未验证 提交 c555ca43 编写于 作者: R Ray Liu 提交者: GitHub

Merge pull request #1210 from lijiancheng0614/transpose2-dev

Transpose2 dev
......@@ -44,6 +44,7 @@ const char *G_OP_TYPE_RESHAPE2 = "reshape2";
const char *G_OP_TYPE_SIGMOID = "sigmoid";
const char *G_OP_TYPE_SOFTMAX = "softmax";
const char *G_OP_TYPE_TRANSPOSE = "transpose";
const char *G_OP_TYPE_TRANSPOSE2 = "transpose2";
const char *G_OP_TYPE_SPLIT = "split";
const char *G_OP_TYPE_FEED = "feed";
const char *G_OP_TYPE_FETCH = "fetch";
......@@ -91,6 +92,7 @@ std::unordered_map<
{G_OP_TYPE_FEED, {{"X"}, {"Out"}}},
{G_OP_TYPE_FETCH, {{"X"}, {"Out"}}},
{G_OP_TYPE_TRANSPOSE, {{"X"}, {"Out"}}},
{G_OP_TYPE_TRANSPOSE2, {{"X"}, {"Out", "XShape"}}},
{G_OP_TYPE_BOX_CODER,
{{"PriorBox", "PriorBoxVar", "TargetBox"}, {"OutputBox"}}},
{G_OP_TYPE_FUSION_CONV_ADD_BN_RELU, {{"Input"}, {"Out"}}},
......
......@@ -115,6 +115,9 @@ LOAD_OP2(reshape2, CPU, MALI_GPU);
#ifdef TRANSPOSE_OP
LOAD_OP1(transpose, CPU);
#endif
#ifdef TRANSPOSE2_OP
LOAD_OP1(transpose2, CPU);
#endif
#ifdef PRIORBOX_OP
LOAD_OP1(prior_box, CPU);
#endif
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef TRANSPOSE2_OP
#include "operators/kernel/transpose2_kernel.h"
#include "operators/kernel/central-arm-func/transpose2_arm_func.h"
namespace paddle_mobile {
namespace operators {
template <>
bool Transpose2Kernel<CPU, float>::Init(Transpose2Param<CPU> *param) {
return true;
}
template <>
void Transpose2Kernel<CPU, float>::Compute(
const Transpose2Param<CPU> &param) const {
Transpose2Compute<float>(param);
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef TRANSPOSE2_OP
#pragma once
#include <vector>
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
template <typename P>
void Transpose2Compute(const Transpose2Param<CPU>& param) {
const auto* input_x = param.InputX();
const auto input_x_dims = input_x->dims();
auto* out = param.Out();
const auto axis = param.Axis();
const auto* input_x_data = input_x->data<float>();
auto* out_data = out->mutable_data<float>();
size_t ndim = axis.size();
std::vector<int> xdim(ndim);
std::vector<int> xstride(ndim);
std::vector<int> xout(ndim);
for (int i = 0; i < ndim; i++) {
int j = ndim - 1 - i;
xdim[j] = input_x_dims[axis[i]];
xstride[j] = 1;
for (int k = axis[i] + 1; k < ndim; k++) {
xstride[j] *= input_x_dims[k];
}
xout[j] = xstride[j] * xdim[j];
}
auto numel = input_x->numel();
size_t pind = 0;
std::vector<int> ind(ndim);
for (int i = 0; i < numel; i++) {
out_data[i] = input_x_data[pind];
ind[0]++;
pind += xstride[0];
for (int j = 0; j < ndim - 1; j++) {
if (ind[j] == xdim[j]) {
ind[j + 1]++;
ind[j] = 0;
pind += xstride[j + 1];
pind -= xout[j];
} else {
break;
}
}
}
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef TRANSPOSE2_OP
#pragma once
#include <vector>
#include "framework/operator.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
template <typename DeviceType, typename T>
class Transpose2Kernel
: public framework::OpKernelBase<DeviceType, Transpose2Param<DeviceType>> {
public:
void Compute(const Transpose2Param<DeviceType>& param) const;
bool Init(Transpose2Param<DeviceType>* param);
};
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -1132,6 +1132,37 @@ class TransposeParam : public OpParam {
};
#endif
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
typedef typename DtypeTensorTrait<Dtype>::gtype GType;
typedef typename DtypeTensorTrait<Dtype>::rtype RType;
public:
Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
const AttributeMap &attrs, const Scope &scope) {
input_x_ = InputXFrom<GType>(inputs, scope);
out_ = OutFrom<GType>(outputs, scope);
output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
axis_ = GetAttr<vector<int>>("axis", attrs);
}
const RType *InputX() const { return input_x_; }
RType *Out() const { return out_; }
RType *OutputXShape() const { return output_xshape_; }
const vector<int> &Axis() const { return axis_; }
private:
RType *input_x_;
RType *out_;
RType *output_xshape_;
vector<int> axis_;
};
#endif
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef TRANSPOSE2_OP
#include <vector>
#include "common/enforce.h"
#include "operators/transpose2_op.h"
namespace paddle_mobile {
namespace operators {
template <typename Dtype, typename T>
void Transpose2Op<Dtype, T>::InferShape() const {
auto input_x_dims = this->param_.InputX()->dims();
auto axis = this->param_.Axis();
size_t x_dims_size = input_x_dims.size();
size_t axis_size = axis.size();
PADDLE_MOBILE_ENFORCE((x_dims_size == axis_size),
"input_dims must "
"be equal to the axis_size. ")
std::vector<int> count(axis_size, 0);
for (size_t i = 0; i < axis_size; i++) {
PADDLE_MOBILE_ENFORCE(
axis[i] < static_cast<int>(axis_size) && ++count[axis[i]] == 1,
"Each element of Attribute axis should be a unique value "
"range from 0 to (dims - 1), "
"where the dims is the axis's size");
}
framework::DDim out_dims(input_x_dims);
for (size_t i = 0; i < axis_size; i++) {
out_dims[i] = input_x_dims[axis[i]];
}
this->param_.Out()->Resize(out_dims);
std::vector<int64_t> xshape_dims(input_x_dims.size() + 1, 0);
for (int i = 0; i < input_x_dims.size(); ++i) {
xshape_dims[i + 1] = input_x_dims[i];
}
this->param_.OutputXShape()->Resize(framework::make_ddim(xshape_dims));
}
} // namespace operators
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(transpose2, ops::Transpose2Op);
#endif
#endif // TRANSPOSE_OP
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef TRANSPOSE2_OP
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/transpose2_kernel.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
using paddle_mobile::framework::Tensor;
template <typename DeviceType, typename T>
class Transpose2Op : public framework::OperatorWithKernel<
DeviceType, Transpose2Param<DeviceType>,
operators::Transpose2Kernel<DeviceType, T>> {
public:
Transpose2Op(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
std::shared_ptr<framework::Scope> scope)
: framework::OperatorWithKernel<
DeviceType, Transpose2Param<DeviceType>,
operators::Transpose2Kernel<DeviceType, T>>(type, inputs, outputs,
attrs, scope) {}
using framework::OperatorWithKernel<
DeviceType, Transpose2Param<DeviceType>,
operators::Transpose2Kernel<DeviceType, T>>::OperatorWithKernel;
void InferShape() const override;
};
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -184,6 +184,10 @@ if (NOT FOUND_MATCH)
ADD_EXECUTABLE(test-transpose-op operators/test_transpose_op.cpp test_helper.h test_include.h)
target_link_libraries(test-transpose-op paddle-mobile)
# gen test
ADD_EXECUTABLE(test-transpose2-op operators/test_transpose2_op.cpp test_helper.h test_include.h)
target_link_libraries(test-transpose2-op paddle-mobile)
# gen test
ADD_EXECUTABLE(test-multiclassnms-op operators/test_multiclass_nms_op.cpp test_helper.h test_include.h)
target_link_libraries(test-multiclassnms-op paddle-mobile)
......
......@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "../test_helper.h"
#include "../test_include.h"
#include "operators/batchnorm_op.h"
......
......@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "../test_include.h"
#include "operators/box_coder_op.h"
......
......@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "../test_helper.h"
#include "../test_include.h"
#include "operators/elementwise_sub_op.h"
......
......@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "../test_include.h"
#include "operators/fill_constant_op.h"
......
......@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <framework/program/program-optimize/program_optimize.h>
#include "../test_include.h"
#include "operators/fusion_fc_op.h"
......
......@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "../test_helper.h"
#include "../test_include.h"
#include "operators/im2sequence_op.h"
......
......@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "../test_include.h"
#include "operators/multiclass_nms_op.h"
......@@ -31,14 +30,12 @@ class TestMultiClassNMSOp {
const std::vector<std::shared_ptr<BlockDesc>> blocks =
to_predict_program_->Blocks();
// DLOG << " **block size " << blocks.size();
for (auto block_desc : blocks) {
std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
// DLOG << " ops " << ops.size();
for (auto op : ops) {
if (op->Type() == "multiclass_nms" &&
op->Input("BBoxes")[0] == "box_coder_0.tmp_0") {
DLOG << " mul attr size: " << op->GetAttrMap().size();
DLOG << " attr size: " << op->GetAttrMap().size();
DLOG << " inputs size: " << op->GetInputs().size();
DLOG << " outputs size: " << op->GetOutputs().size();
DLOG << " BBoxes is : " << op->Input("BBoxes")[0];
......@@ -55,14 +52,6 @@ class TestMultiClassNMSOp {
<< op->GetAttrMap().at("nms_top_k").Get<int>();
DLOG << " score_threshold : "
<< op->GetAttrMap().at("score_threshold").Get<float>();
// DLOG << " variances : " <<
// op->GetAttrMap().at("variances").Get<std::vector<float>>();
// DLOG << " aspect_ratios : " <<
// op->GetAttrMap().at("aspect_ratios").Get<std::vector<float>>();
// DLOG << " min_sizes : " <<
// op->GetAttrMap().at("min_sizes").Get<std::vector<float>>();
// DLOG << " max_sizes : " <<
// op->GetAttrMap().at("max_sizes").Get<std::vector<float>>();
std::shared_ptr<operators::MultiClassNMSOp<Dtype, float>> priorbox =
std::make_shared<operators::MultiClassNMSOp<Dtype, float>>(
op->Type(), op->GetInputs(), op->GetOutputs(),
......@@ -88,16 +77,12 @@ class TestMultiClassNMSOp {
auto *output_tensor = output->GetMutable<LoDTensor>();
output_tensor->mutable_data<float>({1917, 6});
// DLOG << typeid(output_tensor).name();
// DLOG << "output_tensor dims: " << output_tensor->dims();
std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
out_tensor.reset(output_tensor);
predict(t1, t2, 0);
return out_tensor;
// return outvars_tensor;
}
private:
......
......@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "../test_include.h"
#include "operators/polygon_box_transform_op.h"
......
......@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "../test_include.h"
#include "operators/prior_box_op.h"
......
......@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "../test_include.h"
#include "operators/reshape2_op.h"
......
......@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "../test_helper.h"
#include "../test_include.h"
#include "operators/sum_op.h"
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "../test_include.h"
#include "operators/transpose2_op.h"
namespace paddle_mobile {
namespace framework {
template <typename Dtype>
class TestTranspose2Op {
public:
explicit TestTranspose2Op(const Program<Dtype> p) : program_(p) {
if (use_optimize_) {
to_predict_program_ = program_.optimizeProgram;
} else {
to_predict_program_ = program_.originProgram;
}
const std::vector<std::shared_ptr<BlockDesc>> blocks =
to_predict_program_->Blocks();
for (auto block_desc : blocks) {
std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
for (auto op : ops) {
if (op->Type() == "transpose2") {
DLOG << " attr size: " << op->GetAttrMap().size();
std::unordered_map<std::string, Attribute> attrs = op->GetAttrMap();
for (std::unordered_map<std::string, Attribute>::iterator it =
attrs.begin();
it != attrs.end(); ++it) {
DLOG << " " << it->first << " " << it->second;
}
DLOG << " inputs size: " << op->GetInputs().size();
VariableNameMap inputs = op->GetInputs();
for (VariableNameMap::iterator it = inputs.begin();
it != inputs.end(); ++it) {
DLOG << " " << it->first << " " << it->second;
}
DLOG << " outputs size: " << op->GetOutputs().size();
VariableNameMap outputs = op->GetOutputs();
for (VariableNameMap::iterator it = outputs.begin();
it != outputs.end(); ++it) {
DLOG << " " << it->first << " " << it->second;
}
input_var_name = op->Input("X")[0];
output_var_name = op->Output("Out")[0];
std::shared_ptr<operators::Transpose2Op<Dtype, float>> op_ptr =
std::make_shared<operators::Transpose2Op<Dtype, float>>(
op->Type(), op->GetInputs(), op->GetOutputs(),
op->GetAttrMap(), program_.scope);
ops_of_block_[*block_desc.get()].push_back(op_ptr);
return;
}
}
}
}
std::shared_ptr<Tensor> predict(const Tensor &t) {
auto scope = program_.scope;
Variable *input_feed_value = scope->Var(input_var_name);
auto tensor_input = input_feed_value->GetMutable<LoDTensor>();
tensor_input->ShareDataWith(t);
Variable *output = scope->Var(output_var_name);
auto *output_tensor = output->GetMutable<LoDTensor>();
output_tensor->mutable_data<float>({1, 2, 8});
std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
out_tensor.reset(output_tensor);
predict(t, 0);
return out_tensor;
}
private:
const framework::Program<Dtype> program_;
std::shared_ptr<ProgramDesc> to_predict_program_;
std::map<framework::BlockDesc,
std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
ops_of_block_;
bool use_optimize_ = false;
string input_var_name;
string output_var_name;
void predict(const Tensor &t, int block_id) {
std::shared_ptr<BlockDesc> to_predict_block =
to_predict_program_->Block(block_id);
for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
auto op = ops_of_block_[*to_predict_block.get()][j];
op->Run();
}
}
};
template class TestTranspose2Op<CPU>;
} // namespace framework
} // namespace paddle_mobile
int main() {
DLOG << "----------**********----------";
DLOG << "begin to run Transpose2 Test";
paddle_mobile::Loader<paddle_mobile::CPU> loader;
auto program = loader.Load(std::string(g_ocr) + "/model",
std::string(g_ocr) + "/params");
paddle_mobile::framework::Tensor input;
SetupTensor<float>(&input, {1, 8, 2}, static_cast<float>(0),
static_cast<float>(1));
auto *input_ptr = input.data<float>();
for (int i = 0; i < 16; ++i) {
*(input_ptr + i) = i;
}
DLOG << "input : ";
for (int i = 0; i < input.numel(); ++i) {
DLOG << " index " << i << " : " << input_ptr[i];
}
paddle_mobile::framework::TestTranspose2Op<paddle_mobile::CPU>
testTranspose2Op(program);
auto output = testTranspose2Op.predict(input);
auto *output_ptr = output->data<float>();
DLOG << "output : ";
for (int i = 0; i < output->numel(); ++i) {
DLOG << " index " << i << " : " << output_ptr[i];
}
return 0;
}
......@@ -205,6 +205,7 @@ if(NOT FOUND_MATCH)
set(SIGMOID_OP ON)
set(SOFTMAX_OP ON)
set(TRANSPOSE_OP ON)
set(TRANSPOSE2_OP ON)
set(FUSION_CONVADDBNRELU_OP ON)
set(FUSION_CONVADDADDPRELU_OP ON)
set(FUSION_DWCONVBNRELU_OP ON)
......@@ -251,6 +252,7 @@ endif()
# option(SIGMOID_OP "" ON)
# option(SOFTMAX_OP "" ON)
# option(TRANSPOSE_OP "" ON)
# option(TRANSPOSE2_OP "" ON)
# endif ()
if (BATCHNORM_OP)
......@@ -328,6 +330,9 @@ endif()
if (TRANSPOSE_OP)
add_definitions(-DTRANSPOSE_OP)
endif()
if (TRANSPOSE2_OP)
add_definitions(-DTRANSPOSE2_OP)
endif()
if (FUSION_CONVADDBNRELU_OP)
add_definitions(-DFUSION_CONVADDBNRELU_OP)
endif()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册