Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
c509b1e6
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c509b1e6
编写于
12月 11, 2018
作者:
H
hjchen2
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix offline quantize to make sure it will not overflow
上级
4f63b086
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
68 addition
and
6 deletion
+68
-6
src/operators/kernel/arm/quantize_kernel.cpp
src/operators/kernel/arm/quantize_kernel.cpp
+68
-6
未找到文件。
src/operators/kernel/arm/quantize_kernel.cpp
浏览文件 @
c509b1e6
...
...
@@ -34,14 +34,66 @@ inline float32_t vmaxvq_f32(float32x4_t r) {
#endif
template
<
RoundType
R
>
static
void
Quantize
(
const
Tensor
*
input
,
const
float
scale
,
Tensor
*
output
)
{
inline
void
QuantizeOffline
(
const
Tensor
*
input
,
const
float
scale
,
const
float
max_abs
,
Tensor
*
output
)
{
const
float
*
x
=
input
->
data
<
const
float
>
();
int8_t
*
y
=
output
->
mutable_data
<
int8_t
>
();
size_t
remain
=
input
->
numel
();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
size_t
loop
=
remain
>>
4
;
remain
=
remain
&
0xF
;
float32x4_t
__scale
=
vdupq_n_f32
(
scale
);
float32x4_t
__postive_max
=
vdupq_n_f32
(
max_abs
);
float32x4_t
__negtive_max
=
vdupq_n_f32
(
-
max_abs
);
#pragma omp parallel for
for
(
size_t
i
=
0
;
i
<
loop
;
++
i
)
{
const
float
*
local_x
=
x
+
(
i
<<
4
);
int8_t
*
local_y
=
y
+
(
i
<<
4
);
float32x4_t
r0
=
vld1q_f32
(
local_x
);
float32x4_t
r1
=
vld1q_f32
(
local_x
+
4
);
float32x4_t
r2
=
vld1q_f32
(
local_x
+
8
);
float32x4_t
r3
=
vld1q_f32
(
local_x
+
12
);
r0
=
vmaxq_f32
(
vminq_f32
(
r0
,
__postive_max
),
__negtive_max
);
r1
=
vmaxq_f32
(
vminq_f32
(
r1
,
__postive_max
),
__negtive_max
);
r2
=
vmaxq_f32
(
vminq_f32
(
r2
,
__postive_max
),
__negtive_max
);
r3
=
vmaxq_f32
(
vminq_f32
(
r3
,
__postive_max
),
__negtive_max
);
r0
=
vmulq_f32
(
r0
,
__scale
);
r1
=
vmulq_f32
(
r1
,
__scale
);
r2
=
vmulq_f32
(
r2
,
__scale
);
r3
=
vmulq_f32
(
r3
,
__scale
);
int32x4_t
q0
=
math
::
vRoundq_f32
<
R
>
(
r0
);
int32x4_t
q1
=
math
::
vRoundq_f32
<
R
>
(
r1
);
int32x4_t
q2
=
math
::
vRoundq_f32
<
R
>
(
r2
);
int32x4_t
q3
=
math
::
vRoundq_f32
<
R
>
(
r3
);
int16x4_t
d0
=
vmovn_s32
(
q0
);
int16x4_t
d1
=
vmovn_s32
(
q1
);
int16x4_t
d2
=
vmovn_s32
(
q2
);
int16x4_t
d3
=
vmovn_s32
(
q3
);
int16x8_t
q5
=
vcombine_s16
(
d0
,
d1
);
int16x8_t
q6
=
vcombine_s16
(
d2
,
d3
);
int8x8_t
d5
=
vmovn_s16
(
q5
);
int8x8_t
d6
=
vmovn_s16
(
q6
);
vst1_s8
(
local_y
,
d5
);
vst1_s8
(
local_y
+
8
,
d6
);
}
x
+=
(
loop
<<
4
);
y
+=
(
loop
<<
4
);
#endif
for
(
size_t
i
=
0
;
i
<
remain
;
++
i
)
{
float
x_temp
=
std
::
max
(
std
::
min
(
x
[
i
],
max_abs
),
-
max_abs
);
y
[
i
]
=
math
::
Round
<
R
>
(
x_temp
*
scale
);
}
}
template
<
RoundType
R
>
inline
void
QuantizeOnline
(
const
Tensor
*
input
,
const
float
scale
,
Tensor
*
output
)
{
const
float
*
x
=
input
->
data
<
const
float
>
();
int8_t
*
y
=
output
->
mutable_data
<
int8_t
>
();
size_t
remain
=
input
->
numel
();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
size_t
loop
=
remain
>>
4
;
remain
=
remain
&
0xF
;
float32x4_t
__scale
=
vdupq_n_f32
(
scale
);
#pragma omp parallel for
for
(
size_t
i
=
0
;
i
<
loop
;
++
i
)
{
...
...
@@ -78,6 +130,17 @@ static void Quantize(const Tensor *input, const float scale, Tensor *output) {
}
}
template
<
RoundType
R
>
static
void
Quantize
(
const
Tensor
*
input
,
const
float
max_abs
,
const
bool
offline
,
Tensor
*
output
)
{
float
scale
=
127.
f
/
max_abs
;
if
(
offline
)
{
QuantizeOffline
<
R
>
(
input
,
scale
,
max_abs
,
output
);
}
else
{
QuantizeOnline
<
R
>
(
input
,
scale
,
output
);
}
}
float
find_abs_max
(
const
Tensor
*
input
)
{
float
max_abs
=
0.
f
;
const
float
*
x
=
input
->
data
<
const
float
>
();
...
...
@@ -133,18 +196,17 @@ void QuantizeKernel<CPU, float>::Compute(const QuantizeParam<CPU> ¶m) {
max_abs
=
find_abs_max
(
input
);
}
max_abs
=
std
::
max
(
max_abs
,
1e-6
f
);
// only support int8 currently
float
scale
=
127
/
max_abs
;
param
.
online_scale_
->
mutable_data
<
float
>
()[
0
]
=
max_abs
;
switch
(
param
.
round_type_
)
{
case
ROUND_NEAREST_TO_EVEN
:
Quantize
<
ROUND_NEAREST_TO_EVEN
>
(
input
,
scale
,
output
);
Quantize
<
ROUND_NEAREST_TO_EVEN
>
(
input
,
max_abs
,
param
.
offline_
,
output
);
break
;
case
ROUND_NEAREST_TOWARDS_ZERO
:
Quantize
<
ROUND_NEAREST_TOWARDS_ZERO
>
(
input
,
scale
,
output
);
Quantize
<
ROUND_NEAREST_TOWARDS_ZERO
>
(
input
,
max_abs
,
param
.
offline_
,
output
);
break
;
case
ROUND_NEAREST_AWAY_ZERO
:
Quantize
<
ROUND_NEAREST_AWAY_ZERO
>
(
input
,
scale
,
output
);
Quantize
<
ROUND_NEAREST_AWAY_ZERO
>
(
input
,
max_abs
,
param
.
offline_
,
output
);
break
;
default:
LOG
(
kLOG_ERROR
)
<<
"round type is not supported."
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录