Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
c2f69ebd
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c2f69ebd
编写于
4月 26, 2019
作者:
J
Jiaying Zhao
提交者:
GitHub
4月 26, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1579 from smilejames/develop
adjust gpu code structure
上级
29680f39
b822fa08
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
449 addition
and
684 deletion
+449
-684
src/operators/kernel/cl/cl-kernel-func/conv_func.cpp
src/operators/kernel/cl/cl-kernel-func/conv_func.cpp
+211
-0
src/operators/kernel/cl/cl-kernel-func/conv_func.h
src/operators/kernel/cl/cl-kernel-func/conv_func.h
+46
-0
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
+170
-0
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
+4
-225
src/operators/kernel/cl/conv_add_kernel.cpp
src/operators/kernel/cl/conv_add_kernel.cpp
+3
-143
src/operators/kernel/cl/conv_add_relu_kernel.cpp
src/operators/kernel/cl/conv_add_relu_kernel.cpp
+3
-79
src/operators/kernel/cl/conv_bn_add_relu_kernel.cpp
src/operators/kernel/cl/conv_bn_add_relu_kernel.cpp
+5
-96
src/operators/kernel/cl/conv_bn_relu_kernel.cpp
src/operators/kernel/cl/conv_bn_relu_kernel.cpp
+4
-76
src/operators/kernel/cl/conv_kernel.cpp
src/operators/kernel/cl/conv_kernel.cpp
+3
-59
src/operators/kernel/conv_add_bn_relu_kernel.h
src/operators/kernel/conv_add_bn_relu_kernel.h
+0
-3
src/operators/kernel/conv_add_kernel.h
src/operators/kernel/conv_add_kernel.h
+0
-3
未找到文件。
src/operators/kernel/cl/cl-kernel-func/conv_func.cpp
0 → 100644
浏览文件 @
c2f69ebd
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
#include "framework/cl/cl_image_converter.h"
#include "framework/cl/cl_tensor.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
void
winograd_transform_weight
<
4
,
3
>
(
framework
::
CLHelper
&
cl_helper
,
framework
::
CLImage
&
weight
){};
template
<
>
void
WinogradConv3x3
<
4
,
3
>
(
framework
::
CLHelper
&
cl_helper
,
const
ConvParam
<
GPU_CL
>
&
param
)
{}
void
ConvAddBnRelu
(
framework
::
CLHelper
&
cl_helper
,
const
ConvParam
<
GPU_CL
>
&
param
,
bool
ifRelu
,
const
CLImage
*
biase
,
const
CLImage
*
new_scale
,
const
CLImage
*
new_bias
)
{
auto
kernel
=
cl_helper
.
KernelAt
(
0
);
auto
default_work_size
=
cl_helper
.
DefaultWorkSize
(
*
param
.
Output
());
int
c_block
=
default_work_size
[
0
];
int
w
=
default_work_size
[
1
];
int
nh
=
default_work_size
[
2
];
auto
input
=
param
.
Input
()
->
GetCLImage
();
auto
filter
=
param
.
Filter
()
->
GetCLImage
();
auto
output
=
param
.
Output
()
->
GetCLImage
();
int
stride
=
param
.
Strides
()[
0
];
int
offset
=
param
.
Offset
();
int
input_c
=
reinterpret_cast
<
framework
::
CLImageConverterFolder
*>
(
param
.
Input
()
->
Converter
())
->
GetCBlock
();
int
dilation
=
param
.
Dilations
()[
0
];
int
input_width
=
param
.
Input
()
->
dims
()[
3
];
int
input_height
=
param
.
Input
()
->
dims
()[
2
];
int
output_width
=
param
.
Output
()
->
dims
()[
3
];
int
output_height
=
param
.
Output
()
->
dims
()[
2
];
// DLOG << " c block " << c_block;
// DLOG << " w " << w;
// DLOG << " nh " << nh;
// DLOG << " stride " << stride;
// DLOG << " offset " << offset;
// DLOG << " input_c " << input_c;
// DLOG << " dilation " << dilation;
// DLOG << " input width " << input_width;
// DLOG << " input height " << input_height;
// DLOG << " output width " << output_width;
// DLOG << " output height " << output_height;
// DLOG << " input dim " << param.Input()->dims();
// DLOG << " output dim " << param.Output()->dims();
// DLOG << " filter dim " << param.Filter()->dims();
cl_int
status
;
int
index
=
0
;
if
(
param
.
Filter
()
->
dims
()[
2
]
==
1
&&
param
.
Filter
()
->
dims
()[
3
]
==
1
)
{
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
int
maped_w
=
maptofactor
(
w
,
4
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
maped_w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
if
(
biase
)
{
auto
bias_mem
=
biase
->
GetCLImage
();
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
bias_mem
);
CL_CHECK_ERRORS
(
status
);
}
if
(
new_scale
&&
new_bias
)
{
auto
new_scale_mem
=
new_scale
->
GetCLImage
();
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
new_scale_mem
);
CL_CHECK_ERRORS
(
status
);
auto
new_bias_mem
=
new_bias
->
GetCLImage
();
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
new_bias_mem
);
CL_CHECK_ERRORS
(
status
);
}
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
const
size_t
work_size
[
3
]
=
{
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
0
]),
static_cast
<
const
uint32_t
>
(
maped_w
),
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
2
])};
status
=
clEnqueueNDRangeKernel
(
cl_helper
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
else
{
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
if
(
biase
)
{
auto
bias_mem
=
biase
->
GetCLImage
();
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
bias_mem
);
CL_CHECK_ERRORS
(
status
);
}
if
(
new_scale
&&
new_bias
)
{
auto
new_scale_mem
=
new_scale
->
GetCLImage
();
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
new_scale_mem
);
CL_CHECK_ERRORS
(
status
);
auto
new_bias_mem
=
new_bias
->
GetCLImage
();
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
new_bias_mem
);
CL_CHECK_ERRORS
(
status
);
}
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
cl_helper
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
}
}
// namespace operators
}
// namespace paddle_mobile
src/operators/kernel/cl/cl-kernel-func/conv_func.h
0 → 100644
浏览文件 @
c2f69ebd
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONV_OP
#pragma once
#include "framework/cl/cl_helper.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
using
namespace
framework
;
inline
int
maptofactor
(
int
i
,
int
factor
)
{
return
(
i
+
factor
-
1
)
/
factor
;
}
template
<
int
tile
,
int
kernel
>
void
winograd_transform_weight
(
framework
::
CLHelper
&
cl_helper
,
framework
::
CLImage
&
weight
);
template
<
int
tile
,
int
kernel
>
void
WinogradConv3x3
(
framework
::
CLHelper
&
cl_helper
,
const
ConvParam
<
GPU_CL
>
&
param
);
void
ConvAddBnRelu
(
framework
::
CLHelper
&
cl_helper
,
const
ConvParam
<
GPU_CL
>
&
param
,
bool
ifRelu
=
false
,
const
CLImage
*
biase
=
nullptr
,
const
CLImage
*
new_scale
=
nullptr
,
const
CLImage
*
new_bias
=
nullptr
);
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
浏览文件 @
c2f69ebd
...
...
@@ -2157,6 +2157,176 @@ __kernel void convBNAdd_1x1(__private const int global_size_dim0,
write_imageh(output_image, output_pos, output);
}
__kernel void convBNAdd_1x1_spl(
__private const int global_size_dim0, __private const int global_size_dim1,
__private const int global_size_dim2, __read_only image2d_t input_image,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale, __read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image, __private const int stride,
__private const int offset, __private const int input_c,
__private const int dilation,
__private const int input_width, /* of one block */
__private const int input_height, /* of one block */
__private const int output_width,
__private const int output_height,
__private const int old_w
) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
int out_w0 = out_w;
int out_w1 = out_w + global_size_dim1;
int out_w2 = out_w + global_size_dim1 * 2;
int out_w3 = out_w + global_size_dim1 * 3;
// int out_w1 = out_w + global_size_dim1;
// int out_w2 = out_w + global_size_dim1 * 2;
// int out_w3 = out_w + global_size_dim1 * 3;
const sampler_t sampler =
CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
|
CLK_FILTER_NEAREST
;
int2
stride_xy
=
(
int2
)(
stride,
stride
)
;
int2
ouput_pos_in_one_block0
=
(
int2
)(
out_w0,
out_nh
)
;
int2
in_pos_in_one_block0
=
ouput_pos_in_one_block0
*
stride_xy
+
(
int2
)(
offset,
offset
)
;
int2
ouput_pos_in_one_block1
=
(
int2
)(
out_w1,
out_nh
)
;
int2
in_pos_in_one_block1
=
ouput_pos_in_one_block1
*
stride_xy
+
(
int2
)(
offset,
offset
)
;
int2
ouput_pos_in_one_block2
=
(
int2
)(
out_w2,
out_nh
)
;
int2
in_pos_in_one_block2
=
ouput_pos_in_one_block2
*
stride_xy
+
(
int2
)(
offset,
offset
)
;
int2
ouput_pos_in_one_block3
=
(
int2
)(
out_w3,
out_nh
)
;
int2
in_pos_in_one_block3
=
ouput_pos_in_one_block3
*
stride_xy
+
(
int2
)(
offset,
offset
)
;
half4
output0
=
0.0f
;
half4
output1
=
0.0f
;
half4
output2
=
0.0f
;
half4
output3
=
0.0f
;
for
(
int
i
=
0
; i < input_c; ++i) {
//
------------0---------------
int2
pos_in
=
(
int2
)(
i
*
input_width
+
in_pos_in_one_block0.x,
in_pos_in_one_block0.y
)
;
half4
input0
=
read_imageh
(
input_image,
sampler,
pos_in
)
;
half4
weight0
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c,
i
*
4
+
0
))
;
half4
weight1
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c,
i
*
4
+
1
))
;
half4
weight2
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c,
i
*
4
+
2
))
;
half4
weight3
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c,
i
*
4
+
3
))
;
output0
=
mad
(
input0.x,
weight0,
output0
)
;
output0
=
mad
(
input0.y,
weight1,
output0
)
;
output0
=
mad
(
input0.z,
weight2,
output0
)
;
output0
=
mad
(
input0.w,
weight3,
output0
)
;
//
-------------1--------------
pos_in
=
(
int2
)(
i
*
input_width
+
in_pos_in_one_block1.x,
in_pos_in_one_block1.y
)
;
half4
input1
=
read_imageh
(
input_image,
sampler,
pos_in
)
;
//
//
half4
weight0
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c,
i
*
4
+
//
0
))
; half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
//
+
1
))
; half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
//
4
+
2
))
; half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
//
*
4
+
3
))
;
output1
=
mad
(
input1.x,
weight0,
output1
)
;
output1
=
mad
(
input1.y,
weight1,
output1
)
;
output1
=
mad
(
input1.z,
weight2,
output1
)
;
output1
=
mad
(
input1.w,
weight3,
output1
)
;
//
-------------2--------------
pos_in
=
(
int2
)(
i
*
input_width
+
in_pos_in_one_block2.x,
in_pos_in_one_block2.y
)
;
half4
input2
=
read_imageh
(
input_image,
sampler,
pos_in
)
;
//
half4
weight0
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c,
i
*
4
+
//
0
))
; half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
//
+
1
))
; half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
//
4
+
2
))
; half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
//
*
4
+
3
))
;
output2
=
mad
(
input2.x,
weight0,
output2
)
;
output2
=
mad
(
input2.y,
weight1,
output2
)
;
output2
=
mad
(
input2.z,
weight2,
output2
)
;
output2
=
mad
(
input2.w,
weight3,
output2
)
;
//
-------------3--------------
pos_in
=
(
int2
)(
i
*
input_width
+
in_pos_in_one_block3.x,
in_pos_in_one_block3.y
)
;
half4
input3
=
read_imageh
(
input_image,
sampler,
pos_in
)
;
//
half4
weight0
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c,
i
*
4
+
//
0
))
; half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
//
+
1
))
; half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
//
4
+
2
))
; half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
//
*
4
+
3
))
;
output3
=
mad
(
input3.x,
weight0,
output3
)
;
output3
=
mad
(
input3.y,
weight1,
output3
)
;
output3
=
mad
(
input3.z,
weight2,
output3
)
;
output3
=
mad
(
input3.w,
weight3,
output3
)
;
}
#
ifdef
BATCH_NORM
output0
=
output0
*
read_imageh
(
new_scale,
sampler,
(
int2
)(
out_c,
0
))
+
read_imageh
(
new_biase,
sampler,
(
int2
)(
out_c,
0
))
;
output1
=
output1
*
read_imageh
(
new_scale,
sampler,
(
int2
)(
out_c,
0
))
+
read_imageh
(
new_biase,
sampler,
(
int2
)(
out_c,
0
))
;
output2
=
output2
*
read_imageh
(
new_scale,
sampler,
(
int2
)(
out_c,
0
))
+
read_imageh
(
new_biase,
sampler,
(
int2
)(
out_c,
0
))
;
output3
=
output3
*
read_imageh
(
new_scale,
sampler,
(
int2
)(
out_c,
0
))
+
read_imageh
(
new_biase,
sampler,
(
int2
)(
out_c,
0
))
;
#
endif
#
ifdef
BIASE
output0=
read_imageh
(
bias,
sampler,
(
int2
)(
out_c,
0
))
;
output1
=
read_imageh
(
bias,
sampler,
(
int2
)(
out_c,
0
))
;
output2
=
read_imageh
(
bias,
sampler,
(
int2
)(
out_c,
0
))
;
output3
=
read_imageh
(
bias,
sampler,
(
int2
)(
out_c,
0
))
;
#
endif
#
ifdef
RELU
output0
=
activation
(
output0
)
;
output1
=
activation
(
output1
)
;
output2
=
activation
(
output2
)
;
output3
=
activation
(
output3
)
;
#
endif
int
outpos_main
=
mul24
(
out_c
,
old_w
)
;
int2
output_pos0
=
(
int2
)(
outpos_main
+
out_w0,
out_nh
)
;
if
(
out_w0
<
old_w
)
{
write_imageh
(
output_image,
output_pos0,
output0
)
;
}
int2
output_pos1
=
(
int2
)(
outpos_main
+
out_w1,
out_nh
)
;
if
(
out_w1
<
old_w
)
{
write_imageh
(
output_image,
output_pos1,
output1
)
;
}
int2
output_pos2
=
(
int2
)(
outpos_main
+
out_w2,
out_nh
)
;
if
(
out_w2
<
old_w
)
{
write_imageh
(
output_image,
output_pos2,
output2
)
;
}
int2
output_pos3
=
(
int2
)(
outpos_main
+
out_w3,
out_nh
)
;
if
(
out_w3
<
old_w
)
{
write_imageh
(
output_image,
output_pos3,
output3
)
;
}
}
...
...
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
浏览文件 @
c2f69ebd
...
...
@@ -18,10 +18,10 @@ limitations under the License. */
#include <cmath>
#include "framework/cl/cl_image.h"
#include "framework/cl/cl_tool.h"
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
namespace
paddle_mobile
{
namespace
operators
{
bool
optimise
=
true
;
template
<
>
bool
ConvAddBNReluKernel
<
GPU_CL
,
float
>::
Init
(
FusionConvAddBNReluParam
<
GPU_CL
>
*
param
)
{
...
...
@@ -139,11 +139,7 @@ bool ConvAddBNReluKernel<GPU_CL, float>::Init(
if
(
param
->
Filter
()
->
dims
()[
2
]
==
1
&&
param
->
Filter
()
->
dims
()[
3
]
==
1
)
{
param
->
Filter
()
->
InitNImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
if
(
optimise
)
{
this
->
cl_helper_
.
AddKernel
(
"conv_1x1_spl"
,
"conv_add_bn_relu_kernel.cl"
);
}
else
{
this
->
cl_helper_
.
AddKernel
(
"conv_1x1"
,
"conv_add_bn_relu_kernel.cl"
);
}
this
->
cl_helper_
.
AddKernel
(
"conv_1x1_spl"
,
"conv_add_bn_relu_kernel.cl"
);
DLOG
<<
" conv add bn relu conv 1x1"
;
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
&&
...
...
@@ -171,225 +167,8 @@ bool ConvAddBNReluKernel<GPU_CL, float>::Init(
template
<
>
void
ConvAddBNReluKernel
<
GPU_CL
,
float
>::
Compute
(
const
FusionConvAddBNReluParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Output
());
int
c_block
=
default_work_size
[
0
];
int
w
=
default_work_size
[
1
];
int
nh
=
default_work_size
[
2
];
auto
input
=
param
.
Input
()
->
GetCLImage
();
auto
filter
=
param
.
Filter
()
->
GetCLImage
();
auto
biase
=
param
.
Bias
()
->
GetCLImage
();
auto
new_scale
=
param
.
NewScale
()
->
GetCLImage
();
auto
new_bias
=
param
.
NewBias
()
->
GetCLImage
();
auto
output
=
param
.
Output
()
->
GetCLImage
();
int
stride
=
param
.
Strides
()[
0
];
int
offset
=
param
.
Offset
();
int
input_c
=
reinterpret_cast
<
framework
::
CLImageConverterFolder
*>
(
param
.
Input
()
->
Converter
())
->
GetCBlock
();
int
dilation
=
param
.
Dilations
()[
0
];
int
input_width
=
param
.
Input
()
->
dims
()[
3
];
int
input_height
=
param
.
Input
()
->
dims
()[
2
];
int
output_width
=
param
.
Output
()
->
dims
()[
3
];
int
output_height
=
param
.
Output
()
->
dims
()[
2
];
// DLOG << " c block " << c_block;
// DLOG << " w " << w;
// DLOG << " nh " << nh;
// DLOG << " stride " << stride;
// DLOG << " offset " << offset;
// DLOG << " input_c " << input_c;
// DLOG << " dilation " << dilation;
// DLOG << " input width " << input_width;
// DLOG << " input height " << input_height;
// DLOG << " output width " << output_width;
// DLOG << " output height " << output_height;
// DLOG << " input dim " << param.Input()->dims();
// DLOG << " output dim " << param.Output()->dims();
// DLOG << " filter dim " << param.Filter()->dims();
cl_int
status
;
if
(
optimise
)
{
if
(
param
.
Filter
()
->
dims
()[
2
]
==
1
&&
param
.
Filter
()
->
dims
()[
3
]
==
1
)
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
int
maped_w
=
maptofactor
(
w
,
4
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
maped_w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_scale
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
new_bias
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
17
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
const
size_t
work_size
[
3
]
=
{
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
0
]),
static_cast
<
const
uint32_t
>
(
maped_w
),
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
2
])};
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
else
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_scale
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
new_bias
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
}
else
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_scale
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
new_bias
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
ConvAddBnRelu
(
this
->
cl_helper_
,
param
,
true
,
param
.
Bias
(),
param
.
NewScale
(),
param
.
NewBias
());
}
template
class
ConvAddBNReluKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/conv_add_kernel.cpp
浏览文件 @
c2f69ebd
...
...
@@ -15,10 +15,10 @@ limitations under the License. */
#ifdef FUSION_CONVADD_OP
#include "operators/kernel/conv_add_kernel.h"
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
namespace
paddle_mobile
{
namespace
operators
{
bool
optimise_convadd
=
true
;
template
<
>
bool
ConvAddKernel
<
GPU_CL
,
float
>::
Init
(
FusionConvAddParam
<
GPU_CL
>
*
param
)
{
...
...
@@ -36,11 +36,7 @@ bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
if
(
param
->
Filter
()
->
dims
()[
2
]
==
1
&&
param
->
Filter
()
->
dims
()[
3
]
==
1
)
{
param
->
Filter
()
->
InitNImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
if
(
optimise_convadd
)
{
this
->
cl_helper_
.
AddKernel
(
"conv_1x1_spl"
,
"conv_add_kernel.cl"
);
}
else
{
this
->
cl_helper_
.
AddKernel
(
"conv_1x1"
,
"conv_add_kernel.cl"
);
}
this
->
cl_helper_
.
AddKernel
(
"conv_1x1_spl"
,
"conv_add_kernel.cl"
);
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
3
)
{
...
...
@@ -73,143 +69,7 @@ bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
template
<
>
void
ConvAddKernel
<
GPU_CL
,
float
>::
Compute
(
const
FusionConvAddParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Output
());
int
c_block
=
default_work_size
[
0
];
int
w
=
default_work_size
[
1
];
int
nh
=
default_work_size
[
2
];
auto
input
=
param
.
Input
()
->
GetCLImage
();
auto
filter
=
param
.
Filter
()
->
GetCLImage
();
auto
biase
=
param
.
Bias
()
->
GetCLImage
();
param
.
Output
()
->
InitEmptyImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
(),
param
.
Output
()
->
dims
());
auto
output
=
param
.
Output
()
->
GetCLImage
();
int
stride
=
param
.
Strides
()[
0
];
int
offset
=
param
.
Offset
();
int
input_c
=
reinterpret_cast
<
framework
::
CLImageConverterFolder
*>
(
param
.
Input
()
->
Converter
())
->
GetCBlock
();
int
dilation
=
param
.
Dilations
()[
0
];
int
input_width
=
param
.
Input
()
->
dims
()[
3
];
int
input_height
=
param
.
Input
()
->
dims
()[
2
];
int
output_width
=
param
.
Output
()
->
dims
()[
3
];
int
output_height
=
param
.
Output
()
->
dims
()[
2
];
cl_int
status
;
if
(
optimise_convadd
&&
param
.
Filter
()
->
dims
()[
2
]
==
1
&&
param
.
Filter
()
->
dims
()[
3
]
==
1
)
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
int
maped_w
=
maptofactor
(
w
,
4
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
maped_w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
const
size_t
work_size
[
3
]
=
{
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
0
]),
static_cast
<
const
uint32_t
>
(
maped_w
),
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
2
])};
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
else
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
ConvAddBnRelu
(
this
->
cl_helper_
,
param
,
false
,
param
.
Bias
());
}
template
class
ConvAddKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/conv_add_relu_kernel.cpp
浏览文件 @
c2f69ebd
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef FUSION_CONVADDRELU_OP
#include "operators/kernel/conv_add_relu_kernel.h"
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -37,7 +38,7 @@ bool ConvAddReluKernel<GPU_CL, float>::Init(
param
->
Filter
()
->
InitNImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
this
->
cl_helper_
.
AddKernel
(
"conv_1x1"
,
"conv_add_relu_kernel.cl"
);
this
->
cl_helper_
.
AddKernel
(
"conv_1x1
_spl
"
,
"conv_add_relu_kernel.cl"
);
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
3
)
{
...
...
@@ -72,84 +73,7 @@ bool ConvAddReluKernel<GPU_CL, float>::Init(
template
<
>
void
ConvAddReluKernel
<
GPU_CL
,
float
>::
Compute
(
const
FusionConvAddReluParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Output
());
int
c_block
=
default_work_size
[
0
];
int
w
=
default_work_size
[
1
];
int
nh
=
default_work_size
[
2
];
auto
input
=
param
.
Input
()
->
GetCLImage
();
auto
filter
=
param
.
Filter
()
->
GetCLImage
();
DLOG
<<
"---yangfei30---"
;
DLOG
<<
*
param
.
Filter
();
DLOG
<<
param
.
Paddings
();
auto
biase
=
param
.
Bias
()
->
GetCLImage
();
auto
output
=
param
.
Output
()
->
GetCLImage
();
int
stride
=
param
.
Strides
()[
0
];
int
offset
=
param
.
Offset
();
int
input_c
=
reinterpret_cast
<
framework
::
CLImageConverterFolder
*>
(
param
.
Input
()
->
Converter
())
->
GetCBlock
();
int
dilation
=
param
.
Dilations
()[
0
];
int
input_width
=
param
.
Input
()
->
dims
()[
3
];
int
input_height
=
param
.
Input
()
->
dims
()[
2
];
int
output_width
=
param
.
Output
()
->
dims
()[
3
];
int
output_height
=
param
.
Output
()
->
dims
()[
2
];
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
// cl_event out_event = param.Output()->GetClEvent();
// cl_event wait_event = param.Input()->GetClEvent();
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
ConvAddBnRelu
(
this
->
cl_helper_
,
param
,
true
,
param
.
Bias
());
}
template
class
ConvAddReluKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/conv_bn_add_relu_kernel.cpp
浏览文件 @
c2f69ebd
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include "operators/kernel/conv_bn_add_relu_kernel.h"
#include <cmath>
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -102,7 +103,8 @@ bool ConvBNAddReluKernel<GPU_CL, float>::Init(
if
(
param
->
Filter
()
->
dims
()[
2
]
==
1
&&
param
->
Filter
()
->
dims
()[
3
]
==
1
)
{
param
->
Filter
()
->
InitNImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
this
->
cl_helper_
.
AddKernel
(
"convBNAdd_1x1"
,
"conv_bn_add_relu_kernel.cl"
);
this
->
cl_helper_
.
AddKernel
(
"convBNAdd_1x1_spl"
,
"conv_bn_add_relu_kernel.cl"
);
DLOG
<<
" conv bn add relu conv 1x1"
;
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
...
...
@@ -130,101 +132,8 @@ bool ConvBNAddReluKernel<GPU_CL, float>::Init(
template
<
>
void
ConvBNAddReluKernel
<
GPU_CL
,
float
>::
Compute
(
const
FusionConvBNAddReluParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Output
());
int
c_block
=
default_work_size
[
0
];
int
w
=
default_work_size
[
1
];
int
nh
=
default_work_size
[
2
];
auto
input
=
param
.
Input
()
->
GetCLImage
();
auto
filter
=
param
.
Filter
()
->
GetCLImage
();
auto
biase
=
param
.
Bias
()
->
GetCLImage
();
auto
new_scale
=
param
.
NewScale
()
->
GetCLImage
();
auto
new_bias
=
param
.
NewBias
()
->
GetCLImage
();
auto
output
=
param
.
Output
()
->
GetCLImage
();
int
stride
=
param
.
Strides
()[
0
];
int
offset
=
param
.
Offset
();
int
input_c
=
reinterpret_cast
<
framework
::
CLImageConverterFolder
*>
(
param
.
Input
()
->
Converter
())
->
GetCBlock
();
int
dilation
=
param
.
Dilations
()[
0
];
int
input_width
=
param
.
Input
()
->
dims
()[
3
];
int
input_height
=
param
.
Input
()
->
dims
()[
2
];
int
output_width
=
param
.
Output
()
->
dims
()[
3
];
int
output_height
=
param
.
Output
()
->
dims
()[
2
];
// DLOG << " c block " << c_block;
// DLOG << " w " << w;
// DLOG << " nh " << nh;
// DLOG << " stride " << stride;
// DLOG << " offset " << offset;
// DLOG << " input_c " << input_c;
// DLOG << " dilation " << dilation;
// DLOG << " input width " << input_width;
// DLOG << " input height " << input_height;
// DLOG << " output width " << output_width;
// DLOG << " output height " << output_height;
// DLOG << " input dim " << *param.Input();
// DLOG << " output dim " <<* param.Output();
// DLOG << " filter dim " << *param.Filter();
// DLOG<<*param.Bias();
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_scale
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
new_bias
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
ConvAddBnRelu
(
this
->
cl_helper_
,
param
,
true
,
param
.
Bias
(),
param
.
NewScale
(),
param
.
NewBias
());
}
template
class
ConvBNAddReluKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/conv_bn_relu_kernel.cpp
浏览文件 @
c2f69ebd
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include "operators/kernel/conv_bn_relu_kernel.h"
#include <cmath>
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -100,7 +101,7 @@ bool ConvBNReluKernel<GPU_CL, float>::Init(
if
(
param
->
Filter
()
->
dims
()[
2
]
==
1
&&
param
->
Filter
()
->
dims
()[
3
]
==
1
)
{
param
->
Filter
()
->
InitNImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
this
->
cl_helper_
.
AddKernel
(
"conv_1x1"
,
"conv_bn_relu_kernel.cl"
);
this
->
cl_helper_
.
AddKernel
(
"conv_1x1
_spl
"
,
"conv_bn_relu_kernel.cl"
);
DLOG
<<
" conv bn relu conv 1x1"
;
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
...
...
@@ -126,81 +127,8 @@ bool ConvBNReluKernel<GPU_CL, float>::Init(
template
<
>
void
ConvBNReluKernel
<
GPU_CL
,
float
>::
Compute
(
const
FusionConvBNReluParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Output
());
int
c_block
=
default_work_size
[
0
];
int
w
=
default_work_size
[
1
];
int
nh
=
default_work_size
[
2
];
auto
input
=
param
.
Input
()
->
GetCLImage
();
auto
filter
=
param
.
Filter
()
->
GetCLImage
();
auto
new_scale
=
param
.
NewScale
()
->
GetCLImage
();
auto
new_bias
=
param
.
NewBias
()
->
GetCLImage
();
auto
output
=
param
.
Output
()
->
GetCLImage
();
int
stride
=
param
.
Strides
()[
0
];
int
offset
=
param
.
Offset
();
int
input_c
=
reinterpret_cast
<
framework
::
CLImageConverterFolder
*>
(
param
.
Input
()
->
Converter
())
->
GetCBlock
();
int
dilation
=
param
.
Dilations
()[
0
];
int
input_width
=
param
.
Input
()
->
dims
()[
3
];
int
input_height
=
param
.
Input
()
->
dims
()[
2
];
int
output_width
=
param
.
Output
()
->
dims
()[
3
];
int
output_height
=
param
.
Output
()
->
dims
()[
2
];
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
new_scale
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_bias
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
ConvAddBnRelu
(
this
->
cl_helper_
,
param
,
true
,
nullptr
,
param
.
NewScale
(),
param
.
NewBias
());
}
template
class
ConvBNReluKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/conv_kernel.cpp
浏览文件 @
c2f69ebd
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef CONV_OP
#include "operators/kernel/conv_kernel.h"
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -39,7 +40,7 @@ bool ConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
if
(
param
->
Filter
()
->
dims
()[
2
]
==
1
&&
param
->
Filter
()
->
dims
()[
3
]
==
1
)
{
param
->
Filter
()
->
InitNImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
this
->
cl_helper_
.
AddKernel
(
"conv_1x1"
,
"conv_kernel.cl"
);
this
->
cl_helper_
.
AddKernel
(
"conv_1x1
_spl
"
,
"conv_kernel.cl"
);
DLOG
<<
"conv 1x1"
;
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
&&
...
...
@@ -66,64 +67,7 @@ bool ConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
template
<
>
void
ConvKernel
<
GPU_CL
,
float
>::
Compute
(
const
ConvParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Output
());
int
c_block
=
default_work_size
[
0
];
int
w
=
default_work_size
[
1
];
int
nh
=
default_work_size
[
2
];
auto
input
=
param
.
Input
()
->
GetCLImage
();
auto
filter
=
param
.
Filter
()
->
GetCLImage
();
auto
output
=
param
.
Output
()
->
GetCLImage
();
int
stride
=
param
.
Strides
()[
0
];
int
offset
=
param
.
Offset
();
int
input_c
=
reinterpret_cast
<
framework
::
CLImageConverterFolder
*>
(
param
.
Input
()
->
Converter
())
->
GetCBlock
();
int
dilation
=
param
.
Dilations
()[
0
];
int
input_width
=
param
.
Input
()
->
dims
()[
3
];
int
input_height
=
param
.
Input
()
->
dims
()[
2
];
int
output_width
=
param
.
Output
()
->
dims
()[
3
];
int
output_height
=
param
.
Output
()
->
dims
()[
2
];
cl_int
status
;
DLOG
<<
" begin set kernel arg "
;
DLOG
<<
" c block "
<<
c_block
;
DLOG
<<
" w "
<<
w
;
DLOG
<<
" nh "
<<
nh
;
DLOG
<<
" stride "
<<
stride
;
DLOG
<<
" offset "
<<
offset
;
DLOG
<<
" input_c "
<<
input_c
;
DLOG
<<
" dilation "
<<
dilation
;
DLOG
<<
" input width "
<<
input_width
;
DLOG
<<
" input height "
<<
input_height
;
DLOG
<<
" output width "
<<
output_width
;
DLOG
<<
" output height "
<<
output_height
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
output
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
int
),
&
stride
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
offset
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
input_c
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
dilation
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
input_width
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_height
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
output_width
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_height
);
// cl_event out_event = param.Output()->GetClEvent();
// cl_event wait_event = param.Input()->GetClEvent();
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
ConvAddBnRelu
(
this
->
cl_helper_
,
param
);
}
template
class
ConvKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/conv_add_bn_relu_kernel.h
浏览文件 @
c2f69ebd
...
...
@@ -36,9 +36,6 @@ class ConvAddBNReluKernel
public:
void
Compute
(
const
FusionConvAddBNReluParam
<
DeviceType
>
&
param
);
bool
Init
(
FusionConvAddBNReluParam
<
DeviceType
>
*
param
);
inline
int
maptofactor
(
int
i
,
int
factor
)
{
return
(
i
+
factor
-
1
)
/
factor
;
}
};
}
// namespace operators
...
...
src/operators/kernel/conv_add_kernel.h
浏览文件 @
c2f69ebd
...
...
@@ -41,9 +41,6 @@ class ConvAddKernel
public:
void
Compute
(
const
FusionConvAddParam
<
DeviceType
>
&
param
);
bool
Init
(
FusionConvAddParam
<
DeviceType
>
*
param
);
inline
int
maptofactor
(
int
i
,
int
factor
)
{
return
(
i
+
factor
-
1
)
/
factor
;
}
};
}
// namespace operators
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录