Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
c2f3a5a3
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c2f3a5a3
编写于
4月 20, 2020
作者:
H
huzhiqiang
提交者:
GitHub
4月 20, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Framework][InferShape] accelerate op infer_shape period (#3434)
上级
44c4c68d
变更
20
隐藏空白更改
内联
并排
Showing
20 changed file
with
109 addition
and
80 deletion
+109
-80
lite/core/op_lite.cc
lite/core/op_lite.cc
+9
-7
lite/core/op_lite.h
lite/core/op_lite.h
+6
-2
lite/operators/batch_norm_op.cc
lite/operators/batch_norm_op.cc
+1
-0
lite/operators/concat_op.cc
lite/operators/concat_op.cc
+1
-0
lite/operators/conv_op.h
lite/operators/conv_op.h
+1
-0
lite/operators/elementwise_ops.cc
lite/operators/elementwise_ops.cc
+2
-0
lite/operators/fc_op.cc
lite/operators/fc_op.cc
+2
-0
lite/operators/matmul_op.cc
lite/operators/matmul_op.cc
+1
-0
lite/operators/mul_op.h
lite/operators/mul_op.h
+2
-1
lite/operators/op_params.h
lite/operators/op_params.h
+73
-70
lite/operators/pool_op.h
lite/operators/pool_op.h
+1
-0
lite/operators/reshape_op.cc
lite/operators/reshape_op.cc
+1
-0
lite/operators/scale_op.cc
lite/operators/scale_op.cc
+1
-0
lite/operators/sequence_softmax_op.cc
lite/operators/sequence_softmax_op.cc
+1
-0
lite/operators/slice_op.cc
lite/operators/slice_op.cc
+1
-0
lite/operators/softmax_op.cc
lite/operators/softmax_op.cc
+2
-0
lite/operators/split_op.cc
lite/operators/split_op.cc
+1
-0
lite/operators/squeeze_op.cc
lite/operators/squeeze_op.cc
+1
-0
lite/operators/transpose_op.cc
lite/operators/transpose_op.cc
+1
-0
lite/operators/unsqueeze_op.cc
lite/operators/unsqueeze_op.cc
+1
-0
未找到文件。
lite/core/op_lite.cc
浏览文件 @
c2f3a5a3
...
...
@@ -25,16 +25,16 @@ namespace lite {
bool
OpLite
::
InferShape
()
{
// if input_tensor_ptrs and output_tensor_ptrs are overloaded in param_
// InferShapeByMemoryInternal will be applied.
if
(
param_
.
input_tensor_ptrs
()
&&
param_
.
output_tensor_ptrs
())
{
if
(
op_param_
&&
op_param_
->
input_tensor_ptrs
()
&&
op_param_
->
output_tensor_ptrs
())
{
return
this
->
InferShapeWithCache
();
}
else
{
// otherwise, InferShapeImpl is applied directly.
return
this
->
InferShapeImpl
();
}
}
bool
OpLite
::
InferShapeWithCache
()
{
// 1. Get vector of current input tensors
auto
*
current_inputs
=
param_
.
input_tensor_ptrs
();
auto
*
current_inputs
=
op_param_
->
input_tensor_ptrs
();
// 2. Get hash value of current inputs shape and lod
size_t
new_hash
=
0
;
for
(
auto
iter
=
current_inputs
->
begin
();
iter
!=
current_inputs
->
end
();
...
...
@@ -59,7 +59,7 @@ bool OpLite::InferShapeWithCache() {
if
(
new_hash
==
io_shape_lod_hash_
&&
new_hash
!=
0
)
{
// if current hash value is consistent with io_shape_lod_hash_,
// previous outputs shape and lod are reused.
auto
*
current_outputs
=
param_
.
output_tensor_ptrs
();
auto
*
current_outputs
=
op_param_
->
output_tensor_ptrs
();
for
(
size_t
i
=
0
;
i
<
current_outputs
->
size
();
i
++
)
{
current_outputs
->
at
(
i
)
->
Resize
(
last_output_shapes
[
i
]);
current_outputs
->
at
(
i
)
->
set_lod
(
last_output_lods
[
i
]);
...
...
@@ -68,10 +68,12 @@ bool OpLite::InferShapeWithCache() {
// otherwise, current hash value is changed, InferShapeImpl will apply.
io_shape_lod_hash_
=
new_hash
;
this
->
InferShapeImpl
();
auto
*
current_outputs
=
param_
.
output_tensor_ptrs
();
auto
*
current_outputs
=
op_param_
->
output_tensor_ptrs
();
last_output_shapes
.
clear
();
last_output_lods
.
clear
();
for
(
size_t
i
=
0
;
i
<
current_outputs
->
size
();
i
++
)
{
last_output_shapes
[
i
]
=
current_outputs
->
at
(
i
)
->
dims
(
);
last_output_lods
[
i
]
=
current_outputs
->
at
(
i
)
->
lod
(
);
last_output_shapes
.
push_back
(
current_outputs
->
at
(
i
)
->
dims
()
);
last_output_lods
.
push_back
(
current_outputs
->
at
(
i
)
->
lod
()
);
}
}
return
true
;
...
...
lite/core/op_lite.h
浏览文件 @
c2f3a5a3
...
...
@@ -77,6 +77,11 @@ class OpLite : public Registry {
// Link the external execution environ to internal context.
bool
Attach
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
);
template
<
typename
T
>
inline
void
AttachParam
(
T
*
param
)
{
op_param_
=
static_cast
<
T
*>
(
param
);
}
const
OpInfo
*
op_info
()
const
{
return
op_info_
.
get
();
}
OpInfo
*
mutable_op_info
()
{
return
op_info_
.
get
();
}
...
...
@@ -167,11 +172,10 @@ class OpLite : public Registry {
std
::
vector
<
Place
>
valid_places_
;
Place
kernel_place_
{
TARGET
(
kHost
),
PRECISION
(
kFloat
)};
std
::
unique_ptr
<
OpInfo
>
op_info_
;
std
::
vector
<
DDimLite
>
last_output_shapes
{};
std
::
vector
<
std
::
vector
<
std
::
vector
<
uint64_t
>>>
last_output_lods
{};
size_t
io_shape_lod_hash_
{};
mutable
operators
::
ParamBase
param_
;
mutable
operators
::
ParamBase
*
op_param_
{
nullptr
}
;
private:
// Infer Shape according to memory, if current input shapes are consistent
...
...
lite/operators/batch_norm_op.cc
浏览文件 @
c2f3a5a3
...
...
@@ -73,6 +73,7 @@ bool BatchNormOp::InferShapeImpl() const {
}
bool
BatchNormOp
::
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
{
AttachParam
(
&
param_
);
param_
.
x
=
scope
->
FindVar
(
op_desc
.
Input
(
"X"
).
front
())
->
GetMutable
<
Tensor
>
();
param_
.
bias
=
scope
->
FindVar
(
op_desc
.
Input
(
"Bias"
).
front
())
->
GetMutable
<
Tensor
>
();
...
...
lite/operators/concat_op.cc
浏览文件 @
c2f3a5a3
...
...
@@ -66,6 +66,7 @@ bool ConcatOpLite::InferShapeImpl() const {
// TODO(Superjomn) replace framework::OpDesc with a lite one.
bool
ConcatOpLite
::
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
{
AttachParam
(
&
param_
);
auto
inputs
=
op_desc
.
Input
(
"X"
);
auto
out
=
op_desc
.
Output
(
"Out"
).
front
();
...
...
lite/operators/conv_op.h
浏览文件 @
c2f3a5a3
...
...
@@ -38,6 +38,7 @@ class ConvOpLite : public OpLite {
// TODO(Superjomn) replace framework::OpDesc with a lite one.
bool
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
override
{
AttachParam
(
&
param_
);
auto
X
=
op_desc
.
Input
(
"Input"
).
front
();
auto
Filter
=
op_desc
.
Input
(
"Filter"
).
front
();
auto
Out
=
op_desc
.
Output
(
"Output"
).
front
();
...
...
lite/operators/elementwise_ops.cc
浏览文件 @
c2f3a5a3
...
...
@@ -87,6 +87,8 @@ bool ElementwiseOp::InferShapeImpl() const {
}
bool
ElementwiseOp
::
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
{
AttachParam
(
&
param_
);
auto
X_name
=
opdesc
.
Input
(
"X"
).
front
();
auto
Y_name
=
opdesc
.
Input
(
"Y"
).
front
();
auto
Out_name
=
opdesc
.
Output
(
"Out"
).
front
();
...
...
lite/operators/fc_op.cc
浏览文件 @
c2f3a5a3
...
...
@@ -69,6 +69,8 @@ bool FcOpLite::InferShapeImpl() const {
}
bool
FcOpLite
::
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
{
AttachParam
(
&
param_
);
auto
input
=
op_desc
.
Input
(
"Input"
).
front
();
auto
W
=
op_desc
.
Input
(
"W"
).
front
();
auto
out
=
op_desc
.
Output
(
"Out"
).
front
();
...
...
lite/operators/matmul_op.cc
浏览文件 @
c2f3a5a3
...
...
@@ -132,6 +132,7 @@ bool MatMulOpLite::InferShapeImpl() const {
}
bool
MatMulOpLite
::
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
{
AttachParam
(
&
param_
);
CHECK
(
!
op_desc
.
Input
(
"X"
).
empty
());
CHECK
(
!
op_desc
.
Input
(
"Y"
).
empty
());
CHECK
(
!
op_desc
.
Output
(
"Out"
).
empty
());
...
...
lite/operators/mul_op.h
浏览文件 @
c2f3a5a3
...
...
@@ -38,6 +38,8 @@ class MulOpLite : public OpLite {
void
AttachKernel
(
KernelBase
*
kernel
)
override
{
kernel
->
SetParam
(
param_
);
}
// TODO(Superjomn) replace framework::OpDesc with a lite one.
bool
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
override
{
AttachParam
(
&
param_
);
CHECK
(
!
op_desc
.
Input
(
"X"
).
empty
());
CHECK
(
!
op_desc
.
Input
(
"Y"
).
empty
());
CHECK
(
!
op_desc
.
Output
(
"Out"
).
empty
());
...
...
@@ -56,7 +58,6 @@ class MulOpLite : public OpLite {
param_
.
output
=
var
->
GetMutable
<
Tensor
>
();
param_
.
x_num_col_dims
=
op_desc
.
GetAttr
<
int
>
(
"x_num_col_dims"
);
param_
.
y_num_col_dims
=
op_desc
.
GetAttr
<
int
>
(
"y_num_col_dims"
);
return
true
;
}
...
...
lite/operators/op_params.h
浏览文件 @
c2f3a5a3
...
...
@@ -35,8 +35,11 @@ namespace operators {
struct
ParamBase
{
public:
const
std
::
vector
<
Tensor
*>*
input_tensor_ptrs
()
const
{
return
nullptr
;
}
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
{
return
nullptr
;
}
virtual
~
ParamBase
()
{}
virtual
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
{
return
nullptr
;
}
virtual
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
{
return
nullptr
;
}
protected:
std
::
shared_ptr
<
std
::
vector
<
const
Tensor
*>>
input_tensor_ptrs_cache_
{
nullptr
};
...
...
@@ -108,15 +111,15 @@ struct FcParam : ParamBase {
WITH_INT8_CONFIG
///////////////////////////////////////////////////////////////////////////////////
// get a vector of input tensors
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
{
if
(
UNLIKELY
(
input_tensor_ptrs_cache_
)
)
{
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
override
{
if
(
!
input_tensor_ptrs_cache_
)
{
input_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
const
Tensor
*>
({
input
}));
}
return
input_tensor_ptrs_cache_
.
get
();
}
// get a vector of output tensors
const
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
{
if
(
UNLIKELY
(
output_tensor_ptrs_cache_
)
)
{
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
override
{
if
(
!
output_tensor_ptrs_cache_
)
{
output_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
lite
::
Tensor
*>
({
output
}));
}
return
output_tensor_ptrs_cache_
.
get
();
...
...
@@ -160,15 +163,15 @@ struct MulParam : ParamBase {
WITH_INT8_CONFIG
///////////////////////////////////////////////////////////////////////////////////
// get a vector of input tensors
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
{
if
(
UNLIKELY
(
input_tensor_ptrs_cache_
)
)
{
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
override
{
if
(
!
input_tensor_ptrs_cache_
)
{
input_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
const
Tensor
*>
({
x
,
y
}));
}
return
input_tensor_ptrs_cache_
.
get
();
}
// get a vector of output tensors
const
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
{
if
(
UNLIKELY
(
output_tensor_ptrs_cache_
)
)
{
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
override
{
if
(
!
output_tensor_ptrs_cache_
)
{
output_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
lite
::
Tensor
*>
({
output
}));
}
return
output_tensor_ptrs_cache_
.
get
();
...
...
@@ -243,15 +246,15 @@ struct ScaleParam : ParamBase {
bool
bias_after_scale
{
true
};
///////////////////////////////////////////////////////////////////////////////////
// get a vector of input tensors
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
{
if
(
UNLIKELY
(
input_tensor_ptrs_cache_
)
)
{
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
override
{
if
(
!
input_tensor_ptrs_cache_
)
{
input_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
const
Tensor
*>
({
x
}));
}
return
input_tensor_ptrs_cache_
.
get
();
}
// get a vector of output tensors
const
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
{
if
(
UNLIKELY
(
output_tensor_ptrs_cache_
)
)
{
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
override
{
if
(
!
output_tensor_ptrs_cache_
)
{
output_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
lite
::
Tensor
*>
({
output
}));
}
return
output_tensor_ptrs_cache_
.
get
();
...
...
@@ -265,15 +268,15 @@ struct SoftmaxParam : ParamBase {
int
axis
{
-
1
};
///////////////////////////////////////////////////////////////////////////////////
// get a vector of input tensors
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
{
if
(
UNLIKELY
(
input_tensor_ptrs_cache_
)
)
{
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
override
{
if
(
!
input_tensor_ptrs_cache_
)
{
input_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
const
Tensor
*>
({
x
}));
}
return
input_tensor_ptrs_cache_
.
get
();
}
// get a vector of output tensors
const
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
{
if
(
UNLIKELY
(
output_tensor_ptrs_cache_
)
)
{
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
override
{
if
(
!
output_tensor_ptrs_cache_
)
{
output_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
lite
::
Tensor
*>
({
output
}));
}
return
output_tensor_ptrs_cache_
.
get
();
...
...
@@ -292,15 +295,15 @@ struct ReshapeParam : ParamBase {
bool
inplace
{
false
};
///////////////////////////////////////////////////////////////////////////////////
// get a vector of input tensors
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
{
if
(
UNLIKELY
(
input_tensor_ptrs_cache_
)
)
{
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
override
{
if
(
!
input_tensor_ptrs_cache_
)
{
input_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
const
Tensor
*>
({
x
}));
}
return
input_tensor_ptrs_cache_
.
get
();
}
// get a vector of output tensors
const
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
{
if
(
UNLIKELY
(
output_tensor_ptrs_cache_
)
)
{
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
override
{
if
(
!
output_tensor_ptrs_cache_
)
{
output_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
lite
::
Tensor
*>
({
output
}));
}
return
output_tensor_ptrs_cache_
.
get
();
...
...
@@ -314,8 +317,8 @@ struct ConcatParam : ParamBase {
int
axis
{
0
};
lite
::
Tensor
*
axis_tensor
{};
// get a vector of input tensors
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
{
if
(
UNLIKELY
(
input_tensor_ptrs_cache_
)
)
{
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
override
{
if
(
!
input_tensor_ptrs_cache_
)
{
std
::
vector
<
const
Tensor
*>
vec
;
for
(
auto
in
:
x
)
{
vec
.
push_back
(
in
);
...
...
@@ -325,8 +328,8 @@ struct ConcatParam : ParamBase {
return
input_tensor_ptrs_cache_
.
get
();
}
// get a vector of output tensors
const
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
{
if
(
UNLIKELY
(
output_tensor_ptrs_cache_
)
)
{
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
override
{
if
(
!
output_tensor_ptrs_cache_
)
{
output_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
lite
::
Tensor
*>
({
output
}));
}
return
output_tensor_ptrs_cache_
.
get
();
...
...
@@ -406,15 +409,15 @@ struct ConvParam : ParamBase {
///////////////////////////////////////////////////////////////////////////////////
// get a vector of input tensors
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
{
if
(
UNLIKELY
(
input_tensor_ptrs_cache_
)
)
{
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
override
{
if
(
!
input_tensor_ptrs_cache_
)
{
input_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
const
Tensor
*>
({
x
}));
}
return
input_tensor_ptrs_cache_
.
get
();
}
// get a vector of output tensors
const
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
{
if
(
UNLIKELY
(
output_tensor_ptrs_cache_
)
)
{
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
override
{
if
(
!
output_tensor_ptrs_cache_
)
{
output_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
lite
::
Tensor
*>
({
output
}));
}
return
output_tensor_ptrs_cache_
.
get
();
...
...
@@ -440,15 +443,15 @@ struct BatchNormParam : ParamBase {
DataLayoutType
data_layout
{
DATALAYOUT
(
kNCHW
)};
///////////////////////////////////////////////////////////////////////////////////
// get a vector of input tensors
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
{
if
(
UNLIKELY
(
input_tensor_ptrs_cache_
)
)
{
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
override
{
if
(
!
input_tensor_ptrs_cache_
)
{
input_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
const
Tensor
*>
({
x
}));
}
return
input_tensor_ptrs_cache_
.
get
();
}
// get a vector of output tensors
const
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
{
if
(
UNLIKELY
(
output_tensor_ptrs_cache_
)
)
{
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
override
{
if
(
!
output_tensor_ptrs_cache_
)
{
output_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
lite
::
Tensor
*>
({
y
}));
}
return
output_tensor_ptrs_cache_
.
get
();
...
...
@@ -479,15 +482,15 @@ struct PoolParam : ParamBase {
WITH_INT8_CONFIG
///////////////////////////////////////////////////////////////////////////////////
// get a vector of input tensors
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
{
if
(
UNLIKELY
(
input_tensor_ptrs_cache_
)
)
{
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
override
{
if
(
!
input_tensor_ptrs_cache_
)
{
input_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
const
Tensor
*>
({
x
}));
}
return
input_tensor_ptrs_cache_
.
get
();
}
// get a vector of output tensors
const
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
{
if
(
UNLIKELY
(
output_tensor_ptrs_cache_
)
)
{
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
override
{
if
(
!
output_tensor_ptrs_cache_
)
{
output_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
lite
::
Tensor
*>
({
output
}));
}
return
output_tensor_ptrs_cache_
.
get
();
...
...
@@ -518,15 +521,15 @@ struct SplitParam : ParamBase {
std
::
vector
<
int
>
sections
;
///////////////////////////////////////////////////////////////////////////////////
// get a vector of input tensors
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
{
if
(
UNLIKELY
(
input_tensor_ptrs_cache_
)
)
{
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
override
{
if
(
!
input_tensor_ptrs_cache_
)
{
input_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
const
Tensor
*>
({
x
}));
}
return
input_tensor_ptrs_cache_
.
get
();
}
// get a vector of output tensors
const
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
{
if
(
UNLIKELY
(
output_tensor_ptrs_cache_
)
)
{
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
override
{
if
(
!
output_tensor_ptrs_cache_
)
{
output_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
lite
::
Tensor
*>
({
output
}));
}
return
output_tensor_ptrs_cache_
.
get
();
...
...
@@ -544,15 +547,15 @@ struct TransposeParam : ParamBase {
std
::
string
data_format
{
"AnyLayout"
};
///////////////////////////////////////////////////////////////////////////////////
// // get a vector of input tensors
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
{
if
(
UNLIKELY
(
input_tensor_ptrs_cache_
)
)
{
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
override
{
if
(
!
input_tensor_ptrs_cache_
)
{
input_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
const
Tensor
*>
({
x
}));
}
return
input_tensor_ptrs_cache_
.
get
();
}
// get a vector of output tensors
const
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
{
if
(
UNLIKELY
(
output_tensor_ptrs_cache_
)
)
{
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
override
{
if
(
!
output_tensor_ptrs_cache_
)
{
output_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
lite
::
Tensor
*>
({
output
}));
}
return
output_tensor_ptrs_cache_
.
get
();
...
...
@@ -571,15 +574,15 @@ struct ElementwiseParam : ParamBase {
float
y_input_scale
{
1.0
};
///////////////////////////////////////////////////////////////////////////////////
// get a vector of input tensors
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
{
if
(
UNLIKELY
(
input_tensor_ptrs_cache_
)
)
{
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
override
{
if
(
!
input_tensor_ptrs_cache_
)
{
input_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
const
Tensor
*>
({
X
,
Y
}));
}
return
input_tensor_ptrs_cache_
.
get
();
}
// get a vector of output tensors
const
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
{
if
(
UNLIKELY
(
output_tensor_ptrs_cache_
)
)
{
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
override
{
if
(
!
output_tensor_ptrs_cache_
)
{
output_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
lite
::
Tensor
*>
({
Out
}));
}
return
output_tensor_ptrs_cache_
.
get
();
...
...
@@ -884,15 +887,15 @@ struct SequenceSoftmaxParam : ParamBase {
lite
::
Tensor
*
Out
{};
///////////////////////////////////////////////////////////////////////////////////
// // get a vector of input tensors
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
{
if
(
UNLIKELY
(
input_tensor_ptrs_cache_
)
)
{
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
override
{
if
(
!
input_tensor_ptrs_cache_
)
{
input_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
const
Tensor
*>
({
X
}));
}
return
input_tensor_ptrs_cache_
.
get
();
}
// get a vector of output tensors
const
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
{
if
(
UNLIKELY
(
output_tensor_ptrs_cache_
)
)
{
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
override
{
if
(
!
output_tensor_ptrs_cache_
)
{
output_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
lite
::
Tensor
*>
({
Out
}));
}
return
output_tensor_ptrs_cache_
.
get
();
...
...
@@ -1135,15 +1138,15 @@ struct SliceParam : ParamBase {
lite
::
Tensor
*
EndsTensor
{
nullptr
};
///////////////////////////////////////////////////////////////////////////////////
// get a vector of input tensors
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
{
if
(
UNLIKELY
(
input_tensor_ptrs_cache_
)
)
{
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
override
{
if
(
!
input_tensor_ptrs_cache_
)
{
input_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
const
Tensor
*>
({
X
}));
}
return
input_tensor_ptrs_cache_
.
get
();
}
// get a vector of output tensors
const
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
{
if
(
UNLIKELY
(
output_tensor_ptrs_cache_
)
)
{
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
override
{
if
(
!
output_tensor_ptrs_cache_
)
{
output_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
lite
::
Tensor
*>
({
Out
}));
}
return
output_tensor_ptrs_cache_
.
get
();
...
...
@@ -1197,15 +1200,15 @@ struct SqueezeParam : ParamBase {
std
::
vector
<
int
>
axes
{};
///////////////////////////////////////////////////////////////////////////////////
// get a vector of input tensors
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
{
if
(
UNLIKELY
(
input_tensor_ptrs_cache_
)
)
{
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
override
{
if
(
!
input_tensor_ptrs_cache_
)
{
input_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
const
Tensor
*>
({
X
}));
}
return
input_tensor_ptrs_cache_
.
get
();
}
// get a vector of output tensors
const
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
{
if
(
UNLIKELY
(
output_tensor_ptrs_cache_
)
)
{
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
override
{
if
(
!
output_tensor_ptrs_cache_
)
{
output_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
lite
::
Tensor
*>
({
Out
}));
}
return
output_tensor_ptrs_cache_
.
get
();
...
...
@@ -1221,15 +1224,15 @@ struct UnsqueezeParam : ParamBase {
std
::
vector
<
const
lite
::
Tensor
*>
axes_tensor_vct
{};
///////////////////////////////////////////////////////////////////////////////////
// get a vector of input tensors
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
{
if
(
UNLIKELY
(
input_tensor_ptrs_cache_
)
)
{
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
override
{
if
(
!
input_tensor_ptrs_cache_
)
{
input_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
const
Tensor
*>
({
X
}));
}
return
input_tensor_ptrs_cache_
.
get
();
}
// get a vector of output tensors
const
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
{
if
(
UNLIKELY
(
output_tensor_ptrs_cache_
)
)
{
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
override
{
if
(
!
output_tensor_ptrs_cache_
)
{
output_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
lite
::
Tensor
*>
({
Out
}));
}
return
output_tensor_ptrs_cache_
.
get
();
...
...
@@ -1253,15 +1256,15 @@ struct MatMulParam : ParamBase {
float
alpha
{
1.0
f
};
///////////////////////////////////////////////////////////////////////////////////
// get a vector of input tensors
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
{
if
(
UNLIKELY
(
input_tensor_ptrs_cache_
)
)
{
const
std
::
vector
<
const
Tensor
*>*
input_tensor_ptrs
()
override
{
if
(
!
input_tensor_ptrs_cache_
)
{
input_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
const
Tensor
*>
({
X
,
Y
}));
}
return
input_tensor_ptrs_cache_
.
get
();
}
// get a vector of output tensors
const
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
{
if
(
UNLIKELY
(
output_tensor_ptrs_cache_
)
)
{
std
::
vector
<
Tensor
*>*
output_tensor_ptrs
()
override
{
if
(
!
output_tensor_ptrs_cache_
)
{
output_tensor_ptrs_cache_
.
reset
(
new
std
::
vector
<
lite
::
Tensor
*>
({
Out
}));
}
return
output_tensor_ptrs_cache_
.
get
();
...
...
lite/operators/pool_op.h
浏览文件 @
c2f3a5a3
...
...
@@ -41,6 +41,7 @@ class PoolOpLite : public OpLite {
// TODO(Superjomn) replace framework::OpDesc with a lite one.
bool
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
override
{
AttachParam
(
&
param_
);
auto
x
=
op_desc
.
Input
(
"X"
).
front
();
auto
out
=
op_desc
.
Output
(
"Out"
).
front
();
...
...
lite/operators/reshape_op.cc
浏览文件 @
c2f3a5a3
...
...
@@ -56,6 +56,7 @@ bool ReshapeOp::InferShapeImpl() const {
}
bool
ReshapeOp
::
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
{
AttachParam
(
&
param_
);
param_
.
x
=
scope
->
FindVar
(
opdesc
.
Input
(
"X"
).
front
())
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
output
=
...
...
lite/operators/scale_op.cc
浏览文件 @
c2f3a5a3
...
...
@@ -30,6 +30,7 @@ bool ScaleOp::InferShapeImpl() const {
}
bool
ScaleOp
::
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
{
AttachParam
(
&
param_
);
auto
x
=
op_desc
.
Input
(
"X"
).
front
();
auto
output
=
op_desc
.
Output
(
"Out"
).
front
();
param_
.
x
=
scope
->
FindVar
(
x
)
->
GetMutable
<
Tensor
>
();
...
...
lite/operators/sequence_softmax_op.cc
浏览文件 @
c2f3a5a3
...
...
@@ -34,6 +34,7 @@ bool SequenceSoftmaxOp::InferShapeImpl() const {
bool
SequenceSoftmaxOp
::
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
{
AttachParam
(
&
param_
);
param_
.
X
=
scope
->
FindVar
(
opdesc
.
Input
(
"X"
).
front
())
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
Out
=
...
...
lite/operators/slice_op.cc
浏览文件 @
c2f3a5a3
...
...
@@ -87,6 +87,7 @@ bool SliceOp::InferShapeImpl() const {
}
bool
SliceOp
::
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
{
AttachParam
(
&
param_
);
param_
.
X
=
scope
->
FindVar
(
opdesc
.
Input
(
"Input"
).
front
())
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
Out
=
...
...
lite/operators/softmax_op.cc
浏览文件 @
c2f3a5a3
...
...
@@ -38,6 +38,8 @@ bool SoftmaxOp::InferShapeImpl() const {
}
bool
SoftmaxOp
::
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
{
AttachParam
(
&
param_
);
param_
.
x
=
const_cast
<
lite
::
Tensor
*>
(
&
scope
->
FindVar
(
opdesc
.
Input
(
"X"
).
front
())
->
Get
<
lite
::
Tensor
>
());
param_
.
output
=
...
...
lite/operators/split_op.cc
浏览文件 @
c2f3a5a3
...
...
@@ -75,6 +75,7 @@ bool SplitOp::InferShapeImpl() const {
}
bool
SplitOp
::
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
{
AttachParam
(
&
param_
);
param_
.
axis
=
opdesc
.
GetAttr
<
int
>
(
"axis"
);
param_
.
num
=
opdesc
.
GetAttr
<
int
>
(
"num"
);
param_
.
sections
=
opdesc
.
GetAttr
<
std
::
vector
<
int
>>
(
"sections"
);
...
...
lite/operators/squeeze_op.cc
浏览文件 @
c2f3a5a3
...
...
@@ -84,6 +84,7 @@ bool SqueezeOp::InferShapeImpl() const {
}
bool
SqueezeOp
::
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
{
AttachParam
(
&
param_
);
auto
x_var
=
scope
->
FindVar
(
opdesc
.
Input
(
"X"
).
front
());
auto
output_var
=
scope
->
FindVar
(
opdesc
.
Output
(
"Out"
).
front
());
CHECK
(
x_var
);
...
...
lite/operators/transpose_op.cc
浏览文件 @
c2f3a5a3
...
...
@@ -70,6 +70,7 @@ bool TransposeOp::InferShapeImpl() const {
}
bool
TransposeOp
::
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
{
AttachParam
(
&
param_
);
auto
x
=
op_desc
.
Input
(
"X"
).
front
();
auto
out
=
op_desc
.
Output
(
"Out"
).
front
();
...
...
lite/operators/unsqueeze_op.cc
浏览文件 @
c2f3a5a3
...
...
@@ -89,6 +89,7 @@ bool UnsqueezeOp::InferShapeImpl() const {
}
bool
UnsqueezeOp
::
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
{
AttachParam
(
&
param_
);
auto
x_var
=
scope
->
FindVar
(
opdesc
.
Input
(
"X"
).
front
());
auto
output_var
=
scope
->
FindVar
(
opdesc
.
Output
(
"Out"
).
front
());
CHECK
(
x_var
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录