Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
c1a578f1
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c1a578f1
编写于
9月 26, 2018
作者:
xiebaiyuan
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'upstream/develop' into develop
上级
d922996c
bdd97ea6
变更
25
展开全部
隐藏空白更改
内联
并排
Showing
25 changed file
with
452 addition
and
430 deletion
+452
-430
.gitignore
.gitignore
+3
-0
CMakeLists.txt
CMakeLists.txt
+3
-3
src/fpga/api.cpp
src/fpga/api.cpp
+39
-34
src/fpga/image.cpp
src/fpga/image.cpp
+4
-2
src/io/executor.cpp
src/io/executor.cpp
+4
-1
src/ios_io/PaddleMobileCPU.h
src/ios_io/PaddleMobileCPU.h
+35
-2
src/ios_io/PaddleMobileCPU.mm
src/ios_io/PaddleMobileCPU.mm
+139
-28
src/ios_io/op_symbols.h
src/ios_io/op_symbols.h
+19
-0
src/operators/feed_op.h
src/operators/feed_op.h
+2
-2
src/operators/kernel/fpga/concat_kernel.cpp
src/operators/kernel/fpga/concat_kernel.cpp
+1
-1
src/operators/kernel/fpga/conv_add_bn_kernel.cpp
src/operators/kernel/fpga/conv_add_bn_kernel.cpp
+1
-1
src/operators/kernel/fpga/conv_add_bn_relu_kernel.cpp
src/operators/kernel/fpga/conv_add_bn_relu_kernel.cpp
+1
-1
src/operators/kernel/fpga/conv_add_relu_kernel.cpp
src/operators/kernel/fpga/conv_add_relu_kernel.cpp
+1
-1
src/operators/kernel/fpga/conv_bn_kernel.cpp
src/operators/kernel/fpga/conv_bn_kernel.cpp
+1
-1
src/operators/kernel/fpga/conv_bn_relu_kernel.cpp
src/operators/kernel/fpga/conv_bn_relu_kernel.cpp
+1
-1
src/operators/kernel/fpga/elementwise_add_relu_kernel.cpp
src/operators/kernel/fpga/elementwise_add_relu_kernel.cpp
+1
-1
src/operators/kernel/fpga/fc_relu_kernel.cpp
src/operators/kernel/fpga/fc_relu_kernel.cpp
+1
-1
src/operators/kernel/fpga/fusion_fc_kernel.cpp
src/operators/kernel/fpga/fusion_fc_kernel.cpp
+1
-1
src/operators/kernel/fpga/pool_kernel.cpp
src/operators/kernel/fpga/pool_kernel.cpp
+1
-1
src/operators/kernel/fpga/softmax_kernel.cpp
src/operators/kernel/fpga/softmax_kernel.cpp
+3
-2
src/operators/op_param.h
src/operators/op_param.h
+121
-335
src/operators/prelu_op.cpp
src/operators/prelu_op.cpp
+0
-2
src/operators/prelu_op.h
src/operators/prelu_op.h
+10
-0
test/CMakeLists.txt
test/CMakeLists.txt
+21
-9
test/fpga/test_resnet50.cpp
test/fpga/test_resnet50.cpp
+39
-0
未找到文件。
.gitignore
浏览文件 @
c1a578f1
...
...
@@ -84,3 +84,6 @@ SwiftProtobuf.framework
paddle-mobile.xcworkspace
metal/models/
metal/images/
tools/libomp.a
\ No newline at end of file
CMakeLists.txt
浏览文件 @
c1a578f1
...
...
@@ -44,7 +44,7 @@ if (LOG_PROFILE)
add_definitions
(
-DPADDLE_MOBILE_PROFILE
)
endif
()
if
(
USE_OPENMP
AND NOT IS_IOS
)
if
(
USE_OPENMP
)
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-fopenmp"
)
add_definitions
(
-DPADDLE_MOBILE_USE_OPENMP
)
endif
()
...
...
@@ -130,8 +130,8 @@ endif ()
if
(
IS_IOS
)
else
()
list
(
REMOVE_ITEM PADDLE_MOBILE_H
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/ios_io/PaddleMobile.h
)
list
(
REMOVE_ITEM PADDLE_MOBILE_CC
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/ios_io/PaddleMobile.mm
)
list
(
REMOVE_ITEM PADDLE_MOBILE_H
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/ios_io/PaddleMobile
CPU
.h
)
list
(
REMOVE_ITEM PADDLE_MOBILE_CC
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/ios_io/PaddleMobile
CPU
.mm
)
list
(
REMOVE_ITEM PADDLE_MOBILE_H
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/ios_io/op_symbols.h
)
endif
()
...
...
src/fpga/api.cpp
浏览文件 @
c1a578f1
...
...
@@ -29,9 +29,7 @@ namespace fpga {
static
int
fd
=
-
1
;
static
const
char
*
device_path
=
"/dev/fpgadrv0"
;
#ifdef PADDLE_MOBILE_OS_LINUX
static
std
::
map
<
void
*
,
size_t
>
memory_map
;
#endif
static
inline
int
do_ioctl
(
int
req
,
const
void
*
arg
)
{
#ifdef PADDLE_MOBILE_OS_LINUX
...
...
@@ -53,32 +51,38 @@ int open_device() {
// memory management;
void
*
fpga_malloc
(
size_t
size
)
{
static
uint64_t
counter
=
0
;
counter
+=
size
;
DLOG
<<
size
<<
" bytes allocated. Total "
<<
counter
<<
" bytes"
;
#ifdef PADDLE_MOBILE_OS_LINUX
auto
ptr
=
mmap64
(
nullptr
,
size
,
PROT_READ
|
PROT_WRITE
,
MAP_SHARED
,
fd
,
0
);
memory_map
.
insert
(
std
::
make_pair
(
ptr
,
size
));
return
ptr
;
#else
return
malloc
(
size
);
auto
ptr
=
malloc
(
size
);
#endif
counter
+=
size
;
memory_map
.
insert
(
std
::
make_pair
(
ptr
,
size
));
DLOG
<<
"Address: "
<<
ptr
<<
", "
<<
size
<<
" bytes allocated. Total "
<<
counter
<<
" bytes"
;
return
ptr
;
}
void
fpga_free
(
void
*
ptr
)
{
#ifdef PADDLE_MOBILE_OS_LINUX
static
uint64_t
counter
=
0
;
size_t
size
=
0
;
auto
iter
=
memory_map
.
find
(
ptr
);
// std::map<void *, size_t>::iterator
if
(
iter
!=
memory_map
.
end
())
{
size
=
iter
->
second
;
munmap
(
ptr
,
size
);
memory_map
.
erase
(
iter
);
}
counter
+=
size
;
DLOG
<<
size
<<
" bytes freed. Total "
<<
counter
<<
" bytes"
;
#ifdef PADDLE_MOBILE_OS_LINUX
munmap
(
ptr
,
size
);
#else
free
(
ptr
);
free
(
ptr
);
#endif
counter
+=
size
;
DLOG
<<
"Address: "
<<
ptr
<<
", "
<<
size
<<
" bytes freed. Total "
<<
counter
<<
" bytes"
;
}
else
{
DLOG
<<
"Invalid pointer"
;
}
}
void
fpga_copy
(
void
*
dest
,
const
void
*
src
,
size_t
num
)
{
...
...
@@ -86,14 +90,14 @@ void fpga_copy(void *dest, const void *src, size_t num) {
}
int
fpga_flush
(
void
*
address
,
size_t
size
)
{
struct
MemoryCacheArgs
args
;
struct
MemoryCacheArgs
args
=
{
nullptr
}
;
args
.
address
=
address
;
args
.
size
=
size
;
return
do_ioctl
(
IOCTL_MEMCACHE_FLUSH
,
&
args
);
}
int
fpga_invalidate
(
void
*
address
,
size_t
size
)
{
struct
MemoryCacheArgs
args
;
struct
MemoryCacheArgs
args
=
{
nullptr
}
;
args
.
address
=
address
;
args
.
size
=
size
;
return
do_ioctl
(
IOCTL_MEMCACHE_INVAL
,
&
args
);
...
...
@@ -211,7 +215,8 @@ int PerformBypass(const struct BypassArgs &args) {
int
ComputeFPGAConcat
(
const
struct
ConcatArgs
&
args
)
{
#ifdef FPGA_TEST_MODE
DLOG
<<
"=============ComputeFpgaConcat==========="
;
DLOG
<<
" out_address:"
<<
args
.
image_out
DLOG
<<
" Image_num: "
<<
args
.
image_num
<<
" out_address:"
<<
args
.
image_out
<<
" out_scale_address:"
<<
args
.
scale_out
;
DLOG
<<
" image_height:"
<<
args
.
height
<<
" image_width:"
<<
args
.
width
;
for
(
int
i
=
0
;
i
<
args
.
image_num
;
i
++
)
{
...
...
@@ -235,7 +240,7 @@ void format_image(framework::Tensor *image_tensor) {
auto
channel
=
dims
[
1
],
height
=
dims
[
2
],
width
=
dims
[
3
];
auto
data_ptr
=
image_tensor
->
data
<
float
>
();
size_t
memory_size
=
channel
*
height
*
width
*
sizeof
(
float
);
float
*
new_data
=
(
float
*
)
fpga_malloc
(
memory_size
);
auto
new_data
=
(
float
*
)
fpga_malloc
(
memory_size
);
fpga_copy
(
new_data
,
data_ptr
,
memory_size
);
image
::
format_image
(
&
new_data
,
channel
,
height
,
width
);
image_tensor
->
reset_data_ptr
(
new_data
);
...
...
@@ -332,7 +337,7 @@ void format_concat_output(framework::Tensor *out, int height, int width,
sum_cw
=
align_to_x
(
width
*
sum_channel
,
IMAGE_ALIGNMENT
);
auto
data_ptr
=
fpga_malloc
(
height
*
sum_cw
*
sizeof
(
half
));
auto
ddim
=
framework
::
make_ddim
({
-
1
,
sum_channel
,
height
,
width
});
auto
ddim
=
framework
::
make_ddim
({
1
,
sum_channel
,
height
,
width
});
out
->
Resize
(
ddim
);
out
->
reset_data_ptr
(
data_ptr
);
}
...
...
@@ -346,12 +351,12 @@ void fill_conv_arg(struct WrapperConvArgs *arg, framework::Tensor *input,
auto
out_ptr
=
out
->
data
<
float
>
();
arg
->
group_num
=
(
uint32_t
)
group_num
;
arg
->
split_num
=
(
uint32_t
)
fpga
::
get_plit_num
(
filter
);
// Either group_num or split_num = 1;
arg
->
split_num
=
group_num
==
1
?
(
uint32_t
)
get_plit_num
(
filter
)
:
1
;
arg
->
filter_num
=
(
uint32_t
)
filter
->
dims
()[
0
];
arg
->
output
.
address
=
out_ptr
;
arg
->
output
.
scale_address
=
out
->
scale
;
arg
->
conv_args
=
(
fpga
::
ConvArgs
*
)
fpga
::
fpga_malloc
(
arg
->
split_num
*
sizeof
(
fpga
::
ConvArgs
));
arg
->
conv_args
=
(
ConvArgs
*
)
fpga_malloc
(
arg
->
split_num
*
sizeof
(
ConvArgs
));
arg
->
concat_arg
.
image_num
=
arg
->
split_num
;
arg
->
concat_arg
.
image_out
=
out_ptr
;
...
...
@@ -360,15 +365,14 @@ void fill_conv_arg(struct WrapperConvArgs *arg, framework::Tensor *input,
arg
->
concat_arg
.
width
=
(
uint32_t
)
filter
->
dims
()[
3
];
int
n
=
arg
->
split_num
;
arg
->
concat_arg
.
images_in
=
(
half
**
)
fpga
::
fpga_malloc
(
n
*
sizeof
(
int
*
));
arg
->
concat_arg
.
scales_in
=
(
float
**
)
fpga
::
fpga_malloc
(
n
*
sizeof
(
float
*
));
arg
->
concat_arg
.
channel_num
=
(
uint32_t
*
)
fpga
::
fpga_malloc
(
n
*
sizeof
(
uint32_t
));
arg
->
concat_arg
.
images_in
=
(
half
**
)
fpga_malloc
(
n
*
sizeof
(
int
*
));
arg
->
concat_arg
.
scales_in
=
(
float
**
)
fpga_malloc
(
n
*
sizeof
(
float
*
));
arg
->
concat_arg
.
channel_num
=
(
uint32_t
*
)
fpga_malloc
(
n
*
sizeof
(
uint32_t
));
arg
->
concat_arg
.
image_out
=
out_ptr
;
auto
channel
=
(
int
)
out
->
dims
()[
1
];
int
filter_num_per_div
=
fpga
::
get_filter_num_per_div
(
filter
,
group_num
);
int
element_num
=
fpga
::
get_aligned_filter_element_num
(
int
filter_num_per_div
=
get_filter_num_per_div
(
filter
,
group_num
);
int
element_num
=
get_aligned_filter_element_num
(
filter
->
dims
()[
1
]
*
filter
->
dims
()[
2
]
*
filter
->
dims
()[
3
]);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
...
...
@@ -390,16 +394,17 @@ void fill_conv_arg(struct WrapperConvArgs *arg, framework::Tensor *input,
&
((
int8_t
*
)
filter_ptr
)[
i
*
element_num
*
filter_num_per_div
];
arg
->
conv_args
[
i
].
sb_address
=
&
bs_ptr
[
i
*
filter_num_per_div
*
2
];
arg
->
conv_args
[
i
].
filter_num
=
(
uint32_t
)(
i
==
n
-
1
?
fpga
::
get_aligned_filter_num
(
channel
-
(
n
-
1
)
*
filter_num_per_div
)
(
uint32_t
)(
i
==
n
-
1
?
channel
-
(
n
-
1
)
*
filter_num_per_div
:
filter_num_per_div
);
if
(
n
>
1
)
{
arg
->
conv_args
[
i
].
output
.
scale_address
=
(
float
*
)
fpga
::
fpga_malloc
(
2
*
sizeof
(
float
));
arg
->
conv_args
[
i
].
output
.
address
=
fpga
::
fpga_malloc
(
input
->
dims
()[
2
]
*
input
->
dims
()[
3
]
*
arg
->
conv_args
[
i
].
filter_num
*
sizeof
(
half
));
(
float
*
)
fpga_malloc
(
2
*
sizeof
(
float
));
arg
->
conv_args
[
i
].
output
.
address
=
fpga_malloc
(
input
->
dims
()[
2
]
*
align_to_x
(
input
->
dims
()[
3
]
*
arg
->
conv_args
[
i
].
filter_num
,
IMAGE_ALIGNMENT
)
*
sizeof
(
half
));
}
else
{
...
...
@@ -408,7 +413,7 @@ void fill_conv_arg(struct WrapperConvArgs *arg, framework::Tensor *input,
}
arg
->
concat_arg
.
images_in
[
i
]
=
(
half
*
)
arg
->
conv_args
[
i
].
output
.
address
;
arg
->
concat_arg
.
scales_in
[
i
]
=
(
float
*
)
arg
->
conv_args
[
i
].
sb
_address
;
arg
->
concat_arg
.
scales_in
[
i
]
=
arg
->
conv_args
[
i
].
output
.
scale
_address
;
arg
->
concat_arg
.
channel_num
[
i
]
=
arg
->
conv_args
[
i
].
filter_num
;
}
}
...
...
src/fpga/image.cpp
浏览文件 @
c1a578f1
...
...
@@ -74,15 +74,17 @@ void concat_images(int16_t **images_in, float **scales_in, void *image_out,
int
align_each_in_area_cw
=
0
;
int
align_each_out_area_cw_differ
=
0
;
int
tmp_channel
=
0
;
*
scale_out
=
0
;
scale_out
[
0
]
=
0.0
;
scale_out
[
1
]
=
0.0
;
for
(
i
=
0
;
i
<
image_num
;
i
++
)
{
each_out_line_channel
+=
channel_num
[
i
];
*
scale_out
=
std
::
max
(
*
scale_out
,
scales_in
[
i
][
0
]);
scale_out
[
0
]
=
std
::
max
(
*
scale_out
,
scales_in
[
i
][
0
]);
fpga_invalidate
(
images_in
[
i
],
height
*
align_to_x
(
channel_num
[
i
]
*
width
,
IMAGE_ALIGNMENT
)
*
sizeof
(
int16_t
));
}
scale_out
[
1
]
=
1
/
scale_out
[
0
];
align_each_out_area_cw
=
align_to_x
(
each_out_line_channel
*
width
,
IMAGE_ALIGNMENT
);
align_each_out_area_cw_differ
=
...
...
src/io/executor.cpp
浏览文件 @
c1a578f1
...
...
@@ -79,7 +79,7 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
std
::
vector
<
std
::
shared_ptr
<
framework
::
OpDesc
>>
ops
=
block_desc
->
Ops
();
for
(
int
j
=
0
;
j
<
ops
.
size
();
++
j
)
{
std
::
shared_ptr
<
framework
::
OpDesc
>
op
=
ops
[
j
];
DLOG
<<
"create op: "
<<
op
->
Type
();
DLOG
<<
"create op: "
<<
j
<<
" "
<<
op
->
Type
();
auto
op_base
=
framework
::
OpRegistry
<
Dtype
>::
CreateOp
(
op
->
Type
(),
op
->
GetInputs
(),
op
->
GetOutputs
(),
op
->
GetAttrMap
(),
program_
.
scope
);
...
...
@@ -103,7 +103,9 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
std
::
shared_ptr
<
framework
::
BlockDesc
>
to_predict_block
=
to_predict_program_
->
Block
(
0
);
auto
&
ops
=
ops_of_block_
[
*
to_predict_block
.
get
()];
int
i
=
0
;
for
(
const
auto
&
op
:
ops
)
{
DLOG
<<
"Init op: "
<<
i
++
<<
" "
<<
op
->
Type
();
op
->
Init
();
}
}
...
...
@@ -702,6 +704,7 @@ void Executor<Dtype, P>::Predict_From_To(int start, int end) {
clock_gettime
(
CLOCK_MONOTONIC
,
&
ts
);
profile
[
i
].
runBegin
=
(
uint64_t
)
ts
.
tv_sec
*
1e9
+
ts
.
tv_nsec
;
#endif
DLOG
<<
"Running op: "
<<
i
<<
" "
<<
ops
[
i
]
->
Type
();
ops
[
i
]
->
Run
();
#ifdef PADDLE_MOBILE_PROFILE
...
...
src/ios_io/PaddleMobile.h
→
src/ios_io/PaddleMobile
CPU
.h
浏览文件 @
c1a578f1
...
...
@@ -17,7 +17,17 @@
#import <CoreImage/CoreImage.h>
#import <Foundation/Foundation.h>
@interface
PaddleMobile
:
NSObject
@interface
PaddleMobileCPUResult
:
NSObject
@property
(
assign
,
nonatomic
,
readonly
)
float
*
output
;
@property
(
assign
,
nonatomic
,
readonly
)
int
outputSize
;
-
(
void
)
releaseOutput
;
@end
@interface
PaddleMobileCPU
:
NSObject
/*
创建对象
...
...
@@ -34,13 +44,36 @@
*/
-
(
BOOL
)
load
:(
NSString
*
)
modelAndWeightPath
;
/*
* 从内存中加载模型
* */
-
(
BOOL
)
LoadCombinedMemory
:(
size_t
)
modelLen
andModelBuf
:(
const
uint8_t
*
)
modelBuf
andModelParamsLen
:(
size_t
)
combinedParamsLen
andCombinedParamsBuf
:(
const
uint8_t
*
)
combinedParamsBuf
;
/*
* 对图像进行预处理, 需要外部开辟 output 内存, 外部释放 output 内存
* */
-
(
void
)
preprocess
:(
CGImageRef
)
image
output
:(
float
*
)
output
means
:(
NSArray
<
NSNumber
*>
*
)
means
scale
:(
float
)
scale
dim
:(
NSArray
<
NSNumber
*>
*
)
dim
;
/*
* 预测预处理后的数据, 返回结果使用结束需要调用其 realseOutput 函数进行释放
* */
-
(
PaddleMobileCPUResult
*
)
predictInput
:(
float
*
)
input
dim
:(
NSArray
<
NSNumber
*>
*
)
dim
;
/*
进行预测, means 和 scale 为训练模型时的预处理参数, 如训练时没有做这些预处理则直接使用 predict
*/
-
(
NSArray
*
)
predict
:(
CGImageRef
)
image
dim
:(
NSArray
<
NSNumber
*>
*
)
dim
means
:(
NSArray
<
NSNumber
*>
*
)
means
scale
:(
float
)
scale
;
/*
进行预测
进行预测
, 默认 means 为 0, scale 为 1.0
*/
-
(
NSArray
*
)
predict
:(
CGImageRef
)
image
dim
:(
NSArray
<
NSNumber
*>
*
)
dim
;
...
...
src/ios_io/PaddleMobile.mm
→
src/ios_io/PaddleMobile
CPU
.mm
浏览文件 @
c1a578f1
...
...
@@ -12,24 +12,51 @@
See the License for the specific language governing permissions and
limitations under the License. */
#import "PaddleMobile.h"
#import "PaddleMobile
CPU
.h"
#import "op_symbols.h"
#include "framework/tensor.h"
#import "io/paddle_mobile.h"
#import <memory>
#import <vector>
@interface
PaddleMobile
()
@interface
PaddleMobileCPUResult
()
-
(
void
)
toSetOutput
:(
float
*
)
output
;
-
(
void
)
toSetOutputSize
:(
int
)
outputSize
;
@end
@implementation
PaddleMobileCPUResult
-
(
void
)
releaseOutput
{
delete
[]
_output
;
_output
=
nil
;
_outputSize
=
0
;
}
-
(
void
)
toSetOutput
:(
float
*
)
output
{
_output
=
output
;
}
-
(
void
)
toSetOutputSize
:(
int
)
outputSize
{
_outputSize
=
outputSize
;
}
@end
@interface
PaddleMobileCPU
()
{
paddle_mobile
::
PaddleMobile
<
paddle_mobile
::
CPU
,
paddle_mobile
::
Precision
::
FP32
>
*
pam_
;
BOOL
loaded_
;
std
::
vector
<
float
>
*
predict_input_
;
}
@end
@implementation
PaddleMobile
@implementation
PaddleMobile
CPU
static
std
::
mutex
shared_mutex
;
...
...
@@ -66,6 +93,14 @@ static std::mutex shared_mutex;
}
}
-
(
BOOL
)
LoadCombinedMemory
:(
size_t
)
modelLen
andModelBuf
:(
const
uint8_t
*
)
modelBuf
andModelParamsLen
:(
size_t
)
combinedParamsLen
andCombinedParamsBuf
:(
const
uint8_t
*
)
combinedParamsBuf
{
pam_
->
SetThreadNum
(
2
);
return
loaded_
=
pam_
->
LoadCombinedMemory
(
modelLen
,
modelBuf
,
combinedParamsLen
,
combinedParamsBuf
);
}
-
(
BOOL
)
load
:(
NSString
*
)
modelAndWeightPath
{
std
::
string
model_path_str
=
std
::
string
([
modelAndWeightPath
UTF8String
]);
if
(
loaded_
=
pam_
->
Load
(
model_path_str
))
{
...
...
@@ -75,6 +110,57 @@ static std::mutex shared_mutex;
}
}
-
(
void
)
preprocess
:(
CGImageRef
)
image
output
:(
float
*
)
output
means
:(
NSArray
<
NSNumber
*>
*
)
means
scale
:(
float
)
scale
dim
:(
NSArray
<
NSNumber
*>
*
)
dim
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
shared_mutex
);
// dim to c++ vector, get numel
std
::
vector
<
int64_t
>
dim_vec
;
int
numel
=
1
;
for
(
int
k
=
0
;
k
<
dim
.
count
;
++
k
)
{
int
d
=
dim
[
k
].
intValue
;
numel
*=
d
;
dim_vec
.
push_back
(
d
);
}
const
int
sourceRowBytes
=
CGImageGetBytesPerRow
(
image
);
const
int
imageWidth
=
CGImageGetWidth
(
image
);
const
int
imageHeight
=
CGImageGetHeight
(
image
);
const
int
imageChannels
=
4
;
CGDataProviderRef
provider
=
CGImageGetDataProvider
(
image
);
CFDataRef
cfData
=
CGDataProviderCopyData
(
provider
);
const
UInt8
*
input
=
CFDataGetBytePtr
(
cfData
);
int
wanted_input_width
=
dim_vec
[
3
];
int
wanted_input_height
=
dim_vec
[
2
];
int
wanted_input_channels
=
dim_vec
[
1
];
for
(
int
c
=
0
;
c
<
wanted_input_channels
;
++
c
)
{
float
*
out_channel
=
output
+
c
*
wanted_input_height
*
wanted_input_width
;
for
(
int
y
=
0
;
y
<
wanted_input_height
;
++
y
)
{
float
*
out_row
=
out_channel
+
y
*
wanted_input_width
;
for
(
int
x
=
0
;
x
<
wanted_input_width
;
++
x
)
{
int
in_row
=
(
y
*
imageHeight
)
/
wanted_input_height
;
int
in_col
=
(
x
*
imageWidth
)
/
wanted_input_width
;
const
UInt8
*
in_pixel
=
input
+
(
in_row
*
imageWidth
*
imageChannels
)
+
(
in_col
*
imageChannels
);
float
*
out_pos
=
out_row
+
x
;
if
(
c
==
0
)
{
*
out_pos
=
(
in_pixel
[
c
]
-
means
[
c
].
floatValue
)
*
scale
;
}
else
if
(
c
==
1
){
*
out_pos
=
(
in_pixel
[
c
]
-
means
[
c
].
floatValue
)
*
scale
;
}
else
if
(
c
==
2
){
*
out_pos
=
(
in_pixel
[
c
]
-
means
[
c
].
floatValue
)
*
scale
;
}
}
}
}
}
-
(
void
)
preprocess
:(
const
UInt8
*
)
input
output
:(
float
*
)
output
imageWidth
:(
int
)
imageWidth
imageHeight
:(
int
)
imageHeight
imageChannels
:(
int
)
imageChannels
means
:(
NSArray
<
NSNumber
*>
*
)
means
scale
:(
float
)
scale
dim
:(
std
::
vector
<
int64_t
>
)
dim
{
if
(
means
==
nil
)
{
means
=
@[
@0
,
@0
,
@0
];
...
...
@@ -105,27 +191,54 @@ static std::mutex shared_mutex;
}
}
-
(
NSArray
*
)
predict
:(
CGImageRef
)
image
dim
:(
NSArray
<
NSNumber
*>
*
)
dim
means
:(
NSArray
<
NSNumber
*>
*
)
means
scale
:(
float
)
scale
{
// printf(" hi i am here");
if
(
predict_input_
)
{
// printf(" fukc -- ");
// printf(" %d \n", predict_input_->size());
// dim to c++ vector, get numel
std
::
vector
<
int64_t
>
dim_vec
=
{
1
,
3
,
300
,
300
};
// int numel = 1;
// for (int k = 0; k < dim.count; ++k) {
// int d = dim[k].intValue;
// numel *= d;
// dim_vec.push_back(d);
// }
std
::
vector
<
float
>
cpp_result
=
pam_
->
Predict
(
*
predict_input_
,
dim_vec
);
-
(
PaddleMobileCPUResult
*
)
predictInput
:(
float
*
)
input
dim
:(
NSArray
<
NSNumber
*>
*
)
dim
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
shared_mutex
);
if
(
!
loaded_
)
{
printf
(
"PaddleMobile doesn't be loaded yet"
);
return
nil
;
}
if
(
dim
.
count
!=
4
)
{
printf
(
"dim must have 4 elements"
);
return
nil
;
}
// printf(" predict one ");
// std::lock_guard<std::mutex> lock(shared_mutex);
// dim to c++ vector, get numel
std
::
vector
<
int64_t
>
dim_vec
;
int
numel
=
1
;
for
(
int
k
=
0
;
k
<
dim
.
count
;
++
k
)
{
int
d
=
dim
[
k
].
intValue
;
numel
*=
d
;
dim_vec
.
push_back
(
d
);
}
paddle_mobile
::
framework
::
Tensor
input_tensor
;
paddle_mobile
::
framework
::
DDim
dims
=
paddle_mobile
::
framework
::
make_ddim
(
dim_vec
);
float
*
input_ptr
=
input_tensor
.
mutable_data
<
float
>
(
dims
);
memcpy
(
input_ptr
,
input
,
numel
*
sizeof
(
float
));
std
::
shared_ptr
<
paddle_mobile
::
framework
::
Tensor
>
output
=
pam_
->
Predict
(
input_tensor
);
float
*
output_pointer
=
new
float
[
output
->
numel
()];
memcpy
(
output_pointer
,
output
->
data
<
float
>
(),
output
->
numel
()
*
sizeof
(
float
));
PaddleMobileCPUResult
*
cpuResult
=
[[
PaddleMobileCPUResult
alloc
]
init
];
[
cpuResult
toSetOutput
:
output_pointer
];
[
cpuResult
toSetOutputSize
:
output
->
numel
()];
return
cpuResult
;
}
-
(
NSArray
*
)
predict
:(
CGImageRef
)
image
dim
:(
NSArray
<
NSNumber
*>
*
)
dim
means
:(
NSArray
<
NSNumber
*>
*
)
means
scale
:(
float
)
scale
{
// printf(" predict one ");
std
::
lock_guard
<
std
::
mutex
>
lock
(
shared_mutex
);
if
(
!
loaded_
)
{
printf
(
"PaddleMobile doesn't be loaded yet"
);
return
nil
;
...
...
@@ -164,15 +277,13 @@ static std::mutex shared_mutex;
}
// input
std
::
vector
<
float
>
*
predict_input
=
new
std
::
vector
<
float
>
()
;
std
::
vector
<
float
>
predict_input
;
for
(
int
j
=
0
;
j
<
numel
;
++
j
)
{
predict_input
->
push_back
(
dataPointer
[
j
]);
predict_input
.
push_back
(
dataPointer
[
j
]);
}
predict_input_
=
predict_input
;
// predict
std
::
vector
<
float
>
cpp_result
=
pam_
->
Predict
(
*
predict_input
,
dim_vec
);
std
::
vector
<
float
>
cpp_result
=
pam_
->
Predict
(
predict_input
,
dim_vec
);
// result
long
count
=
0
;
...
...
src/ios_io/op_symbols.h
浏览文件 @
c1a578f1
...
...
@@ -15,27 +15,46 @@
#pragma once
#include "operators/batchnorm_op.h"
#include "operators/bilinear_interp_op.h"
#include "operators/box_coder_op.h"
#include "operators/concat_op.h"
#include "operators/conv_op.h"
#include "operators/conv_transpose_op.h"
#include "operators/crf_op.h"
#include "operators/depthwise_conv_op.h"
#include "operators/dropout_op.h"
#include "operators/elementwise_add_op.h"
#include "operators/feed_op.h"
#include "operators/fetch_op.h"
#include "operators/flatten_op.h"
#include "operators/fusion_conv_add.h"
#include "operators/fusion_conv_add_add_prelu_op.h"
#include "operators/fusion_conv_add_bn_op.h"
#include "operators/fusion_conv_add_bn_relu_op.h"
#include "operators/fusion_conv_add_prelu_op.h"
#include "operators/fusion_conv_add_relu_op.h"
#include "operators/fusion_conv_bn_add_relu_op.h"
#include "operators/fusion_conv_bn_relu_op.h"
#include "operators/fusion_dwconv_bn_relu_op.h"
#include "operators/fusion_elementwise_add_relu_op.h"
#include "operators/fusion_fc_op.h"
#include "operators/fusion_fc_relu_op.h"
#include "operators/gru_op.h"
#include "operators/im2sequence_op.h"
#include "operators/lookup_op.h"
#include "operators/lrn_op.h"
#include "operators/mul_op.h"
#include "operators/multiclass_nms_op.h"
#include "operators/pool_op.h"
#include "operators/prelu_op.h"
#include "operators/prior_box_op.h"
#include "operators/relu_op.h"
#include "operators/reshape_op.h"
#include "operators/resize_op.h"
#include "operators/scale_op.h"
#include "operators/shape_op.h"
#include "operators/sigmoid_op.h"
#include "operators/slice_op.h"
#include "operators/softmax_op.h"
#include "operators/split_op.h"
#include "operators/transpose_op.h"
src/operators/feed_op.h
浏览文件 @
c1a578f1
...
...
@@ -53,9 +53,9 @@ class FeedOp : public framework::OperatorBase<DeviceType> {
auto
input_ptr
=
input
->
data
<
float
>
();
fpga
::
format_image
(
input
);
Tensor
*
output
=
param_
.
Out
();
auto
output_ptr
=
output
->
data
<
half
>
();
auto
output_ptr
=
output
->
data
<
float
>
();
fpga
::
BypassArgs
args
;
fpga
::
BypassArgs
args
=
{
fpga
::
DATA_TYPE_FP32
}
;
args
.
input_data_type
=
fpga
::
DATA_TYPE_FP32
;
args
.
output_data_type
=
fpga
::
DATA_TYPE_FP16
;
...
...
src/operators/kernel/fpga/concat_kernel.cpp
浏览文件 @
c1a578f1
...
...
@@ -43,7 +43,7 @@ bool ConcatKernel<FPGA, float>::Init(ConcatParam<FPGA> *param) {
fpga
::
format_concat_output
(
out
,
(
int
)
height
,
(
int
)
width
,
(
int
)
image_num
,
channel_num
);
fpga
::
ConcatArgs
concatArgs
;
fpga
::
ConcatArgs
concatArgs
=
{
0
}
;
concatArgs
.
image_num
=
(
uint32_t
)
image_num
;
concatArgs
.
images_in
=
images_in
;
concatArgs
.
scales_in
=
scales_in
;
...
...
src/operators/kernel/fpga/conv_add_bn_kernel.cpp
浏览文件 @
c1a578f1
...
...
@@ -66,7 +66,7 @@ bool ConvAddBNKernel<FPGA, float>::Init(FusionConvAddBNParam<FPGA> *param) {
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
channel
);
fpga
::
format_fp16_ofm
(
out
);
fpga
::
WrapperConvArgs
conv_arg
;
fpga
::
WrapperConvArgs
conv_arg
=
{
0
}
;
fpga
::
fill_conv_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
param
->
Groups
(),
param
->
Strides
()[
0
],
param
->
Strides
()[
1
],
param
->
Paddings
()[
0
],
param
->
Paddings
()[
1
],
bs_ptr
);
...
...
src/operators/kernel/fpga/conv_add_bn_relu_kernel.cpp
浏览文件 @
c1a578f1
...
...
@@ -64,7 +64,7 @@ bool ConvAddBNReluKernel<FPGA, float>::Init(
fpga
::
format_fp16_ofm
(
out
);
fpga
::
WrapperConvArgs
conv_arg
;
fpga
::
WrapperConvArgs
conv_arg
=
{
0
}
;
fpga
::
fill_conv_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
param
->
Groups
(),
param
->
Strides
()[
0
],
param
->
Strides
()[
1
],
param
->
Paddings
()[
0
],
param
->
Paddings
()[
1
],
bs_ptr
);
...
...
src/operators/kernel/fpga/conv_add_relu_kernel.cpp
浏览文件 @
c1a578f1
...
...
@@ -46,7 +46,7 @@ bool ConvAddReluKernel<FPGA, float>::Init(FusionConvAddReluParam<FPGA> *param) {
fpga
::
format_fp16_ofm
(
out
);
fpga
::
WrapperConvArgs
conv_arg
;
fpga
::
WrapperConvArgs
conv_arg
=
{
0
}
;
fpga
::
fill_conv_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
param
->
Groups
(),
param
->
Strides
()[
0
],
param
->
Strides
()[
1
],
param
->
Paddings
()[
0
],
param
->
Paddings
()[
1
],
bs_ptr
);
...
...
src/operators/kernel/fpga/conv_bn_kernel.cpp
浏览文件 @
c1a578f1
...
...
@@ -58,7 +58,7 @@ bool ConvBNKernel<FPGA, float>::Init(FusionConvBNParam<FPGA> *param) {
fpga
::
format_fp16_ofm
(
out
);
fpga
::
WrapperConvArgs
conv_arg
;
fpga
::
WrapperConvArgs
conv_arg
=
{
0
}
;
fpga
::
fill_conv_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
param
->
Groups
(),
param
->
Strides
()[
0
],
param
->
Strides
()[
1
],
param
->
Paddings
()[
0
],
param
->
Paddings
()[
1
],
bs_ptr
);
...
...
src/operators/kernel/fpga/conv_bn_relu_kernel.cpp
浏览文件 @
c1a578f1
...
...
@@ -58,7 +58,7 @@ bool ConvBNReluKernel<FPGA, float>::Init(FusionConvBNReluParam<FPGA> *param) {
fpga
::
format_fp16_ofm
(
out
);
fpga
::
WrapperConvArgs
conv_arg
;
fpga
::
WrapperConvArgs
conv_arg
=
{
0
}
;
fpga
::
fill_conv_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
param
->
Groups
(),
param
->
Strides
()[
0
],
param
->
Strides
()[
1
],
param
->
Paddings
()[
0
],
param
->
Paddings
()[
1
],
bs_ptr
);
...
...
src/operators/kernel/fpga/elementwise_add_relu_kernel.cpp
浏览文件 @
c1a578f1
...
...
@@ -30,7 +30,7 @@ bool ElementwiseAddReluKernel<FPGA, float>::Init(
fpga
::
format_fp16_ofm
(
out
);
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
fpga
::
EWAddArgs
ewaddArgs
;
fpga
::
EWAddArgs
ewaddArgs
=
{
0
}
;
ewaddArgs
.
relu_enabled
=
relu_enabled
;
ewaddArgs
.
const0
=
1
;
ewaddArgs
.
const1
=
1
;
...
...
src/operators/kernel/fpga/fc_relu_kernel.cpp
浏览文件 @
c1a578f1
...
...
@@ -51,7 +51,7 @@ bool FusionFcReluKernel<FPGA, float>::Init(FusionFcReluParam<FPGA> *param) {
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
channel
);
fpga
::
format_fp16_ofm
(
out
);
fpga
::
WrapperConvArgs
conv_arg
;
fpga
::
WrapperConvArgs
conv_arg
=
{
0
}
;
fpga
::
fill_conv_arg
(
&
conv_arg
,
input_x
,
out
,
filter
,
relu_enabled
,
1
,
1
,
1
,
0
,
0
,
bs_ptr
);
param
->
SetFpgaArgs
(
conv_arg
);
...
...
src/operators/kernel/fpga/fusion_fc_kernel.cpp
浏览文件 @
c1a578f1
...
...
@@ -52,7 +52,7 @@ bool FusionFcKernel<FPGA, float>::Init(FusionFcParam<FPGA> *param) {
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
channel
);
fpga
::
format_fp16_ofm
(
out
);
fpga
::
WrapperConvArgs
conv_arg
;
fpga
::
WrapperConvArgs
conv_arg
=
{
0
}
;
fpga
::
fill_conv_arg
(
&
conv_arg
,
input_x
,
out
,
filter
,
relu_enabled
,
1
,
1
,
1
,
0
,
0
,
bs_ptr
);
param
->
SetFpgaArgs
(
conv_arg
);
...
...
src/operators/kernel/fpga/pool_kernel.cpp
浏览文件 @
c1a578f1
...
...
@@ -30,7 +30,7 @@ bool PoolKernel<FPGA, float>::Init(PoolParam<FPGA> *param) {
vector
<
int
>
strides
=
param
->
Strides
();
vector
<
int
>
paddings
=
param
->
Paddings
();
fpga
::
PoolingArgs
poolArgs
;
fpga
::
PoolingArgs
poolArgs
=
{
0
}
;
poolArgs
.
image
.
address
=
input_ptr
;
poolArgs
.
image
.
channels
=
(
uint32_t
)
input
->
dims
()[
1
];
poolArgs
.
image
.
height
=
(
uint32_t
)
input
->
dims
()[
2
];
...
...
src/operators/kernel/fpga/softmax_kernel.cpp
浏览文件 @
c1a578f1
...
...
@@ -26,10 +26,11 @@ template <>
bool
SoftmaxKernel
<
FPGA
,
float
>::
Init
(
SoftmaxParam
<
FPGA
>
*
param
)
{
auto
input
=
const_cast
<
Tensor
*>
(
param
->
InputX
());
auto
input_ptr
=
input
->
data
<
float
>
();
auto
float_input
=
new
Tensor
(
*
input
);
auto
float_input
=
new
Tensor
;
float_input
->
mutable_data
<
float
>
(
input
->
dims
());
fpga
::
format_fp32_ofm
(
float_input
);
fpga
::
BypassArgs
args
;
fpga
::
BypassArgs
args
=
{
fpga
::
DATA_TYPE_FP16
}
;
args
.
input_layout_type
=
fpga
::
LAYOUT_HWC
;
args
.
output_layout_type
=
fpga
::
LAYOUT_CHW
;
args
.
input_data_type
=
fpga
::
DATA_TYPE_FP16
;
...
...
src/operators/op_param.h
浏览文件 @
c1a578f1
此差异已折叠。
点击以展开。
src/operators/prelu_op.cpp
浏览文件 @
c1a578f1
...
...
@@ -34,11 +34,9 @@ void PReluOp<Dtype, T>::InferShape() const {
* */
namespace
ops
=
paddle_mobile
::
operators
;
#ifdef PADDLE_MOBILE_CPU
USE_OP_CPU
(
prelu
);
REGISTER_OPERATOR_CPU
(
prelu
,
ops
::
PReluOp
);
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
USE_OP_MALI_GPU
(
prelu
);
REGISTER_OPERATOR_MALI_GPU
(
prelu
,
ops
::
PReluOp
);
#endif
#ifdef PADDLE_MOBILE_FPGA
...
...
src/operators/prelu_op.h
浏览文件 @
c1a578f1
...
...
@@ -50,4 +50,14 @@ class PReluOp : public framework::OperatorWithKernel<
}
// namespace operators
}
// namespace paddle_mobile
#ifdef PADDLE_MOBILE_CPU
USE_OP_CPU
(
prelu
);
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
USE_OP_MALI_GPU
(
prelu
);
#endif
#ifdef PADDLE_MOBILE_FPGA
USE_OP_FPGA
(
prelu
);
#endif
#endif
test/CMakeLists.txt
浏览文件 @
c1a578f1
...
...
@@ -33,6 +33,27 @@ elseif("FPGAnets" IN_LIST NET)
ADD_EXECUTABLE
(
test-resnet net/test_resnet.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-resnet paddle-mobile
)
ADD_EXECUTABLE
(
test-resnet50 fpga/test_resnet50.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-resnet50 paddle-mobile
)
ADD_EXECUTABLE
(
test-fpga-EW fpga/test_fpga_EW.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-fpga-EW paddle-mobile
)
ADD_EXECUTABLE
(
test-fpga-conv fpga/test_fpga_conv.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-fpga-conv paddle-mobile
)
ADD_EXECUTABLE
(
test-fpga-pooling fpga/test_fpga_pooling.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-fpga-pooling paddle-mobile
)
ADD_EXECUTABLE
(
test-fpga-bypass fpga/test_fpga_bypass.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-fpga-bypass paddle-mobile
)
ADD_EXECUTABLE
(
test-fpga-softmax fpga/test_fpga_softmax.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-fpga-softmax paddle-mobile
)
ADD_EXECUTABLE
(
test-fpga-concat fpga/test_fpga_concat.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-fpga-concat paddle-mobile
)
ADD_EXECUTABLE
(
test-tensor-quant fpga/test_tensor_quant.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-tensor-quant paddle-mobile
)
...
...
@@ -242,13 +263,4 @@ else ()
#add_library(test-lib-size SHARED common/test_lib_size.h common/test_lib_size.cpp)
endif
()
# if(FPGA)
# ADD_EXECUTABLE(test-tensor-quant fpga/test_tensor_quant.cpp test_helper.h test_include.h executor_for_test.h)
# target_link_libraries(test-tensor-quant paddle-mobile)
# endif()
test/fpga/test_resnet50.cpp
0 → 100644
浏览文件 @
c1a578f1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "../test_include.h"
static
const
char
*
g_resnet_combine
=
"../models/resnet50"
;
int
main
()
{
DLOG
<<
paddle_mobile
::
fpga
::
open_device
();
paddle_mobile
::
PaddleMobile
<
paddle_mobile
::
FPGA
>
paddle_mobile
;
if
(
paddle_mobile
.
Load
(
std
::
string
(
g_resnet_combine
)
+
"/model"
,
std
::
string
(
g_resnet_combine
)
+
"/params"
,
true
))
{
std
::
vector
<
int64_t
>
dims
{
1
,
3
,
224
,
224
};
Tensor
input_tensor
;
SetupTensor
<
float
>
(
&
input_tensor
,
{
1
,
3
,
224
,
224
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
std
::
vector
<
float
>
input
(
input_tensor
.
data
<
float
>
(),
input_tensor
.
data
<
float
>
()
+
input_tensor
.
numel
());
paddle_mobile
.
FeedData
(
input_tensor
);
paddle_mobile
.
Predict_To
(
-
1
);
// paddle_mobile.Predict_From(73);
// paddle_mobile.Predict_From_To(72, 73);
DLOG
<<
"Computation done"
;
return
0
;
}
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录