Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
c35c5aa0
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c35c5aa0
编写于
8月 19, 2020
作者:
C
cc
提交者:
GitHub
8月 19, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Cherry-pick add retinanet_detection_output, test=develop (#4157)
上级
f61c4676
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
627 addition
and
0 deletion
+627
-0
lite/kernels/host/CMakeLists.txt
lite/kernels/host/CMakeLists.txt
+1
-0
lite/kernels/host/retinanet_detection_output_compute.cc
lite/kernels/host/retinanet_detection_output_compute.cc
+435
-0
lite/kernels/host/retinanet_detection_output_compute.h
lite/kernels/host/retinanet_detection_output_compute.h
+36
-0
lite/operators/CMakeLists.txt
lite/operators/CMakeLists.txt
+1
-0
lite/operators/op_params.h
lite/operators/op_params.h
+13
-0
lite/operators/retinanet_detection_output_op.cc
lite/operators/retinanet_detection_output_op.cc
+86
-0
lite/operators/retinanet_detection_output_op.h
lite/operators/retinanet_detection_output_op.h
+55
-0
未找到文件。
lite/kernels/host/CMakeLists.txt
浏览文件 @
c35c5aa0
...
...
@@ -16,3 +16,4 @@ add_kernel(assign_compute_host Host extra SRCS assign_compute.cc DEPS ${lite_ker
add_kernel
(
print_compute_host Host extra SRCS print_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
while_compute_host Host extra SRCS while_compute.cc DEPS
${
lite_kernel_deps
}
program
)
add_kernel
(
conditional_block_compute_host Host extra SRCS conditional_block_compute.cc DEPS
${
lite_kernel_deps
}
program
)
add_kernel
(
retinanet_detection_output_compute_host Host extra SRCS retinanet_detection_output_compute.cc DEPS
${
lite_kernel_deps
}
)
lite/kernels/host/retinanet_detection_output_compute.cc
0 → 100644
浏览文件 @
c35c5aa0
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/host/retinanet_detection_output_compute.h"
#include <cmath>
#include <map>
#include <utility>
#include <vector>
#include "lite/operators/retinanet_detection_output_op.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
host
{
template
<
class
T
>
bool
SortScorePairDescend
(
const
std
::
pair
<
float
,
T
>&
pair1
,
const
std
::
pair
<
float
,
T
>&
pair2
)
{
return
pair1
.
first
>
pair2
.
first
;
}
template
<
class
T
>
bool
SortScoreTwoPairDescend
(
const
std
::
pair
<
float
,
std
::
pair
<
T
,
T
>>&
pair1
,
const
std
::
pair
<
float
,
std
::
pair
<
T
,
T
>>&
pair2
)
{
return
pair1
.
first
>
pair2
.
first
;
}
template
<
class
T
>
static
inline
void
GetMaxScoreIndex
(
const
std
::
vector
<
T
>&
scores
,
const
T
threshold
,
int
top_k
,
std
::
vector
<
std
::
pair
<
T
,
int
>>*
sorted_indices
)
{
for
(
size_t
i
=
0
;
i
<
scores
.
size
();
++
i
)
{
if
(
scores
[
i
]
>
threshold
)
{
sorted_indices
->
push_back
(
std
::
make_pair
(
scores
[
i
],
i
));
}
}
// Sort the score pair according to the scores in descending order
std
::
stable_sort
(
sorted_indices
->
begin
(),
sorted_indices
->
end
(),
SortScorePairDescend
<
int
>
);
// Keep top_k scores if needed.
if
(
top_k
>
-
1
&&
top_k
<
static_cast
<
int
>
(
sorted_indices
->
size
()))
{
sorted_indices
->
resize
(
top_k
);
}
}
template
<
class
T
>
static
inline
T
BBoxArea
(
const
std
::
vector
<
T
>&
box
,
const
bool
normalized
)
{
if
(
box
[
2
]
<
box
[
0
]
||
box
[
3
]
<
box
[
1
])
{
// If coordinate values are is invalid
// (e.g. xmax < xmin or ymax < ymin), return 0.
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
w
=
box
[
2
]
-
box
[
0
];
const
T
h
=
box
[
3
]
-
box
[
1
];
if
(
normalized
)
{
return
w
*
h
;
}
else
{
// If coordinate values are not within range [0, 1].
return
(
w
+
1
)
*
(
h
+
1
);
}
}
}
template
<
class
T
>
static
inline
T
JaccardOverlap
(
const
std
::
vector
<
T
>&
box1
,
const
std
::
vector
<
T
>&
box2
,
const
bool
normalized
)
{
if
(
box2
[
0
]
>
box1
[
2
]
||
box2
[
2
]
<
box1
[
0
]
||
box2
[
1
]
>
box1
[
3
]
||
box2
[
3
]
<
box1
[
1
])
{
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
inter_xmin
=
std
::
max
(
box1
[
0
],
box2
[
0
]);
const
T
inter_ymin
=
std
::
max
(
box1
[
1
],
box2
[
1
]);
const
T
inter_xmax
=
std
::
min
(
box1
[
2
],
box2
[
2
]);
const
T
inter_ymax
=
std
::
min
(
box1
[
3
],
box2
[
3
]);
T
norm
=
normalized
?
static_cast
<
T
>
(
0.
)
:
static_cast
<
T
>
(
1.
);
T
inter_w
=
inter_xmax
-
inter_xmin
+
norm
;
T
inter_h
=
inter_ymax
-
inter_ymin
+
norm
;
const
T
inter_area
=
inter_w
*
inter_h
;
const
T
bbox1_area
=
BBoxArea
<
T
>
(
box1
,
normalized
);
const
T
bbox2_area
=
BBoxArea
<
T
>
(
box2
,
normalized
);
return
inter_area
/
(
bbox1_area
+
bbox2_area
-
inter_area
);
}
}
template
<
class
T
>
void
NMSFast
(
const
std
::
vector
<
std
::
vector
<
T
>>&
cls_dets
,
const
T
nms_threshold
,
const
T
eta
,
std
::
vector
<
int
>*
selected_indices
)
{
int64_t
num_boxes
=
cls_dets
.
size
();
std
::
vector
<
std
::
pair
<
T
,
int
>>
sorted_indices
;
for
(
int64_t
i
=
0
;
i
<
num_boxes
;
++
i
)
{
sorted_indices
.
push_back
(
std
::
make_pair
(
cls_dets
[
i
][
4
],
i
));
}
// Sort the score pair according to the scores in descending order
std
::
stable_sort
(
sorted_indices
.
begin
(),
sorted_indices
.
end
(),
SortScorePairDescend
<
int
>
);
selected_indices
->
clear
();
T
adaptive_threshold
=
nms_threshold
;
while
(
sorted_indices
.
size
()
!=
0
)
{
const
int
idx
=
sorted_indices
.
front
().
second
;
bool
keep
=
true
;
for
(
size_t
k
=
0
;
k
<
selected_indices
->
size
();
++
k
)
{
if
(
keep
)
{
const
int
kept_idx
=
(
*
selected_indices
)[
k
];
T
overlap
=
T
(
0.
);
overlap
=
JaccardOverlap
<
T
>
(
cls_dets
[
idx
],
cls_dets
[
kept_idx
],
false
);
keep
=
overlap
<=
adaptive_threshold
;
}
else
{
break
;
}
}
if
(
keep
)
{
selected_indices
->
push_back
(
idx
);
}
sorted_indices
.
erase
(
sorted_indices
.
begin
());
if
(
keep
&&
eta
<
1
&&
adaptive_threshold
>
0.5
)
{
adaptive_threshold
*=
eta
;
}
}
}
template
<
class
T
>
void
DeltaScoreToPrediction
(
const
std
::
vector
<
T
>&
bboxes_data
,
const
std
::
vector
<
T
>&
anchors_data
,
T
im_height
,
T
im_width
,
T
im_scale
,
int
class_num
,
const
std
::
vector
<
std
::
pair
<
T
,
int
>>&
sorted_indices
,
std
::
map
<
int
,
std
::
vector
<
std
::
vector
<
T
>>>*
preds
)
{
im_height
=
static_cast
<
T
>
(
std
::
round
(
im_height
/
im_scale
));
im_width
=
static_cast
<
T
>
(
std
::
round
(
im_width
/
im_scale
));
T
zero
(
0
);
int
i
=
0
;
for
(
const
auto
&
it
:
sorted_indices
)
{
T
score
=
it
.
first
;
int
idx
=
it
.
second
;
int
a
=
idx
/
class_num
;
int
c
=
idx
%
class_num
;
int
box_offset
=
a
*
4
;
T
anchor_box_width
=
anchors_data
[
box_offset
+
2
]
-
anchors_data
[
box_offset
]
+
1
;
T
anchor_box_height
=
anchors_data
[
box_offset
+
3
]
-
anchors_data
[
box_offset
+
1
]
+
1
;
T
anchor_box_center_x
=
anchors_data
[
box_offset
]
+
anchor_box_width
/
2
;
T
anchor_box_center_y
=
anchors_data
[
box_offset
+
1
]
+
anchor_box_height
/
2
;
T
target_box_center_x
=
0
,
target_box_center_y
=
0
;
T
target_box_width
=
0
,
target_box_height
=
0
;
target_box_center_x
=
bboxes_data
[
box_offset
]
*
anchor_box_width
+
anchor_box_center_x
;
target_box_center_y
=
bboxes_data
[
box_offset
+
1
]
*
anchor_box_height
+
anchor_box_center_y
;
target_box_width
=
std
::
exp
(
bboxes_data
[
box_offset
+
2
])
*
anchor_box_width
;
target_box_height
=
std
::
exp
(
bboxes_data
[
box_offset
+
3
])
*
anchor_box_height
;
T
pred_box_xmin
=
target_box_center_x
-
target_box_width
/
2
;
T
pred_box_ymin
=
target_box_center_y
-
target_box_height
/
2
;
T
pred_box_xmax
=
target_box_center_x
+
target_box_width
/
2
-
1
;
T
pred_box_ymax
=
target_box_center_y
+
target_box_height
/
2
-
1
;
pred_box_xmin
=
pred_box_xmin
/
im_scale
;
pred_box_ymin
=
pred_box_ymin
/
im_scale
;
pred_box_xmax
=
pred_box_xmax
/
im_scale
;
pred_box_ymax
=
pred_box_ymax
/
im_scale
;
pred_box_xmin
=
std
::
max
(
std
::
min
(
pred_box_xmin
,
im_width
-
1
),
zero
);
pred_box_ymin
=
std
::
max
(
std
::
min
(
pred_box_ymin
,
im_height
-
1
),
zero
);
pred_box_xmax
=
std
::
max
(
std
::
min
(
pred_box_xmax
,
im_width
-
1
),
zero
);
pred_box_ymax
=
std
::
max
(
std
::
min
(
pred_box_ymax
,
im_height
-
1
),
zero
);
std
::
vector
<
T
>
one_pred
;
one_pred
.
push_back
(
pred_box_xmin
);
one_pred
.
push_back
(
pred_box_ymin
);
one_pred
.
push_back
(
pred_box_xmax
);
one_pred
.
push_back
(
pred_box_ymax
);
one_pred
.
push_back
(
score
);
(
*
preds
)[
c
].
push_back
(
one_pred
);
i
++
;
}
}
template
<
class
T
>
void
MultiClassNMS
(
const
std
::
map
<
int
,
std
::
vector
<
std
::
vector
<
T
>>>&
preds
,
int
class_num
,
const
int
keep_top_k
,
const
T
nms_threshold
,
const
T
nms_eta
,
std
::
vector
<
std
::
vector
<
T
>>*
nmsed_out
,
int
*
num_nmsed_out
)
{
std
::
map
<
int
,
std
::
vector
<
int
>>
indices
;
int
num_det
=
0
;
for
(
int
c
=
0
;
c
<
class_num
;
++
c
)
{
if
(
static_cast
<
bool
>
(
preds
.
count
(
c
)))
{
const
std
::
vector
<
std
::
vector
<
T
>>
cls_dets
=
preds
.
at
(
c
);
NMSFast
(
cls_dets
,
nms_threshold
,
nms_eta
,
&
(
indices
[
c
]));
num_det
+=
indices
[
c
].
size
();
}
}
std
::
vector
<
std
::
pair
<
float
,
std
::
pair
<
int
,
int
>>>
score_index_pairs
;
for
(
const
auto
&
it
:
indices
)
{
int
label
=
it
.
first
;
const
std
::
vector
<
int
>&
label_indices
=
it
.
second
;
for
(
size_t
j
=
0
;
j
<
label_indices
.
size
();
++
j
)
{
int
idx
=
label_indices
[
j
];
score_index_pairs
.
push_back
(
std
::
make_pair
(
preds
.
at
(
label
)[
idx
][
4
],
std
::
make_pair
(
label
,
idx
)));
}
}
// Keep top k results per image.
std
::
stable_sort
(
score_index_pairs
.
begin
(),
score_index_pairs
.
end
(),
SortScoreTwoPairDescend
<
int
>
);
if
(
num_det
>
keep_top_k
)
{
score_index_pairs
.
resize
(
keep_top_k
);
}
// Store the new indices.
std
::
map
<
int
,
std
::
vector
<
int
>>
new_indices
;
for
(
const
auto
&
it
:
score_index_pairs
)
{
int
label
=
it
.
second
.
first
;
int
idx
=
it
.
second
.
second
;
std
::
vector
<
T
>
one_pred
;
one_pred
.
push_back
(
label
);
one_pred
.
push_back
(
preds
.
at
(
label
)[
idx
][
4
]);
one_pred
.
push_back
(
preds
.
at
(
label
)[
idx
][
0
]);
one_pred
.
push_back
(
preds
.
at
(
label
)[
idx
][
1
]);
one_pred
.
push_back
(
preds
.
at
(
label
)[
idx
][
2
]);
one_pred
.
push_back
(
preds
.
at
(
label
)[
idx
][
3
]);
nmsed_out
->
push_back
(
one_pred
);
}
*
num_nmsed_out
=
(
num_det
>
keep_top_k
?
keep_top_k
:
num_det
);
}
template
<
class
T
>
void
RetinanetDetectionOutput
(
const
operators
::
RetinanetDetectionOutputParam
&
param
,
const
std
::
vector
<
Tensor
>&
scores
,
const
std
::
vector
<
Tensor
>&
bboxes
,
const
std
::
vector
<
Tensor
>&
anchors
,
const
Tensor
&
im_info
,
std
::
vector
<
std
::
vector
<
T
>>*
nmsed_out
,
int
*
num_nmsed_out
)
{
int64_t
nms_top_k
=
param
.
nms_top_k
;
int64_t
keep_top_k
=
param
.
keep_top_k
;
T
nms_threshold
=
static_cast
<
T
>
(
param
.
nms_threshold
);
T
nms_eta
=
static_cast
<
T
>
(
param
.
nms_eta
);
T
score_threshold
=
static_cast
<
T
>
(
param
.
score_threshold
);
int64_t
class_num
=
scores
[
0
].
dims
()[
1
];
std
::
map
<
int
,
std
::
vector
<
std
::
vector
<
T
>>>
preds
;
for
(
size_t
l
=
0
;
l
<
scores
.
size
();
++
l
)
{
// Fetch per level score
Tensor
scores_per_level
=
scores
[
l
];
// Fetch per level bbox
Tensor
bboxes_per_level
=
bboxes
[
l
];
// Fetch per level anchor
Tensor
anchors_per_level
=
anchors
[
l
];
int64_t
scores_num
=
scores_per_level
.
numel
();
int64_t
bboxes_num
=
bboxes_per_level
.
numel
();
std
::
vector
<
T
>
scores_data
(
scores_num
);
std
::
vector
<
T
>
bboxes_data
(
bboxes_num
);
std
::
vector
<
T
>
anchors_data
(
bboxes_num
);
std
::
copy_n
(
scores_per_level
.
data
<
T
>
(),
scores_num
,
scores_data
.
begin
());
std
::
copy_n
(
bboxes_per_level
.
data
<
T
>
(),
bboxes_num
,
bboxes_data
.
begin
());
std
::
copy_n
(
anchors_per_level
.
data
<
T
>
(),
bboxes_num
,
anchors_data
.
begin
());
std
::
vector
<
std
::
pair
<
T
,
int
>>
sorted_indices
;
// For the highest level, we take the threshold 0.0
T
threshold
=
(
l
<
(
scores
.
size
()
-
1
)
?
score_threshold
:
0.0
);
GetMaxScoreIndex
(
scores_data
,
threshold
,
nms_top_k
,
&
sorted_indices
);
auto
*
im_info_data
=
im_info
.
data
<
T
>
();
auto
im_height
=
im_info_data
[
0
];
auto
im_width
=
im_info_data
[
1
];
auto
im_scale
=
im_info_data
[
2
];
DeltaScoreToPrediction
(
bboxes_data
,
anchors_data
,
im_height
,
im_width
,
im_scale
,
class_num
,
sorted_indices
,
&
preds
);
}
MultiClassNMS
(
preds
,
class_num
,
keep_top_k
,
nms_threshold
,
nms_eta
,
nmsed_out
,
num_nmsed_out
);
}
template
<
class
T
>
void
MultiClassOutput
(
const
std
::
vector
<
std
::
vector
<
T
>>&
nmsed_out
,
Tensor
*
outs
)
{
auto
*
odata
=
outs
->
mutable_data
<
T
>
();
int
count
=
0
;
int64_t
out_dim
=
6
;
for
(
size_t
i
=
0
;
i
<
nmsed_out
.
size
();
++
i
)
{
odata
[
count
*
out_dim
]
=
nmsed_out
[
i
][
0
]
+
1
;
// label
odata
[
count
*
out_dim
+
1
]
=
nmsed_out
[
i
][
1
];
// score
odata
[
count
*
out_dim
+
2
]
=
nmsed_out
[
i
][
2
];
// xmin
odata
[
count
*
out_dim
+
3
]
=
nmsed_out
[
i
][
3
];
// xmin
odata
[
count
*
out_dim
+
4
]
=
nmsed_out
[
i
][
4
];
// xmin
odata
[
count
*
out_dim
+
5
]
=
nmsed_out
[
i
][
5
];
// xmin
count
++
;
}
}
void
RetinanetDetectionOutputCompute
::
Run
()
{
auto
&
param
=
Param
<
operators
::
RetinanetDetectionOutputParam
>
();
auto
&
boxes
=
param
.
bboxes
;
auto
&
scores
=
param
.
scores
;
auto
&
anchors
=
param
.
anchors
;
auto
*
im_info
=
param
.
im_info
;
auto
*
outs
=
param
.
out
;
std
::
vector
<
Tensor
>
boxes_list
(
boxes
.
size
());
std
::
vector
<
Tensor
>
scores_list
(
scores
.
size
());
std
::
vector
<
Tensor
>
anchors_list
(
anchors
.
size
());
for
(
size_t
j
=
0
;
j
<
boxes_list
.
size
();
++
j
)
{
boxes_list
[
j
]
=
*
boxes
[
j
];
scores_list
[
j
]
=
*
scores
[
j
];
anchors_list
[
j
]
=
*
anchors
[
j
];
}
auto
score_dims
=
scores_list
[
0
].
dims
();
int64_t
batch_size
=
score_dims
[
0
];
auto
box_dims
=
boxes_list
[
0
].
dims
();
int64_t
box_dim
=
box_dims
[
2
];
int64_t
out_dim
=
box_dim
+
2
;
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
all_nmsed_out
;
std
::
vector
<
uint64_t
>
batch_starts
=
{
0
};
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
int
num_nmsed_out
=
0
;
std
::
vector
<
Tensor
>
box_per_batch_list
(
boxes_list
.
size
());
std
::
vector
<
Tensor
>
score_per_batch_list
(
scores_list
.
size
());
for
(
size_t
j
=
0
;
j
<
boxes_list
.
size
();
++
j
)
{
auto
score_dims
=
scores_list
[
j
].
dims
();
score_per_batch_list
[
j
]
=
scores_list
[
j
].
Slice
<
float
>
(
i
,
i
+
1
);
score_per_batch_list
[
j
].
Resize
({
score_dims
[
1
],
score_dims
[
2
]});
box_per_batch_list
[
j
]
=
boxes_list
[
j
].
Slice
<
float
>
(
i
,
i
+
1
);
box_per_batch_list
[
j
].
Resize
({
score_dims
[
1
],
box_dim
});
}
Tensor
im_info_slice
=
im_info
->
Slice
<
float
>
(
i
,
i
+
1
);
std
::
vector
<
std
::
vector
<
float
>>
nmsed_out
;
RetinanetDetectionOutput
(
param
,
score_per_batch_list
,
box_per_batch_list
,
anchors_list
,
im_info_slice
,
&
nmsed_out
,
&
num_nmsed_out
);
all_nmsed_out
.
push_back
(
nmsed_out
);
batch_starts
.
push_back
(
batch_starts
.
back
()
+
num_nmsed_out
);
}
uint64_t
num_kept
=
batch_starts
.
back
();
if
(
num_kept
==
0
)
{
outs
->
Resize
({
0
,
out_dim
});
}
else
{
outs
->
Resize
({
static_cast
<
int64_t
>
(
num_kept
),
out_dim
});
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
int64_t
s
=
static_cast
<
int64_t
>
(
batch_starts
[
i
]);
int64_t
e
=
static_cast
<
int64_t
>
(
batch_starts
[
i
+
1
]);
if
(
e
>
s
)
{
Tensor
out
=
outs
->
Slice
<
float
>
(
s
,
e
);
MultiClassOutput
(
all_nmsed_out
[
i
],
&
out
);
}
}
}
LoD
lod
;
lod
.
emplace_back
(
batch_starts
);
outs
->
set_lod
(
lod
);
}
}
// namespace host
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_KERNEL
(
retinanet_detection_output
,
kHost
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
host
::
RetinanetDetectionOutputCompute
,
def
)
.
BindInput
(
"BBoxes"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
))})
.
BindInput
(
"Scores"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
))})
.
BindInput
(
"Anchors"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
))})
.
BindInput
(
"ImInfo"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
))})
.
Finalize
();
lite/kernels/host/retinanet_detection_output_compute.h
0 → 100644
浏览文件 @
c35c5aa0
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
host
{
class
RetinanetDetectionOutputCompute
:
public
KernelLite
<
TARGET
(
kHost
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
)
>
{
public:
void
Run
()
override
;
virtual
~
RetinanetDetectionOutputCompute
()
=
default
;
};
}
// namespace host
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
lite/operators/CMakeLists.txt
浏览文件 @
c35c5aa0
...
...
@@ -137,6 +137,7 @@ add_operator(topk_op extra SRCS topk_op.cc DEPS ${op_DEPS})
add_operator
(
increment_op extra SRCS increment_op.cc DEPS
${
op_DEPS
}
)
add_operator
(
layer_norm_op extra SRCS layer_norm_op.cc DEPS
${
op_DEPS
}
)
add_operator
(
sequence_softmax_op extra SRCS sequence_softmax_op.cc DEPS
${
op_DEPS
}
)
add_operator
(
retinanet_detection_output_op extra SRCS retinanet_detection_output_op.cc DEPS
${
op_DEPS
}
)
# for content-dnn specific
add_operator
(
search_aligned_mat_mul_op extra SRCS search_aligned_mat_mul_op.cc DEPS
${
op_DEPS
}
)
add_operator
(
search_seq_fc_op extra SRCS search_seq_fc_op.cc DEPS
${
op_DEPS
}
)
...
...
lite/operators/op_params.h
浏览文件 @
c35c5aa0
...
...
@@ -1537,6 +1537,19 @@ struct PrintParam : ParamBase {
bool
is_forward
{
true
};
};
struct
RetinanetDetectionOutputParam
:
ParamBase
{
std
::
vector
<
Tensor
*>
bboxes
{};
std
::
vector
<
Tensor
*>
scores
{};
std
::
vector
<
Tensor
*>
anchors
{};
Tensor
*
im_info
{};
Tensor
*
out
{};
float
score_threshold
{};
int
nms_top_k
{};
float
nms_threshold
{};
float
nms_eta
{};
int
keep_top_k
{};
};
}
// namespace operators
}
// namespace lite
}
// namespace paddle
lite/operators/retinanet_detection_output_op.cc
0 → 100644
浏览文件 @
c35c5aa0
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/retinanet_detection_output_op.h"
#include <vector>
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
bool
RetinanetDetectionOutputOpLite
::
CheckShape
()
const
{
CHECK_OR_FALSE
(
param_
.
bboxes
.
size
()
>
0
);
CHECK_OR_FALSE
(
param_
.
scores
.
size
()
>
0
);
CHECK_OR_FALSE
(
param_
.
anchors
.
size
()
>
0
);
CHECK_OR_FALSE
(
param_
.
bboxes
.
size
()
==
param_
.
scores
.
size
());
CHECK_OR_FALSE
(
param_
.
bboxes
.
size
()
==
param_
.
anchors
.
size
());
CHECK_OR_FALSE
(
param_
.
im_info
);
CHECK_OR_FALSE
(
param_
.
out
);
DDim
bbox_dims
=
param_
.
bboxes
.
front
()
->
dims
();
DDim
score_dims
=
param_
.
scores
.
front
()
->
dims
();
DDim
anchor_dims
=
param_
.
anchors
.
front
()
->
dims
();
DDim
im_info_dims
=
param_
.
im_info
->
dims
();
CHECK_OR_FALSE
(
bbox_dims
.
size
()
==
3
);
CHECK_OR_FALSE
(
score_dims
.
size
()
==
3
);
CHECK_OR_FALSE
(
anchor_dims
.
size
()
==
2
);
CHECK_OR_FALSE
(
bbox_dims
[
2
]
==
4
);
CHECK_OR_FALSE
(
bbox_dims
[
1
]
==
score_dims
[
1
]);
CHECK_OR_FALSE
(
anchor_dims
[
0
]
==
bbox_dims
[
1
]);
CHECK_OR_FALSE
(
im_info_dims
.
size
()
==
2
);
return
true
;
}
bool
RetinanetDetectionOutputOpLite
::
InferShapeImpl
()
const
{
DDim
bbox_dims
=
param_
.
bboxes
.
front
()
->
dims
();
param_
.
out
->
Resize
({
bbox_dims
[
1
],
bbox_dims
[
2
]
+
2
});
return
true
;
}
bool
RetinanetDetectionOutputOpLite
::
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
{
for
(
auto
arg_name
:
op_desc
.
Input
(
"BBoxes"
))
{
param_
.
bboxes
.
push_back
(
scope
->
FindVar
(
arg_name
)
->
GetMutable
<
lite
::
Tensor
>
());
}
for
(
auto
arg_name
:
op_desc
.
Input
(
"Scores"
))
{
param_
.
scores
.
push_back
(
scope
->
FindVar
(
arg_name
)
->
GetMutable
<
lite
::
Tensor
>
());
}
for
(
auto
arg_name
:
op_desc
.
Input
(
"Anchors"
))
{
param_
.
anchors
.
push_back
(
scope
->
FindVar
(
arg_name
)
->
GetMutable
<
lite
::
Tensor
>
());
}
AttachInput
(
op_desc
,
scope
,
"ImInfo"
,
false
,
&
param_
.
im_info
);
AttachOutput
(
op_desc
,
scope
,
"Out"
,
false
,
&
param_
.
out
);
param_
.
score_threshold
=
op_desc
.
GetAttr
<
float
>
(
"score_threshold"
);
param_
.
nms_top_k
=
op_desc
.
GetAttr
<
int
>
(
"nms_top_k"
);
param_
.
nms_threshold
=
op_desc
.
GetAttr
<
float
>
(
"nms_threshold"
);
param_
.
nms_eta
=
op_desc
.
GetAttr
<
float
>
(
"nms_eta"
);
param_
.
keep_top_k
=
op_desc
.
GetAttr
<
int
>
(
"keep_top_k"
);
return
true
;
}
}
// namespace operators
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_OP
(
retinanet_detection_output
,
paddle
::
lite
::
operators
::
RetinanetDetectionOutputOpLite
);
lite/operators/retinanet_detection_output_op.h
0 → 100644
浏览文件 @
c35c5aa0
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "lite/core/op_lite.h"
#include "lite/core/scope.h"
#include "lite/operators/op_params.h"
#include "lite/utils/all.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
class
RetinanetDetectionOutputOpLite
:
public
OpLite
{
public:
RetinanetDetectionOutputOpLite
()
{}
explicit
RetinanetDetectionOutputOpLite
(
const
std
::
string
&
op_type
)
:
OpLite
(
op_type
)
{}
bool
CheckShape
()
const
override
;
bool
InferShapeImpl
()
const
override
;
bool
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
override
;
void
AttachKernel
(
KernelBase
*
kernel
)
override
{
kernel
->
SetParam
(
param_
);
}
std
::
string
DebugString
()
const
override
{
return
"retinanet_detection_output"
;
}
#ifdef LITE_WITH_PROFILE
void
GetOpRuntimeInfo
(
paddle
::
lite
::
profile
::
OpCharacter
*
ch
)
{}
#endif
private:
mutable
RetinanetDetectionOutputParam
param_
;
};
}
// namespace operators
}
// namespace lite
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录