
src/operators/kernel/arm/conv_kernel.cpp
src/operators/kernel/arm/conv_kernel.cpp
+7
-23
src/operators/kernel/arm/sigmoid_kernel.cpp
src/operators/kernel/arm/sigmoid_kernel.cpp
+95
-0
src/operators/kernel/sigmoid_kernel.h
src/operators/kernel/sigmoid_kernel.h
+29
-0
src/operators/kernel/softmax_kernel.h
src/operators/kernel/softmax_kernel.h
+2
-0
src/operators/math/softmax.cpp
src/operators/math/softmax.cpp
+2
-2
src/operators/op_param.h
src/operators/op_param.h
+16
-0
src/operators/sigmoid_op.cpp
src/operators/sigmoid_op.cpp
+29
-0
src/operators/sigmoid_op.h
src/operators/sigmoid_op.h
+49
-0
test/CMakeLists.txt
test/CMakeLists.txt
+4
-0
test/executor_for_test.h
test/executor_for_test.h
+11
-4
test/operators/test_cov_op.cpp
test/operators/test_cov_op.cpp
+3
-0
test/operators/test_elementwise_add_op.cpp
test/operators/test_elementwise_add_op.cpp
+1
-1
test/operators/test_relu_op.cpp
test/operators/test_relu_op.cpp
+18
-94
test/operators/test_sigmoid_op.cpp
test/operators/test_sigmoid_op.cpp
+38
-0
test/test_helper.h
test/test_helper.h
+1
-1
未找到文件。
src/framework/op_info.h
浏览文件 @
c7c16a71
...
@@ -32,21 +32,15 @@ struct OpInfo {
...
@@ -32,21 +32,15 @@ struct OpInfo {
}
}
};
};
template
<
typename
Dtype
>
class
OpInfoMap
;
template
<
typename
Dtype
>
static
OpInfoMap
<
Dtype
>
*
g_op_info_map
=
nullptr
;
template
<
typename
Dtype
>
template
<
typename
Dtype
>
class
OpInfoMap
{
class
OpInfoMap
{
public:
public:
static
OpInfoMap
&
Instance
()
{
static
OpInfoMap
<
Dtype
>
*
Instance
()
{
LOG
(
paddle_mobile
::
kLOG_DEBUG1
)
<<
" TODO: fix bug"
;
static
OpInfoMap
<
Dtype
>
*
s_instance
=
nullptr
;
if
(
g_op_info_map
<
Dtype
>
==
nullptr
)
{
if
(
s_instance
==
nullptr
)
{
g_op_info_map
<
Dtype
>
=
new
OpInfoMap
();
s_instance
=
new
OpInfoMap
();
}
}
return
*
g_op_info_map
<
Dtype
>
;
return
s_instance
;
}
}
bool
Has
(
const
std
::
string
&
op_type
)
const
{
bool
Has
(
const
std
::
string
&
op_type
)
const
{
...
...
src/framework/op_registry.h
浏览文件 @
c7c16a71
...
@@ -35,7 +35,7 @@ class OperatorRegistrarRecursive;
...
@@ -35,7 +35,7 @@ class OperatorRegistrarRecursive;
template
<
typename
Dtype
,
typename
...
ARGS
>
template
<
typename
Dtype
,
typename
...
ARGS
>
struct
OperatorRegistrar
:
public
Registrar
{
struct
OperatorRegistrar
:
public
Registrar
{
explicit
OperatorRegistrar
(
const
std
::
string
&
op_type
)
{
explicit
OperatorRegistrar
(
const
std
::
string
&
op_type
)
{
if
(
OpInfoMap
<
Dtype
>::
Instance
()
.
Has
(
op_type
))
{
if
(
OpInfoMap
<
Dtype
>::
Instance
()
->
Has
(
op_type
))
{
LOG
(
paddle_mobile
::
kLOG_DEBUG1
)
LOG
(
paddle_mobile
::
kLOG_DEBUG1
)
<<
op_type
<<
" is registered more than once."
;
<<
op_type
<<
" is registered more than once."
;
return
;
return
;
...
@@ -47,7 +47,7 @@ struct OperatorRegistrar : public Registrar {
...
@@ -47,7 +47,7 @@ struct OperatorRegistrar : public Registrar {
}
}
OpInfo
<
Dtype
>
info
;
OpInfo
<
Dtype
>
info
;
OperatorRegistrarRecursive
<
Dtype
,
0
,
false
,
ARGS
...
>
(
op_type
,
&
info
);
OperatorRegistrarRecursive
<
Dtype
,
0
,
false
,
ARGS
...
>
(
op_type
,
&
info
);
OpInfoMap
<
Dtype
>::
Instance
()
.
Insert
(
op_type
,
info
);
OpInfoMap
<
Dtype
>::
Instance
()
->
Insert
(
op_type
,
info
);
}
}
};
};
...
@@ -95,10 +95,10 @@ class OpRegistry {
...
@@ -95,10 +95,10 @@ class OpRegistry {
LOG
(
paddle_mobile
::
kLOG_DEBUG1
)
<<
" output size: "
<<
outputs
.
size
();
LOG
(
paddle_mobile
::
kLOG_DEBUG1
)
<<
" output size: "
<<
outputs
.
size
();
LOG
(
paddle_mobile
::
kLOG_DEBUG1
)
<<
" attr size: "
<<
attrs
.
size
();
LOG
(
paddle_mobile
::
kLOG_DEBUG1
)
<<
" attr size: "
<<
attrs
.
size
();
LOG
(
paddle_mobile
::
kLOG_DEBUG1
)
LOG
(
paddle_mobile
::
kLOG_DEBUG1
)
<<
" OpInfoMap size: "
<<
OpInfoMap
<
Dtype
>::
Instance
()
.
map
().
size
();
<<
" OpInfoMap size: "
<<
OpInfoMap
<
Dtype
>::
Instance
()
->
map
().
size
();
LOG
(
paddle_mobile
::
kLOG_DEBUG1
)
<<
" has type: "
<<
type
<<
" "
LOG
(
paddle_mobile
::
kLOG_DEBUG1
)
<<
" has type: "
<<
type
<<
" "
<<
OpInfoMap
<
Dtype
>::
Instance
()
.
Has
(
type
);
<<
OpInfoMap
<
Dtype
>::
Instance
()
->
Has
(
type
);
auto
&
info
=
OpInfoMap
<
Dtype
>::
Instance
()
.
Get
(
type
);
auto
&
info
=
OpInfoMap
<
Dtype
>::
Instance
()
->
Get
(
type
);
auto
op
=
info
.
Creator
()(
type
,
inputs
,
outputs
,
attrs
,
scope
);
auto
op
=
info
.
Creator
()(
type
,
inputs
,
outputs
,
attrs
,
scope
);
return
std
::
shared_ptr
<
OperatorBase
<
Dtype
>>
(
op
);
return
std
::
shared_ptr
<
OperatorBase
<
Dtype
>>
(
op
);
}
}
...
...
src/framework/tensor.h
浏览文件 @
c7c16a71
...
@@ -132,13 +132,6 @@ class Tensor {
...
@@ -132,13 +132,6 @@ class Tensor {
reinterpret_cast
<
uintptr_t
>
(
holder_
->
ptr
())
+
offset_
);
reinterpret_cast
<
uintptr_t
>
(
holder_
->
ptr
())
+
offset_
);
}
}
inline
void
*
mutable_data
()
{
// PADDLE_ENFORCE(this->holder_ != nullptr,
// "Cannot invoke mutable data if current hold
// nothing.");
return
mutable_data
(
holder_
->
type
());
}
/**
/**
* @brief Return a pointer to mutable memory block.
* @brief Return a pointer to mutable memory block.
*
*
...
...
src/operators/kernel/arm/conv_kernel.cpp
浏览文件 @
c7c16a71
...
@@ -35,14 +35,9 @@ void ConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
...
@@ -35,14 +35,9 @@ void ConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
LOG
(
kLOG_DEBUG
)
<<
param
;
LOG
(
kLOG_DEBUG
)
<<
param
;
const
Tensor
*
input
=
param
.
Input
();
const
Tensor
*
input
=
param
.
Input
();
// The filter will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
Tensor
filter
=
*
param
.
Filter
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
*
output
=
param
.
Output
();
Tensor
*
output
=
param
.
Output
();
// output->mutable_data<T>(context.GetPlace()
);
output
->
mutable_data
<
float
>
(
);
int
groups
=
param
.
Groups
();
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
...
@@ -53,17 +48,9 @@ void ConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
...
@@ -53,17 +48,9 @@ void ConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
// filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h,
// k_w}
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
// output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h,
// o_w}
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
// use col_shape in the im2col calculation
// col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h,
// k_w, o_d,
// o_h, o_w}
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
...
@@ -73,24 +60,19 @@ void ConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
...
@@ -73,24 +60,19 @@ void ConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
}
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
// use col_matrix_shape in the gemm calculation
// size: (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w,
// o_d *
// o_h * o_w)
framework
::
DDim
col_matrix_shape
=
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
bool
is_expand
=
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col
;
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
Tensor
col_matrix
;
Tensor
col_matrix
;
if
(
is_expand
)
{
if
(
is_expand
)
{
col
.
mutable_data
<
float
>
(
col_shape
);
col
.
mutable_data
<
float
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
}
DLOG
<<
" col_shape = "
<<
col_shape
;
DLOG
<<
" col_matrix_shape = "
<<
col_matrix_shape
;
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
...
@@ -98,6 +80,7 @@ void ConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
...
@@ -98,6 +80,7 @@ void ConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
filter
.
Resize
(
filter_matrix_shape
);
DLOG
<<
" filter.deims() = "
<<
filter
.
dims
();
framework
::
DDim
output_matrix_shape
=
{
framework
::
DDim
output_matrix_shape
=
{
output
->
dims
()[
1
],
output
->
dims
()[
1
],
...
@@ -110,8 +93,6 @@ void ConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
...
@@ -110,8 +93,6 @@ void ConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
math
::
Vol2ColFunctor
<
CPU
,
float
>
vol2col
;
math
::
Vol2ColFunctor
<
CPU
,
float
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
float
>
im2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
float
>
im2col
;
// auto& dev_ctx = context.template
// device_context<DeviceContext>();
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
...
@@ -137,6 +118,9 @@ void ConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
...
@@ -137,6 +118,9 @@ void ConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
// gemm
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
DLOG
<<
" out_slice "
<<
out_slice
.
dims
();
DLOG
<<
" filter_slice "
<<
filter_slice
.
dims
();
DLOG
<<
" col_matrix "
<<
col_matrix
.
dims
();
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
));
static_cast
<
float
>
(
0
));
...
...
src/operators/kernel/arm/sigmoid_kernel.cpp
0 → 100644
浏览文件 @
c7c16a71
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "../sigmoid_kernel.h"
#if __ARM_NEON
#include "../../math/math_func_neon.h"
#endif
namespace
paddle_mobile
{
namespace
operators
{
using
framework
::
DDim
;
using
framework
::
Tensor
;
void
sigmoid
(
const
Tensor
*
X
,
Tensor
*
Y
)
{
#if __ARM_NEON
DLOG
<<
"step1"
;
const
float
*
input
=
X
->
data
<
float
>
();
DLOG
<<
"step11"
;
float
*
output
=
Y
->
mutable_data
<
float
>
();
DLOG
<<
"step2"
;
const
DDim
&
dDim
=
X
->
dims
();
DLOG
<<
"step3"
;
int
axis_index
=
1
;
if
(
dDim
.
size
()
<
4
)
{
axis_index
=
0
;
}
DLOG
<<
"step4"
;
DDim
outer_ddim
=
paddle_mobile
::
framework
::
slice_ddim
(
dDim
,
0
,
axis_index
+
1
);
DDim
inner_ddim
=
paddle_mobile
::
framework
::
slice_ddim
(
dDim
,
axis_index
+
1
,
dDim
.
size
());
DLOG
<<
"step5"
;
int
out_size
=
paddle_mobile
::
framework
::
product
(
outer_ddim
);
int
inner_size
=
paddle_mobile
::
framework
::
product
(
inner_ddim
);
DLOG
<<
"step6"
;
#pragma omp parallel for
DLOG
<<
"outsize="
<<
out_size
;
DLOG
<<
"innersize="
<<
inner_size
;
for
(
int
i
=
0
;
i
<
out_size
;
++
i
)
{
const
float
*
input_outer_ptr
=
input
+
i
*
inner_size
;
float
*
output_outer_ptr
=
output
+
i
*
inner_size
;
int
nn
=
inner_size
>>
2
;
int
remain
=
inner_size
-
(
nn
<<
2
);
float32x4_t
_one
=
vdupq_n_f32
(
1.
f
);
for
(;
nn
>
0
;
nn
--
)
{
float32x4_t
data
=
vld1q_f32
(
input_outer_ptr
);
data
=
vnegq_f32
(
data
);
data
=
exp_ps
(
data
);
data
=
vaddq_f32
(
data
,
_one
);
float32x4_t
out_data
=
vrecpeq_f32
(
data
);
out_data
=
vmulq_f32
(
vrecpsq_f32
(
data
,
out_data
),
out_data
);
vst1q_f32
(
output_outer_ptr
,
out_data
);
input_outer_ptr
+=
4
;
output_outer_ptr
+=
4
;
}
for
(;
remain
>
0
;
remain
--
)
{
*
output_outer_ptr
=
1.
f
/
(
1.
f
+
exp
(
-*
input_outer_ptr
));
output_outer_ptr
++
;
input_outer_ptr
++
;
}
}
#endif
}
template
<
>
void
SigmoidKernel
<
CPU
,
float
>::
Compute
(
const
SigmoidParam
&
param
)
const
{
const
Tensor
*
in_x
=
param
.
InputX
();
Tensor
*
out
=
param
.
Out
();
auto
x_dims
=
in_x
->
dims
();
out
->
Resize
(
x_dims
);
sigmoid
(
in_x
,
out
);
}
template
class
SigmoidKernel
<
CPU
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
src/operators/kernel/sigmoid_kernel.h
0 → 100644
浏览文件 @
c7c16a71
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
using
framework
::
OpKernelBase
;
void
sigmoid
(
const
Tensor
*
X
,
Tensor
*
Y
);
template
<
typename
DeviceType
,
typename
T
>
class
SigmoidKernel
:
public
OpKernelBase
<
DeviceType
,
SigmoidParam
>
{
public:
void
Compute
(
const
SigmoidParam
&
param
)
const
override
;
};
}
// namespace operators
}
// namespace paddle_mobile
src/operators/kernel/softmax_kernel.h
浏览文件 @
c7c16a71
...
@@ -21,6 +21,8 @@ namespace paddle_mobile {
...
@@ -21,6 +21,8 @@ namespace paddle_mobile {
namespace
operators
{
namespace
operators
{
using
framework
::
OpKernelBase
;
using
framework
::
OpKernelBase
;
void
simoid
(
Tensor
*
X
,
Tensor
*
Y
);
template
<
typename
DeviceType
,
typename
T
>
template
<
typename
DeviceType
,
typename
T
>
class
SoftmaxKernel
:
public
OpKernelBase
<
DeviceType
,
SoftmaxParam
>
{
class
SoftmaxKernel
:
public
OpKernelBase
<
DeviceType
,
SoftmaxParam
>
{
public:
public:
...
...
src/operators/math/softmax.cpp
浏览文件 @
c7c16a71
...
@@ -11,11 +11,11 @@ distributed under the License is distributed on an "AS IS" BASIS,
...
@@ -11,11 +11,11 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "operators/math/softmax.h"
#include "operators/math/softmax.h"
#include "common/types.h"
#include "common/types.h"
#if __ARM_NEON
#if __ARM_NEON
#include <math.h>
#include <math.h>
#include <algorithm>
#include "operators/math/math_func_neon.h"
#include "operators/math/math_func_neon.h"
#endif
#endif
...
@@ -108,7 +108,7 @@ class SoftmaxFuntor<CPU, T> {
...
@@ -108,7 +108,7 @@ class SoftmaxFuntor<CPU, T> {
// sum exp
// sum exp
sum
(
exp_sub_max
,
sumptr
,
inner_size
,
out_size
);
sum
(
exp_sub_max
,
sumptr
,
inner_size
,
out_size
);
// div
// div
auto
*
out_ptr
=
static_cast
<
float
*>
(
Y
->
mutable_data
()
);
auto
*
out_ptr
=
Y
->
mutable_data
<
float
>
(
);
for
(
int
l
=
0
;
l
<
out_size
;
++
l
)
{
for
(
int
l
=
0
;
l
<
out_size
;
++
l
)
{
const
float
*
input_outer_ptr
=
exp_sub_max
+
l
*
inner_size
;
const
float
*
input_outer_ptr
=
exp_sub_max
+
l
*
inner_size
;
float
*
output_outer_ptr
=
out_ptr
+
l
*
inner_size
;
float
*
output_outer_ptr
=
out_ptr
+
l
*
inner_size
;
...
...
src/operators/op_param.h
浏览文件 @
c7c16a71
...
@@ -542,6 +542,22 @@ class SoftmaxParam : public OpParam {
...
@@ -542,6 +542,22 @@ class SoftmaxParam : public OpParam {
Tensor
*
input_x_
;
Tensor
*
input_x_
;
Tensor
*
out_
;
Tensor
*
out_
;
};
};
class
SigmoidParam
:
public
OpParam
{
public:
SigmoidParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
const
framework
::
Scope
&
scope
)
{
input_x_
=
InputXFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
framework
::
Tensor
>
(
outputs
,
scope
);
}
const
Tensor
*
InputX
()
const
{
return
input_x_
;
}
Tensor
*
Out
()
const
{
return
out_
;
}
private:
Tensor
*
input_x_
;
Tensor
*
out_
;
};
class
MultiClassNMSParam
:
public
OpParam
{
class
MultiClassNMSParam
:
public
OpParam
{
public:
public:
MultiClassNMSParam
(
const
VariableNameMap
&
inputs
,
MultiClassNMSParam
(
const
VariableNameMap
&
inputs
,
...
...
src/operators/sigmoid_op.cpp
0 → 100644
浏览文件 @
c7c16a71
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/sigmoid_op.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
DeviceType
,
typename
T
>
void
SigmoidOp
<
DeviceType
,
T
>::
InferShape
()
const
{
param_
.
Out
()
->
Resize
(
param_
.
InputX
()
->
dims
());
}
template
class
SigmoidOp
<
CPU
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
namespace
ops
=
paddle_mobile
::
operators
;
USE_OP
(
sigmoid
);
REGISTER_OPERATOR
(
sigmoid
,
ops
::
SigmoidOp
);
src/operators/sigmoid_op.h
0 → 100644
浏览文件 @
c7c16a71
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <framework/operator.h>
#include <operators/op_param.h>
#include <string>
#include "operators/kernel/sigmoid_kernel.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
DeviceType
,
typename
T
>
class
SigmoidOp
:
public
framework
::
OperatorWithKernel
<
DeviceType
>
{
public:
SigmoidOp
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
std
::
shared_ptr
<
framework
::
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
>
(
type
,
inputs
,
outputs
,
attrs
,
scope
),
param_
(
inputs
,
outputs
,
attrs
,
*
scope
)
{}
using
framework
::
OperatorWithKernel
<
DeviceType
>::
OperatorWithKernel
;
void
InferShape
()
const
override
;
void
Run
()
const
{
operators
::
SigmoidKernel
<
DeviceType
,
T
>
kernel
;
kernel
.
Compute
(
param_
);
this
->
ClearVariables
({
"X"
});
}
private:
SigmoidParam
param_
;
};
}
// namespace operators
}
// namespace paddle_mobile
test/CMakeLists.txt
浏览文件 @
c7c16a71
...
@@ -82,3 +82,7 @@ target_link_libraries(test-enforce paddle-mobile)
...
@@ -82,3 +82,7 @@ target_link_libraries(test-enforce paddle-mobile)
# gen test
# gen test
ADD_EXECUTABLE
(
test-googlenet net/test_googlenet.cpp test_helper.h test_include.h executor_for_test.h
)
ADD_EXECUTABLE
(
test-googlenet net/test_googlenet.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-googlenet paddle-mobile
)
target_link_libraries
(
test-googlenet paddle-mobile
)
# gen test
ADD_EXECUTABLE
(
test-sigmoid operators/test_sigmoid_op.cpp test_include.h
)
target_link_libraries
(
test-sigmoid paddle-mobile
)
test/executor_for_test.h
浏览文件 @
c7c16a71
...
@@ -17,11 +17,14 @@ limitations under the License. */
...
@@ -17,11 +17,14 @@ limitations under the License. */
#include <string>
#include <string>
#include <vector>
#include <vector>
#include "./io.h"
#include "common/log.h"
#include "common/log.h"
#include "
io
.h"
#include "
framework/op_registry
.h"
#include "operators/conv_op.h"
#include "operators/conv_op.h"
#include "operators/pool_op.h"
#include "operators/pool_op.h"
#include "operators/relu_op.h"
#include "operators/reshape_op.h"
#include "operators/reshape_op.h"
#include "operators/sigmoid_op.h"
#include "operators/softmax_op.h"
#include "operators/softmax_op.h"
#include "operators/transpose_op.h"
#include "operators/transpose_op.h"
...
@@ -57,8 +60,12 @@ class Executor4Test : public Executor<DeviceType> {
...
@@ -57,8 +60,12 @@ class Executor4Test : public Executor<DeviceType> {
for
(
std
::
shared_ptr
<
OpDesc
>
op
:
ops
)
{
for
(
std
::
shared_ptr
<
OpDesc
>
op
:
ops
)
{
if
(
op
->
Type
()
==
op_type
)
{
if
(
op
->
Type
()
==
op_type
)
{
std
::
shared_ptr
<
OpType
>
op_ptr
=
std
::
make_shared
<
OpType
>
(
/// test first meeting op in program
op
->
Type
(),
op
->
GetInputs
(),
op
->
GetOutputs
(),
op
->
GetAttrMap
(),
std
::
shared_ptr
<
paddle_mobile
::
framework
::
OperatorBase
<
DeviceType
>>
op_ptr
=
paddle_mobile
::
framework
::
OpRegistry
<
paddle_mobile
::
CPU
>::
CreateOp
(
op
->
Type
(),
op
->
GetInputs
(),
op
->
GetOutputs
(),
op
->
GetAttrMap
(),
this
->
program_
.
scope
);
this
->
program_
.
scope
);
this
->
ops_of_block_
[
*
block_desc
.
get
()].
push_back
(
op_ptr
);
this
->
ops_of_block_
[
*
block_desc
.
get
()].
push_back
(
op_ptr
);
break
;
break
;
...
...
test/operators/test_cov_op.cpp
浏览文件 @
c7c16a71
...
@@ -29,6 +29,9 @@ int main() {
...
@@ -29,6 +29,9 @@ int main() {
paddle_mobile
::
framework
::
Tensor
input
;
paddle_mobile
::
framework
::
Tensor
input
;
GetInput
<
float
>
(
g_test_image_1x3x224x224
,
&
input
,
{
1
,
3
,
224
,
224
});
GetInput
<
float
>
(
g_test_image_1x3x224x224
,
&
input
,
{
1
,
3
,
224
,
224
});
// // use SetupTensor if not has local input image .
// SetupTensor<float>(&input, {1, 3, 224, 224}, static_cast<float>(0),
// static_cast<float>(1));
auto
out_ddim
=
paddle_mobile
::
framework
::
make_ddim
({
1
,
64
,
112
,
112
});
auto
out_ddim
=
paddle_mobile
::
framework
::
make_ddim
({
1
,
64
,
112
,
112
});
auto
output
=
executor
.
predict
(
input
,
"data"
,
"conv2d_0.tmp_0"
,
out_ddim
);
auto
output
=
executor
.
predict
(
input
,
"data"
,
"conv2d_0.tmp_0"
,
out_ddim
);
...
...
test/operators/test_elementwise_add_op.cpp
浏览文件 @
c7c16a71
...
@@ -111,7 +111,7 @@ int main() {
...
@@ -111,7 +111,7 @@ int main() {
DLOG
<<
"begin to run ElementAddOp Test"
;
DLOG
<<
"begin to run ElementAddOp Test"
;
paddle_mobile
::
Loader
<
paddle_mobile
::
CPU
>
loader
;
paddle_mobile
::
Loader
<
paddle_mobile
::
CPU
>
loader
;
auto
program
=
auto
program
=
loader
.
Load
(
std
::
string
(
"../
../test/
models/"
loader
.
Load
(
std
::
string
(
"../models/"
"image_classification_resnet.inference.model"
));
"image_classification_resnet.inference.model"
));
/// input x (1,3,224,224)
/// input x (1,3,224,224)
...
...
test/operators/test_relu_op.cpp
浏览文件 @
c7c16a71
...
@@ -12,108 +12,32 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,108 +12,32 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#
pragma once
#
include "../executor_for_test.h"
#include "../test_include.h"
#include "../test_include.h"
#include "operators/relu_op.h"
namespace
paddle_mobile
{
namespace
framework
{
template
<
typename
Dtype
>
class
TestReluOp
{
public:
explicit
TestReluOp
(
const
Program
<
Dtype
>
p
)
:
program_
(
p
)
{
if
(
use_optimize_
)
{
to_predict_program_
=
program_
.
optimizeProgram
;
}
else
{
to_predict_program_
=
program_
.
originProgram
;
}
const
std
::
vector
<
std
::
shared_ptr
<
BlockDesc
>>
blocks
=
to_predict_program_
->
Blocks
();
// DLOG << " **block size " << blocks.size();
for
(
auto
block_desc
:
blocks
)
{
std
::
vector
<
std
::
shared_ptr
<
OpDesc
>>
ops
=
block_desc
->
Ops
();
// DLOG << " ops " << ops.size();
for
(
auto
op
:
ops
)
{
if
(
op
->
Type
()
==
"relu"
&&
op
->
Input
(
"X"
)[
0
]
==
"batch_norm_34.tmp_2"
)
{
DLOG
<<
"in"
;
std
::
shared_ptr
<
operators
::
ReluOp
<
Dtype
,
float
>>
test_op
=
std
::
make_shared
<
operators
::
ReluOp
<
Dtype
,
float
>>
(
op
->
Type
(),
op
->
GetInputs
(),
op
->
GetOutputs
(),
op
->
GetAttrMap
(),
program_
.
scope
);
ops_of_block_
[
*
block_desc
.
get
()].
push_back
(
test_op
);
}
}
}
}
std
::
shared_ptr
<
Tensor
>
predict
(
const
Tensor
&
t1
)
{
// feed
auto
scope
=
program_
.
scope
;
Variable
*
x1_feed_value
=
scope
->
Var
(
"batch_norm_34.tmp_2"
);
auto
tensor_x1
=
x1_feed_value
->
GetMutable
<
Tensor
>
();
tensor_x1
->
ShareDataWith
(
t1
);
Variable
*
output
=
scope
->
Var
(
"batch_norm_34.tmp_3"
);
auto
*
output_tensor
=
output
->
GetMutable
<
Tensor
>
();
output_tensor
->
mutable_data
<
float
>
({
1
,
2
,
3
,
4
});
// DLOG << typeid(output_tensor).name();
// DLOG << "output_tensor dims: " << output_tensor->dims();
std
::
shared_ptr
<
Tensor
>
out_tensor
=
std
::
make_shared
<
LoDTensor
>
();
out_tensor
.
reset
(
output_tensor
);
predict
(
t1
,
0
);
return
out_tensor
;
// return outvars_tensor;
}
private:
const
framework
::
Program
<
Dtype
>
program_
;
std
::
shared_ptr
<
ProgramDesc
>
to_predict_program_
;
std
::
map
<
framework
::
BlockDesc
,
std
::
vector
<
std
::
shared_ptr
<
OperatorBase
<
Dtype
>>>>
ops_of_block_
;
bool
use_optimize_
=
false
;
void
predict
(
const
Tensor
&
t1
,
int
block_id
)
{
std
::
shared_ptr
<
BlockDesc
>
to_predict_block
=
to_predict_program_
->
Block
(
block_id
);
for
(
int
j
=
0
;
j
<
ops_of_block_
[
*
to_predict_block
.
get
()].
size
();
++
j
)
{
auto
op
=
ops_of_block_
[
*
to_predict_block
.
get
()][
j
];
DLOG
<<
"op -> run()"
;
op
->
Run
();
}
}
};
template
class
TestReluOp
<
CPU
>;
}
// namespace framework
}
// namespace paddle_mobile
int
main
()
{
int
main
()
{
DLOG
<<
"----------**********----------"
;
DLOG
<<
"begin to run Relu Test"
;
paddle_mobile
::
Loader
<
paddle_mobile
::
CPU
>
loader
;
paddle_mobile
::
Loader
<
paddle_mobile
::
CPU
>
loader
;
auto
program
=
loader
.
Load
(
std
::
string
(
"../../test/models/mobilenet+ssd"
));
// ../models/image_classification_resnet.inference.model
auto
program
=
loader
.
Load
(
g_mobilenet_ssd
);
/// input x (1,3,300,300)
PADDLE_MOBILE_ENFORCE
(
program
.
originProgram
!=
nullptr
,
paddle_mobile
::
framework
::
Tensor
inputx1
;
"program file read fail"
);
SetupTensor
<
float
>
(
&
inputx1
,
{
1
,
2
,
3
,
4
},
static_cast
<
float
>
(
-
1
),
static_cast
<
float
>
(
1
));
auto
*
inputx1_ptr
=
inputx1
.
data
<
float
>
();
paddle_mobile
::
framework
::
TestReluOp
<
paddle_mobile
::
CPU
>
testReluOp
(
program
);
Executor4Test
<
paddle_mobile
::
CPU
,
paddle_mobile
::
operators
::
ReluOp
<
paddle_mobile
::
CPU
,
float
>>
executor
(
program
,
"relu"
);
paddle_mobile
::
framework
::
Tensor
input
;
SetupTensor
<
float
>
(
&
input
,
{
1
,
2
,
3
,
4
},
static_cast
<
float
>
(
-
1
),
static_cast
<
float
>
(
1
));
auto
output
=
testReluOp
.
predict
(
inputx1
);
auto
out_ddim
=
paddle_mobile
::
framework
::
make_ddim
({
1
,
2
,
3
,
4
});
auto
*
output_ptr
=
output
->
data
<
float
>
();
auto
output
=
executor
.
predict
(
input
,
"batch_norm_0.tmp_2"
,
"batch_norm_0.tmp_3"
,
out_ddim
);
for
(
int
i
=
0
;
i
<
output
->
numel
();
i
++
)
{
auto
output_ptr
=
output
->
data
<
float
>
();
DLOG
<<
output_ptr
[
i
];
for
(
int
j
=
0
;
j
<
output
->
numel
();
++
j
)
{
DLOG
<<
" value of output: "
<<
output_ptr
[
j
];
}
}
return
0
;
return
0
;
}
}
test/operators/test_sigmoid_op.cpp
0 → 100644
浏览文件 @
c7c16a71
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "../../src/operators/kernel/sigmoid_kernel.h"
#include "../test_helper.h"
#include "./io.h"
int
main
()
{
paddle_mobile
::
framework
::
Tensor
input
;
paddle_mobile
::
framework
::
Tensor
output
;
DLOG
<<
1
;
SetupTensor
<
float
>
(
&
input
,
{
1
,
4
,
60
,
60
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
DLOG
<<
2
;
auto
out_ddim
=
paddle_mobile
::
framework
::
make_ddim
({
1
,
4
,
60
,
60
});
output
.
Resize
(
out_ddim
);
DLOG
<<
3
;
paddle_mobile
::
operators
::
sigmoid
(
&
input
,
&
output
);
DLOG
<<
4
;
auto
*
output_ptr
=
output
.
data
<
float
>
();
for
(
int
j
=
0
;
j
<
output
.
numel
();
++
j
)
{
DLOG
<<
" value of output: "
<<
output_ptr
[
j
];
}
DLOG
<<
5
;
return
0
;
}
test/test_helper.h
浏览文件 @
c7c16a71
...
@@ -23,7 +23,7 @@ limitations under the License. */
...
@@ -23,7 +23,7 @@ limitations under the License. */
static
const
std
::
string
g_googlenet
=
"../models/googlenet"
;
static
const
std
::
string
g_googlenet
=
"../models/googlenet"
;
static
const
std
::
string
g_mobilenet
=
"../models/mobilenet"
;
static
const
std
::
string
g_mobilenet
=
"../models/mobilenet"
;
static
const
std
::
string
g_mobilenet_ssd
=
"../models/mobilenet"
;
static
const
std
::
string
g_mobilenet_ssd
=
"../models/mobilenet
+ssd
"
;
static
const
std
::
string
g_squeezenet
=
"../models/squeezenet"
;
static
const
std
::
string
g_squeezenet
=
"../models/squeezenet"
;
static
const
std
::
string
g_resnet
=
static
const
std
::
string
g_resnet
=
"../models/image_classification_resnet.inference.model"
;
"../models/image_classification_resnet.inference.model"
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录