Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
c3df3f2d
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c3df3f2d
编写于
2月 11, 2020
作者:
L
Liu Yiqun
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into step_rnn/opt_ddim_lite
上级
ef2616b6
53604bac
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
70 addition
and
79 deletion
+70
-79
lite/backends/x86/math/sequence2batch.cc
lite/backends/x86/math/sequence2batch.cc
+4
-4
lite/backends/x86/math/sequence2batch.h
lite/backends/x86/math/sequence2batch.h
+15
-21
lite/backends/x86/math/softmax_impl.h
lite/backends/x86/math/softmax_impl.h
+2
-2
lite/fluid/eigen.h
lite/fluid/eigen.h
+15
-7
lite/kernels/x86/concat_compute.h
lite/kernels/x86/concat_compute.h
+10
-8
lite/kernels/x86/lookup_table_compute.h
lite/kernels/x86/lookup_table_compute.h
+3
-5
lite/kernels/x86/reduce_compute.h
lite/kernels/x86/reduce_compute.h
+1
-1
lite/kernels/x86/reduce_op_function.h
lite/kernels/x86/reduce_op_function.h
+9
-19
lite/kernels/x86/sequence_reshape_compute.h
lite/kernels/x86/sequence_reshape_compute.h
+3
-6
lite/kernels/x86/softmax_compute.h
lite/kernels/x86/softmax_compute.h
+8
-6
未找到文件。
lite/backends/x86/math/sequence2batch.cc
浏览文件 @
c3df3f2d
...
@@ -24,12 +24,12 @@ class CopyMatrixRowsFunctor<lite::TargetType::kX86, T> {
...
@@ -24,12 +24,12 @@ class CopyMatrixRowsFunctor<lite::TargetType::kX86, T> {
public:
public:
void
operator
()(
const
lite
::
Context
<
lite
::
TargetType
::
kX86
>&
context
,
void
operator
()(
const
lite
::
Context
<
lite
::
TargetType
::
kX86
>&
context
,
const
lite
::
Tensor
&
src
,
const
lite
::
Tensor
&
src
,
std
::
vector
<
size_t
>
index_lod
,
const
std
::
vector
<
size_t
>&
index_lod
,
lite
::
Tensor
*
dst
,
lite
::
Tensor
*
dst
,
bool
is_src_index
)
{
bool
is_src_index
)
{
size_t
*
index
=
index_lod
.
data
();
const
size_t
*
index
=
index_lod
.
data
();
auto
src_dims
=
src
.
dims
();
const
auto
&
src_dims
=
src
.
dims
();
auto
dst_dims
=
dst
->
dims
();
const
auto
&
dst_dims
=
dst
->
dims
();
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
src_dims
.
size
(),
2UL
,
"The src must be matrix with rank 2."
);
src_dims
.
size
(),
2UL
,
"The src must be matrix with rank 2."
);
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
...
...
lite/backends/x86/math/sequence2batch.h
浏览文件 @
c3df3f2d
...
@@ -19,7 +19,6 @@ limitations under the License. */
...
@@ -19,7 +19,6 @@ limitations under the License. */
#include "lite/core/context.h"
#include "lite/core/context.h"
#include "lite/core/tensor.h"
#include "lite/core/tensor.h"
#include "lite/fluid/eigen.h"
#include "lite/fluid/eigen.h"
// #include "lite/fluid/lod.h"
#include "lite/utils/paddle_enforce.h"
#include "lite/utils/paddle_enforce.h"
namespace
paddle
{
namespace
paddle
{
...
@@ -27,11 +26,6 @@ namespace lite {
...
@@ -27,11 +26,6 @@ namespace lite {
namespace
x86
{
namespace
x86
{
namespace
math
{
namespace
math
{
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
lite
::
fluid
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
lite
::
TargetType
Target
,
typename
T
>
template
<
lite
::
TargetType
Target
,
typename
T
>
class
CopyMatrixRowsFunctor
{
class
CopyMatrixRowsFunctor
{
public:
public:
...
@@ -42,7 +36,7 @@ class CopyMatrixRowsFunctor {
...
@@ -42,7 +36,7 @@ class CopyMatrixRowsFunctor {
// The indexed rows are based on the input index.
// The indexed rows are based on the input index.
void
operator
()(
const
lite
::
Context
<
Target
>&
context
,
void
operator
()(
const
lite
::
Context
<
Target
>&
context
,
const
lite
::
Tensor
&
src
,
const
lite
::
Tensor
&
src
,
std
::
vector
<
size_t
>
index_lod
,
const
std
::
vector
<
size_t
>&
index_lod
,
lite
::
Tensor
*
dst
,
lite
::
Tensor
*
dst
,
bool
is_src_index
);
bool
is_src_index
);
};
};
...
@@ -56,6 +50,7 @@ class LoDTensor2BatchFunctor {
...
@@ -56,6 +50,7 @@ class LoDTensor2BatchFunctor {
// seq_info[3] = {(4, 5, 1), (0, 4, 0), (9, 3, 2)}
// seq_info[3] = {(4, 5, 1), (0, 4, 0), (9, 3, 2)}
//
//
struct
SeqInfo
{
struct
SeqInfo
{
SeqInfo
()
=
default
;
SeqInfo
(
int
start
,
int
length
,
int
seq_idx
)
SeqInfo
(
int
start
,
int
length
,
int
seq_idx
)
:
start
(
start
),
length
(
length
),
seq_idx
(
seq_idx
)
{}
:
start
(
start
),
length
(
length
),
seq_idx
(
seq_idx
)
{}
int
start
;
int
start
;
...
@@ -89,10 +84,12 @@ class LoDTensor2BatchFunctor {
...
@@ -89,10 +84,12 @@ class LoDTensor2BatchFunctor {
const
auto
&
lod
=
lods
[
0
];
const
auto
&
lod
=
lods
[
0
];
std
::
vector
<
SeqInfo
>
seq_info
;
std
::
vector
<
SeqInfo
>
seq_info
(
lod
.
size
()
-
1
)
;
for
(
size_t
seq_id
=
0
;
seq_id
<
lod
.
size
()
-
1
;
++
seq_id
)
{
for
(
size_t
seq_id
=
0
;
seq_id
<
lod
.
size
()
-
1
;
++
seq_id
)
{
int
length
=
lod
[
seq_id
+
1
]
-
lod
[
seq_id
];
int
length
=
lod
[
seq_id
+
1
]
-
lod
[
seq_id
];
seq_info
.
emplace_back
(
lod
[
seq_id
],
length
,
seq_id
);
seq_info
[
seq_id
].
start
=
lod
[
seq_id
];
seq_info
[
seq_id
].
length
=
length
;
seq_info
[
seq_id
].
seq_idx
=
seq_id
;
}
}
std
::
sort
(
seq_info
.
begin
(),
seq_info
.
end
(),
[](
SeqInfo
a
,
SeqInfo
b
)
{
std
::
sort
(
seq_info
.
begin
(),
seq_info
.
end
(),
[](
SeqInfo
a
,
SeqInfo
b
)
{
...
@@ -122,21 +119,19 @@ class LoDTensor2BatchFunctor {
...
@@ -122,21 +119,19 @@ class LoDTensor2BatchFunctor {
// The max_seqlen represents batch size after rearranging the
// The max_seqlen represents batch size after rearranging the
// input LodTensor. It is also the maximum length of input sequence.
// input LodTensor. It is also the maximum length of input sequence.
lite
::
LoD
batch_lods
;
LoD
*
batch_lods
=
batch
->
mutable_lod
();
batch_lods
.
emplace_back
(
std
::
vector
<
size_t
>
{
0
});
batch_lods
->
resize
(
3
);
batch_lods
.
emplace_back
(
std
::
vector
<
size_t
>
{
0
});
batch_lods
.
emplace_back
(
std
::
vector
<
size_t
>
{
0
});
// batch_lods[0] is the start positions for batch LoDTensor
// batch_lods[0] is the start positions for batch LoDTensor
int
max_seqlen
=
seq_info
[
0
].
length
;
int
max_seqlen
=
seq_info
[
0
].
length
;
batch_lods
[
0
]
.
resize
(
static_cast
<
size_t
>
(
max_seqlen
+
1
));
batch_lods
->
at
(
0
)
.
resize
(
static_cast
<
size_t
>
(
max_seqlen
+
1
));
// batch_lods[1] is the raw index in the input LoDTensor
// batch_lods[1] is the raw index in the input LoDTensor
batch_lods
[
1
]
.
resize
(
static_cast
<
size_t
>
(
lod_tensor
.
dims
()[
0
]));
batch_lods
->
at
(
1
)
.
resize
(
static_cast
<
size_t
>
(
lod_tensor
.
dims
()[
0
]));
// batch_lods[2] is the sort order for the input LoDTensor.
// batch_lods[2] is the sort order for the input LoDTensor.
batch_lods
[
2
]
.
resize
(
seq_info
.
size
());
batch_lods
->
at
(
2
)
.
resize
(
seq_info
.
size
());
size_t
*
batch_starts
=
batch_lods
[
0
]
.
data
();
size_t
*
batch_starts
=
batch_lods
->
at
(
0
)
.
data
();
size_t
*
seq2batch_idx
=
batch_lods
[
1
]
.
data
();
size_t
*
seq2batch_idx
=
batch_lods
->
at
(
1
)
.
data
();
batch_starts
[
0
]
=
0
;
batch_starts
[
0
]
=
0
;
for
(
int
n
=
0
;
n
<
max_seqlen
;
n
++
)
{
for
(
int
n
=
0
;
n
<
max_seqlen
;
n
++
)
{
auto
batch_id
=
static_cast
<
int
>
(
batch_starts
[
n
]);
auto
batch_id
=
static_cast
<
int
>
(
batch_starts
[
n
]);
...
@@ -153,14 +148,13 @@ class LoDTensor2BatchFunctor {
...
@@ -153,14 +148,13 @@ class LoDTensor2BatchFunctor {
}
}
batch_starts
[
n
+
1
]
=
static_cast
<
size_t
>
(
batch_id
);
batch_starts
[
n
+
1
]
=
static_cast
<
size_t
>
(
batch_id
);
}
}
size_t
*
seq_order
=
batch_lods
[
2
]
.
data
();
size_t
*
seq_order
=
batch_lods
->
at
(
2
)
.
data
();
for
(
size_t
i
=
0
;
i
<
seq_info
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
seq_info
.
size
();
++
i
)
{
seq_order
[
i
]
=
seq_info
[
i
].
seq_idx
;
seq_order
[
i
]
=
seq_info
[
i
].
seq_idx
;
}
}
batch
->
set_lod
(
batch_lods
);
CopyMatrixRowsFunctor
<
Target
,
T
>
to_batch
;
CopyMatrixRowsFunctor
<
Target
,
T
>
to_batch
;
to_batch
(
context
,
lod_tensor
,
batch_lods
[
1
]
,
batch
,
true
);
to_batch
(
context
,
lod_tensor
,
batch_lods
->
at
(
1
)
,
batch
,
true
);
}
}
};
};
...
...
lite/backends/x86/math/softmax_impl.h
浏览文件 @
c3df3f2d
...
@@ -99,7 +99,7 @@ class SoftmaxFunctor<Target, T, is_test, enable_if_CPU<Target>> {
...
@@ -99,7 +99,7 @@ class SoftmaxFunctor<Target, T, is_test, enable_if_CPU<Target>> {
const
int
axis_dim
,
const
int
axis_dim
,
const
lite
::
Tensor
*
X
,
const
lite
::
Tensor
*
X
,
lite
::
Tensor
*
Y
)
{
lite
::
Tensor
*
Y
)
{
auto
in_dims
=
X
->
dims
();
const
auto
&
in_dims
=
X
->
dims
();
constexpr
int
kBatchDim
=
0
;
constexpr
int
kBatchDim
=
0
;
constexpr
int
kClassDim
=
1
;
constexpr
int
kClassDim
=
1
;
...
@@ -140,7 +140,7 @@ class SoftmaxFunctor<Target, float, true, enable_if_CPU<Target>> {
...
@@ -140,7 +140,7 @@ class SoftmaxFunctor<Target, float, true, enable_if_CPU<Target>> {
const
int
axis_dim
,
const
int
axis_dim
,
const
lite
::
Tensor
*
X
,
const
lite
::
Tensor
*
X
,
lite
::
Tensor
*
Y
)
{
lite
::
Tensor
*
Y
)
{
auto
in_dims
=
X
->
dims
();
const
auto
&
in_dims
=
X
->
dims
();
const
float
*
in_data
=
X
->
data
<
float
>
();
const
float
*
in_data
=
X
->
data
<
float
>
();
float
*
out_data
=
Y
->
mutable_data
<
float
>
();
float
*
out_data
=
Y
->
mutable_data
<
float
>
();
const
int
kBatchDim
=
0
;
const
int
kBatchDim
=
0
;
...
...
lite/fluid/eigen.h
浏览文件 @
c3df3f2d
...
@@ -30,13 +30,20 @@ struct EigenDim {
...
@@ -30,13 +30,20 @@ struct EigenDim {
using
Type
=
Eigen
::
DSizes
<
Eigen
::
DenseIndex
,
D
>
;
using
Type
=
Eigen
::
DSizes
<
Eigen
::
DenseIndex
,
D
>
;
static
Type
From
(
const
lite
::
DDim
&
dims
)
{
static
Type
From
(
const
lite
::
DDim
&
dims
)
{
PADDLE_ENFORCE
(
dims
.
size
()
==
D
,
"D must match DDim::size"
);
PADDLE_ENFORCE
_EQ
(
dims
.
size
(),
D
,
"D must match DDim::size"
);
Type
ret
;
Type
ret
;
for
(
size_t
d
=
0
;
d
<
dims
.
size
();
d
++
)
{
for
(
size_t
d
=
0
;
d
<
dims
.
size
();
d
++
)
{
ret
[
d
]
=
dims
[
d
];
ret
[
d
]
=
dims
[
d
];
}
}
return
ret
;
return
ret
;
}
}
static
Type
From
(
const
DDim
::
value_type
length
)
{
PADDLE_ENFORCE_EQ
(
D
,
1
,
"D must be 1."
);
Type
ret
;
ret
[
0
]
=
length
;
return
ret
;
}
};
};
// Interpret paddle::platform::Tensor as EigenTensor and EigenConstTensor.
// Interpret paddle::platform::Tensor as EigenTensor and EigenConstTensor.
...
@@ -52,7 +59,7 @@ struct EigenTensor {
...
@@ -52,7 +59,7 @@ struct EigenTensor {
using
ConstType
=
using
ConstType
=
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
const
T
,
D
,
MajorType
,
IndexType
>>
;
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
const
T
,
D
,
MajorType
,
IndexType
>>
;
static
Type
From
(
Tensor
&
tensor
,
lite
::
DDim
dims
)
{
// NOLINT
static
Type
From
(
Tensor
&
tensor
,
const
lite
::
DDim
&
dims
)
{
// NOLINT
return
Type
(
const_cast
<
T
*>
(
tensor
.
data
<
T
>
()),
return
Type
(
const_cast
<
T
*>
(
tensor
.
data
<
T
>
()),
EigenDim
<
D
>::
From
(
dims
));
// NOLINT
EigenDim
<
D
>::
From
(
dims
));
// NOLINT
}
}
...
@@ -61,7 +68,7 @@ struct EigenTensor {
...
@@ -61,7 +68,7 @@ struct EigenTensor {
return
From
(
tensor
,
tensor
.
dims
());
return
From
(
tensor
,
tensor
.
dims
());
}
// NOLINT
}
// NOLINT
static
ConstType
From
(
const
Tensor
&
tensor
,
lite
::
DDim
dims
)
{
static
ConstType
From
(
const
Tensor
&
tensor
,
const
lite
::
DDim
&
dims
)
{
return
ConstType
(
tensor
.
data
<
T
>
(),
EigenDim
<
D
>::
From
(
dims
));
return
ConstType
(
tensor
.
data
<
T
>
(),
EigenDim
<
D
>::
From
(
dims
));
}
}
...
@@ -97,14 +104,15 @@ template <typename T,
...
@@ -97,14 +104,15 @@ template <typename T,
struct
EigenVector
:
public
EigenTensor
<
T
,
1
,
MajorType
,
IndexType
>
{
struct
EigenVector
:
public
EigenTensor
<
T
,
1
,
MajorType
,
IndexType
>
{
// Flatten reshapes a Tensor into an EigenVector.
// Flatten reshapes a Tensor into an EigenVector.
static
typename
EigenVector
::
Type
Flatten
(
Tensor
&
tensor
)
{
// NOLINT
static
typename
EigenVector
::
Type
Flatten
(
Tensor
&
tensor
)
{
// NOLINT
return
EigenVector
::
From
(
return
typename
EigenVector
::
Type
(
tensor
,
lite
::
DDim
(
std
::
vector
<
int64_t
>
({
tensor
.
dims
().
production
()})));
const_cast
<
T
*>
(
tensor
.
data
<
T
>
()),
EigenDim
<
1
>::
From
(
tensor
.
dims
().
production
()));
}
}
static
typename
EigenVector
::
ConstType
Flatten
(
static
typename
EigenVector
::
ConstType
Flatten
(
const
Tensor
&
tensor
)
{
// NOLINT
const
Tensor
&
tensor
)
{
// NOLINT
return
EigenVector
::
From
(
return
typename
EigenVector
::
ConstType
(
tensor
,
lite
::
DDim
(
std
::
vector
<
int64_t
>
({
tensor
.
dims
().
production
()}
)));
tensor
.
data
<
T
>
(),
EigenDim
<
1
>::
From
(
tensor
.
dims
().
production
(
)));
}
}
};
};
...
...
lite/kernels/x86/concat_compute.h
浏览文件 @
c3df3f2d
...
@@ -39,26 +39,28 @@ class ConcatCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
...
@@ -39,26 +39,28 @@ class ConcatCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
void
Run
()
override
{
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
if
(
param
.
x
.
size
()
==
1
)
{
param
.
output
->
ShareDataWith
(
*
param
.
x
[
0
]);
return
;
}
int64_t
axis
=
static_cast
<
int64_t
>
(
param
.
axis
);
int64_t
axis
=
static_cast
<
int64_t
>
(
param
.
axis
);
auto
*
axis_tensor
=
param
.
axis_tensor
;
auto
*
axis_tensor
=
param
.
axis_tensor
;
if
(
axis_tensor
!=
nullptr
)
{
if
(
axis_tensor
!=
nullptr
)
{
auto
*
axis_tensor_data
=
axis_tensor
->
data
<
int
>
();
auto
*
axis_tensor_data
=
axis_tensor
->
data
<
int
>
();
axis
=
static_cast
<
int64_t
>
(
axis_tensor_data
[
0
]);
axis
=
static_cast
<
int64_t
>
(
axis_tensor_data
[
0
]);
}
}
auto
x_dims
=
param
.
x
[
0
]
->
dims
();
auto
out
=
param
.
output
;
if
(
param
.
x
.
size
()
==
1
)
{
param
.
output
->
ShareDataWith
(
*
param
.
x
[
0
]);
return
;
}
auto
output_data
=
param
.
output
->
template
mutable_data
<
T
>();
const
auto
&
x_dims
=
param
.
x
[
0
]
->
dims
();
auto
*
out
=
param
.
output
;
T
*
output_data
=
param
.
output
->
template
mutable_data
<
T
>();
int
offset_concat_axis
=
0
;
int
offset_concat_axis
=
0
;
int
num_concat
=
count
(
0
,
axis
,
x_dims
);
int
num_concat
=
count
(
0
,
axis
,
x_dims
);
int
concat_input_size
=
count
(
axis
+
1
,
x_dims
.
size
(),
x_dims
);
int
concat_input_size
=
count
(
axis
+
1
,
x_dims
.
size
(),
x_dims
);
const
int
top_concat_axis
=
out
->
dims
()[
axis
];
const
int
top_concat_axis
=
out
->
dims
()[
axis
];
for
(
size_t
i
=
0
;
i
<
param
.
x
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
param
.
x
.
size
();
++
i
)
{
auto
bottom_data
=
param
.
x
[
i
]
->
data
<
T
>
();
const
T
*
bottom_data
=
param
.
x
[
i
]
->
data
<
T
>
();
const
int64_t
bottom_concat_axis
=
param
.
x
[
i
]
->
dims
()[
axis
];
const
int64_t
bottom_concat_axis
=
param
.
x
[
i
]
->
dims
()[
axis
];
for
(
int
n
=
0
;
n
<
num_concat
;
++
n
)
{
for
(
int
n
=
0
;
n
<
num_concat
;
++
n
)
{
std
::
memcpy
(
std
::
memcpy
(
...
...
lite/kernels/x86/lookup_table_compute.h
浏览文件 @
c3df3f2d
...
@@ -33,17 +33,15 @@ class LookupTableCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
...
@@ -33,17 +33,15 @@ class LookupTableCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
auto
*
ids_t
=
param
.
Ids
;
auto
*
ids_t
=
param
.
Ids
;
auto
*
output_t
=
param
.
Out
;
auto
*
output_t
=
param
.
Out
;
int64_t
padding_idx
=
param
.
padding_idx
;
int64_t
padding_idx
=
param
.
padding_idx
;
auto
*
ids
=
ids_t
->
data
<
int64_t
>
();
const
int64_t
*
ids
=
ids_t
->
data
<
int64_t
>
();
// LOG(INFO) << "ids->dims: " << ids_t->dims();
int64_t
ids_numel
=
ids_t
->
dims
().
production
();
int64_t
ids_numel
=
ids_t
->
dims
().
production
();
auto
*
table_t
=
param
.
W
;
auto
*
table_t
=
param
.
W
;
// LOG(INFO) << "W->dims: " << table_t->dims();
int64_t
row_number
=
table_t
->
dims
()[
0
];
int64_t
row_number
=
table_t
->
dims
()[
0
];
int64_t
row_width
=
table_t
->
dims
()[
1
];
int64_t
row_width
=
table_t
->
dims
()[
1
];
auto
*
table
=
table_t
->
data
<
T
>
();
const
T
*
table
=
table_t
->
data
<
T
>
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
();
T
*
output
=
output_t
->
mutable_data
<
T
>
();
memset
(
output
,
0
,
output_t
->
dims
().
production
()
*
sizeof
(
T
));
memset
(
output
,
0
,
output_t
->
dims
().
production
()
*
sizeof
(
T
));
for
(
int64_t
i
=
0
;
i
<
ids_numel
;
++
i
)
{
for
(
int64_t
i
=
0
;
i
<
ids_numel
;
++
i
)
{
if
(
padding_idx
!=
-
1
&&
ids
[
i
]
==
padding_idx
)
{
if
(
padding_idx
!=
-
1
&&
ids
[
i
]
==
padding_idx
)
{
...
...
lite/kernels/x86/reduce_compute.h
浏览文件 @
c3df3f2d
...
@@ -51,7 +51,7 @@ class ReduceSumCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
...
@@ -51,7 +51,7 @@ class ReduceSumCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
auto
*
output
=
param
.
output
;
auto
*
output
=
param
.
output
;
param
.
output
->
mutable_data
<
T
>
();
param
.
output
->
mutable_data
<
T
>
();
auto
dims
=
param
.
dim
;
const
auto
&
dims
=
param
.
dim
;
bool
keep_dim
=
param
.
keep_dim
;
bool
keep_dim
=
param
.
keep_dim
;
if
(
reduce_all
)
{
if
(
reduce_all
)
{
// Flatten and reduce 1-D tensor
// Flatten and reduce 1-D tensor
...
...
lite/kernels/x86/reduce_op_function.h
浏览文件 @
c3df3f2d
...
@@ -47,33 +47,23 @@ void ReduceFunctor(const lite::Tensor& input,
...
@@ -47,33 +47,23 @@ void ReduceFunctor(const lite::Tensor& input,
const
std
::
vector
<
int
>&
dims
,
const
std
::
vector
<
int
>&
dims
,
bool
keep_dim
)
{
bool
keep_dim
)
{
auto
x
=
EigenTensor
<
T
,
D
>::
From
(
input
);
auto
x
=
EigenTensor
<
T
,
D
>::
From
(
input
);
auto
x_rank
=
static_cast
<
int
>
(
x
.
dimensions
().
size
());
auto
reduce_dim
=
Eigen
::
array
<
int
,
R_D
>
();
auto
reduce_dim
=
Eigen
::
array
<
int
,
R_D
>
();
std
::
vector
<
int
>
dims_ref
=
dims
;
auto
x_rank
=
static_cast
<
int
>
(
x
.
dimensions
().
size
());
for
(
size_t
i
=
0
;
i
<
dims_ref
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
dims
.
size
();
++
i
)
{
if
(
dims_ref
[
i
]
<
0
)
dims_ref
[
i
]
=
x_rank
+
dims_ref
[
i
];
if
(
dims
[
i
]
<
0
)
{
reduce_dim
[
i
]
=
dims_ref
[
i
];
reduce_dim
[
i
]
=
x_rank
+
dims
[
i
];
}
}
else
{
// construct the squeezed output tensor
reduce_dim
[
i
]
=
dims
[
i
];
lite
::
DDim
out_dims
=
output
->
dims
();
if
(
keep_dim
&&
x_rank
>
1
)
{
const
int
kDelFlag
=
-
2
;
auto
dims_vector
=
out_dims
.
Vectorize
();
for
(
size_t
i
=
0
;
i
<
dims_ref
.
size
();
++
i
)
{
dims_vector
[
dims_ref
[
i
]]
=
kDelFlag
;
}
}
dims_vector
.
erase
(
remove
(
dims_vector
.
begin
(),
dims_vector
.
end
(),
kDelFlag
),
dims_vector
.
end
());
out_dims
=
lite
::
DDim
(
dims_vector
);
}
}
// auto& place = *context.eigen_device();
Functor
functor
;
Functor
functor
;
if
(
D
==
1
)
{
if
(
D
==
1
)
{
auto
out
=
EigenScalar
<
T
>::
From
(
output
);
auto
out
=
EigenScalar
<
T
>::
From
(
output
);
functor
(
&
x
,
&
out
,
reduce_dim
);
functor
(
&
x
,
&
out
,
reduce_dim
);
}
else
{
}
else
{
auto
out
=
EigenTensor
<
T
,
(
D
-
R_D
)
>::
From
(
*
output
,
out
_dims
);
auto
out
=
EigenTensor
<
T
,
(
D
-
R_D
)
>::
From
(
*
output
,
out
put
->
dims
()
);
functor
(
&
x
,
&
out
,
reduce_dim
);
functor
(
&
x
,
&
out
,
reduce_dim
);
}
}
}
}
...
...
lite/kernels/x86/sequence_reshape_compute.h
浏览文件 @
c3df3f2d
...
@@ -37,10 +37,9 @@ class SequenceReshapeCompute
...
@@ -37,10 +37,9 @@ class SequenceReshapeCompute
int
out_width
=
param
.
new_dim
;
int
out_width
=
param
.
new_dim
;
const
auto
&
in_dims
=
in
->
dims
();
const
auto
&
in_dims
=
in
->
dims
();
// LOG(INFO) << "in_dims: " << in_dims;
int64_t
in_width
=
in_dims
[
1
];
int64_t
in_width
=
in_dims
[
1
];
auto
&
in_lod
=
in
->
lod
();
auto
&
in_lod
=
in
->
lod
();
CHECK_EQ
(
in_lod
.
size
(),
1UL
);
CHECK_EQ
(
in_lod
.
size
(),
1UL
);
CHECK_EQ
((
uint64_t
)
in_dims
[
0
],
in_lod
[
0
].
back
());
CHECK_EQ
((
uint64_t
)
in_dims
[
0
],
in_lod
[
0
].
back
());
...
@@ -63,13 +62,11 @@ class SequenceReshapeCompute
...
@@ -63,13 +62,11 @@ class SequenceReshapeCompute
}
}
}
}
out
->
Resize
(
in_dims
);
out
->
Resize
(
std
::
vector
<
int64_t
>
{
static_cast
<
int64_t
>
(
out
->
lod
()[
0
].
back
()),
out_width
});
auto
*
dst_ptr
=
out
->
mutable_data
<
T
>
();
auto
*
dst_ptr
=
out
->
mutable_data
<
T
>
();
auto
size
=
in
->
numel
()
*
sizeof
(
T
);
auto
size
=
in
->
numel
()
*
sizeof
(
T
);
std
::
memcpy
(
dst_ptr
,
in
->
data
<
T
>
(),
size
);
std
::
memcpy
(
dst_ptr
,
in
->
data
<
T
>
(),
size
);
std
::
vector
<
int64_t
>
out_shape
{
static_cast
<
int64_t
>
(
out
->
lod
()[
0
].
back
()),
out_width
};
out
->
Resize
(
lite
::
DDim
(
out_shape
));
}
}
virtual
~
SequenceReshapeCompute
()
=
default
;
virtual
~
SequenceReshapeCompute
()
=
default
;
...
...
lite/kernels/x86/softmax_compute.h
浏览文件 @
c3df3f2d
...
@@ -29,7 +29,7 @@ static inline int CanonicalAxis(const int axis, const int rank) {
...
@@ -29,7 +29,7 @@ static inline int CanonicalAxis(const int axis, const int rank) {
return
axis
;
return
axis
;
}
}
static
inline
int
SizeToAxis
(
const
int
axis
,
lite
::
DDim
dims
)
{
static
inline
int
SizeToAxis
(
const
int
axis
,
const
DDim
&
dims
)
{
int
size
=
1
;
int
size
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
i
++
)
{
for
(
int
i
=
0
;
i
<
axis
;
i
++
)
{
size
*=
dims
[
i
];
size
*=
dims
[
i
];
...
@@ -37,7 +37,7 @@ static inline int SizeToAxis(const int axis, lite::DDim dims) {
...
@@ -37,7 +37,7 @@ static inline int SizeToAxis(const int axis, lite::DDim dims) {
return
size
;
return
size
;
}
}
static
inline
int
SizeFromAxis
(
const
int
axis
,
lite
::
DDim
dims
)
{
static
inline
int
SizeFromAxis
(
const
int
axis
,
const
DDim
&
dims
)
{
int
size
=
1
;
int
size
=
1
;
for
(
size_t
i
=
axis
;
i
<
dims
.
size
();
i
++
)
{
for
(
size_t
i
=
axis
;
i
<
dims
.
size
();
i
++
)
{
size
*=
dims
[
i
];
size
*=
dims
[
i
];
...
@@ -61,13 +61,15 @@ class SoftmaxCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
...
@@ -61,13 +61,15 @@ class SoftmaxCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
int
axis_dim
=
param
.
x
->
dims
()[
axis
];
int
axis_dim
=
param
.
x
->
dims
()[
axis
];
const
int
n
=
SizeToAxis
(
axis
,
param
.
x
->
dims
());
const
int
n
=
SizeToAxis
(
axis
,
param
.
x
->
dims
());
const
int
d
=
SizeFromAxis
(
axis
,
param
.
x
->
dims
());
const
int
d
=
SizeFromAxis
(
axis
,
param
.
x
->
dims
());
std
::
vector
<
int64_t
>
shape
{
n
,
d
};
lite
::
Tensor
input_2d
,
out_2d
;
DDim
shape
(
std
::
vector
<
DDim
::
value_type
>
{
n
,
d
});
Tensor
input_2d
;
Tensor
out_2d
;
input_2d
.
ShareDataWith
(
*
param
.
x
);
input_2d
.
ShareDataWith
(
*
param
.
x
);
input_2d
.
Resize
(
lite
::
DDim
(
shape
)
);
input_2d
.
Resize
(
shape
);
out_2d
.
ShareDataWith
(
*
param
.
output
);
out_2d
.
ShareDataWith
(
*
param
.
output
);
out_2d
.
Resize
(
lite
::
DDim
(
shape
)
);
out_2d
.
Resize
(
shape
);
lite
::
x86
::
math
::
SoftmaxFunctor
<
lite
::
TargetType
::
kX86
,
T
,
true
>
()(
lite
::
x86
::
math
::
SoftmaxFunctor
<
lite
::
TargetType
::
kX86
,
T
,
true
>
()(
context
,
axis_dim
,
&
input_2d
,
&
out_2d
);
context
,
axis_dim
,
&
input_2d
,
&
out_2d
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录