Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
bfbca2c6
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bfbca2c6
编写于
5月 28, 2018
作者:
E
eclipsycn
提交者:
GitHub
5月 28, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #299 from Eclipsess/develop
fix
#298
optimize some ops
上级
770c8d85
1f25a35a
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
47 addition
and
95 deletion
+47
-95
src/operators/kernel/arm/batchnorm_kernel.cpp
src/operators/kernel/arm/batchnorm_kernel.cpp
+2
-1
src/operators/kernel/arm/concat_kernel.cpp
src/operators/kernel/arm/concat_kernel.cpp
+7
-36
src/operators/kernel/arm/relu_kernel.cpp
src/operators/kernel/arm/relu_kernel.cpp
+14
-3
src/operators/kernel/lrn_kernel.h
src/operators/kernel/lrn_kernel.h
+5
-4
src/operators/math/elementwise_op_function.h
src/operators/math/elementwise_op_function.h
+19
-51
未找到文件。
src/operators/kernel/arm/batchnorm_kernel.cpp
浏览文件 @
bfbca2c6
...
...
@@ -71,8 +71,9 @@ void BatchNormKernel<CPU, float>::Compute(const BatchNormParam ¶m) const {
{
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
h
=
0
;
h
<
H
;
h
++
)
{
int
tmp_index
=
n
*
stride0
+
i
*
stride1
+
h
*
stride2
;
for
(
int
w
=
0
;
w
<
W
;
w
++
)
{
int
index
=
n
*
stride0
+
i
*
stride1
+
h
*
stride2
+
w
;
int
index
=
tmp_index
+
w
;
out_ptr
[
index
]
=
input_x_ptr
[
index
]
*
new_scale_ptr
[
i
]
+
new_bias_ptr
[
i
];
}
...
...
src/operators/kernel/arm/concat_kernel.cpp
浏览文件 @
bfbca2c6
...
...
@@ -51,38 +51,6 @@ class ConcatFunctor {
}
}
};
template
<
typename
T
>
void
StridedNumelCopyWithAxis
(
int64_t
axis
,
T
*
dst
,
const
framework
::
DDim
&
dst_stride_numel
,
const
T
*
src
,
const
framework
::
DDim
&
src_stride_numel
,
int64_t
size
)
{
int64_t
before
=
dst_stride_numel
[
0
]
/
dst_stride_numel
[
axis
];
int64_t
src_after
=
src_stride_numel
[
axis
];
int64_t
dst_after
=
dst_stride_numel
[
axis
];
/// "src and dst tensor should have the same dims size."
assert
(
src_stride_numel
.
size
()
==
dst_stride_numel
.
size
());
for
(
int64_t
i
=
0
;
i
<
axis
;
++
i
)
{
if
(
i
<
axis
)
{
/// src and dst should have the same elements
/// except the specified axis.
assert
(
src_stride_numel
[
i
]
/
src_stride_numel
[
axis
]
==
dst_stride_numel
[
i
]
/
dst_stride_numel
[
axis
]);
}
else
if
(
i
==
axis
)
{
continue
;
}
else
{
/// "src and dst should have the same elements "
/// "except the specified axis."
assert
(
src_stride_numel
[
i
]
==
dst_stride_numel
[
i
]);
}
}
for
(
int64_t
i
=
0
;
i
<
before
;
++
i
)
{
memory
::
Copy
(
dst
+
i
*
dst_after
,
src
+
i
*
src_after
,
sizeof
(
T
)
*
size
);
}
}
template
<
>
void
ConcatKernel
<
CPU
,
float
>::
Compute
(
const
ConcatParam
&
param
)
const
{
...
...
@@ -97,10 +65,13 @@ void ConcatKernel<CPU, float>::Compute(const ConcatParam ¶m) const {
for
(
auto
*
in
:
inputs
)
{
auto
in_stride
=
framework
::
stride_numel
(
in
->
dims
());
auto
out_stride
=
framework
::
stride_numel
(
out
->
dims
());
StridedNumelCopyWithAxis
<
float
>
(
axis
,
out
->
data
<
float
>
()
+
output_offset
,
out_stride
,
in
->
data
<
float
>
(),
in_stride
,
in_stride
[
axis
]);
output_offset
+=
in_stride
[
axis
];
auto
dst
=
out
->
data
<
float
>
()
+
output_offset
;
auto
src
=
in
->
data
<
float
>
();
PADDLE_MOBILE_ENFORCE
(
in_stride
.
size
()
==
out_stride
.
size
(),
"src and dst tensor should have the same dims size."
);
memory
::
Copy
(
dst
,
src
,
sizeof
(
float
)
*
in_stride
[
0
]);
output_offset
+=
in_stride
[
0
];
}
}
else
{
std
::
vector
<
framework
::
Tensor
>
inputs_concat
(
inputs
.
size
());
...
...
src/operators/kernel/arm/relu_kernel.cpp
浏览文件 @
bfbca2c6
...
...
@@ -15,19 +15,30 @@ limitations under the License. */
#pragma once
#include "operators/kernel/relu_kernel.h"
#include <operators/math/transform.h>
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
T
>
struct
ReluFunctor
{
inline
T
operator
()(
T
in
)
const
{
return
in
>
0
?
in
:
0
;
}
};
template
<
>
void
ReluKernel
<
CPU
,
float
>::
Compute
(
const
ReluParam
&
param
)
const
{
const
auto
*
input_x
=
param
.
InputX
();
auto
*
input_x_ptr
=
input_x
->
data
<
float
>
();
auto
*
out
=
param
.
Out
();
auto
*
out_ptr
=
out
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
input_x
->
numel
();
i
++
)
{
out_ptr
[
i
]
=
input_x_ptr
[
i
]
>
0
?
input_x_ptr
[
i
]
:
0
;
}
ReluFunctor
<
float
>
func_
;
math
::
Transform
trans
;
trans
(
input_x_ptr
,
input_x_ptr
+
input_x
->
numel
(),
out_ptr
,
func_
);
// for (int i = 0; i < input_x->numel(); i++) {
// out_ptr[i] = input_x_ptr[i] > 0 ? input_x_ptr[i] : 0;
// }
}
}
// namespace operators
}
// namespace paddle_mobile
src/operators/kernel/lrn_kernel.h
浏览文件 @
bfbca2c6
...
...
@@ -42,12 +42,13 @@ struct LRNFunctor {
for
(
int
index
=
start
;
index
<
end
;
index
++
)
{
int
channel
=
b
+
index
;
if
(
channel
>=
0
&&
channel
<
C
)
{
int
tmp_u
=
a
*
stride0
+
b
*
stride1
;
int
tmp_i
=
a
*
stride0
+
channel
*
stride1
;
for
(
int
c
=
0
;
c
<
H
;
c
++
)
{
for
(
int
d
=
0
;
d
<
W
;
d
++
)
{
int
u
=
a
*
stride0
+
b
*
stride1
+
c
*
stride2
+
d
;
int
i
=
a
*
stride0
+
channel
*
stride1
+
c
*
stride2
+
d
;
int
tmp
=
c
*
stride2
+
d
;
int
u
=
tmp_u
+
tmp
;
int
i
=
tmp_i
+
tmp
;
sqr_buffer_ptr
[
u
]
+=
alpha
*
input_ptr
[
i
]
*
input_ptr
[
i
];
}
}
...
...
src/operators/math/elementwise_op_function.h
浏览文件 @
bfbca2c6
...
...
@@ -67,35 +67,6 @@ inline void trim_trailing_singular_dims(framework::DDim *dims) {
}
}
template
<
typename
T
>
class
RowwiseTransformIterator
{
public:
RowwiseTransformIterator
(
const
T
*
ptr
,
int
n
)
:
ptr_
(
ptr
),
i_
(
0
),
n_
(
n
)
{}
RowwiseTransformIterator
<
T
>
&
operator
++
()
{
++
i_
;
if
(
UNLIKELY
(
i_
==
n_
))
{
i_
=
0
;
}
return
*
this
;
}
bool
operator
==
(
const
RowwiseTransformIterator
<
T
>
&
rhs
)
const
{
return
(
ptr_
+
i_
)
==
&
(
*
rhs
);
}
bool
operator
!=
(
const
RowwiseTransformIterator
<
T
>
&
rhs
)
const
{
return
(
ptr_
+
i_
)
!=
&
(
*
rhs
);
}
const
T
&
operator
*
()
{
return
ptr_
[
i_
];
}
private:
const
T
*
ptr_
;
int
i_
;
int64_t
n_
;
};
/// (4,20,2)+(20,): (20,) just as (20,1), when move 2 strides in last
/// dimension
/// in (4,20,2) is 2 ,
...
...
@@ -107,15 +78,23 @@ class MidWiseTransformIterator {
:
ptr_
(
ptr
),
i_
(
0
),
j_
(
0
),
n_
(
n
),
post_
(
post
)
{}
MidWiseTransformIterator
<
T
>
&
operator
++
()
{
++
j_
;
if
(
UNLIKELY
(
j_
==
post_
))
{
if
(
post_
!=
1
)
{
++
j_
;
if
(
UNLIKELY
(
j_
==
post_
))
{
++
i_
;
j_
=
0
;
if
(
UNLIKELY
(
i_
==
n_
))
{
i_
=
0
;
}
}
return
*
this
;
}
else
{
++
i_
;
j_
=
0
;
if
(
UNLIKELY
(
i_
==
n_
))
{
i_
=
0
;
}
return
*
this
;
}
return
*
this
;
}
bool
operator
==
(
const
MidWiseTransformIterator
<
T
>
&
rhs
)
const
{
...
...
@@ -153,11 +132,6 @@ class TransformFunctor {
trans
(
x_
,
x_
+
nx_
,
y_
,
z_
,
func_
);
}
inline
void
RunRowWise
(
int
n
,
int
pre
)
const
{
math
::
Transform
trans
;
trans
(
x_
,
x_
+
nx_
,
RowwiseTransformIterator
<
T
>
(
y_
,
n
),
z_
,
func_
);
}
inline
void
RunMidWise
(
int
n
,
int
pre
,
int
post
)
const
{
math
::
Transform
trans
;
trans
(
x_
,
x_
+
nx_
,
MidWiseTransformIterator
<
T
>
(
y_
,
n
,
post
),
z_
,
func_
);
...
...
@@ -179,31 +153,25 @@ void ElementwiseComputeEx(const framework::Tensor *x,
auto
x_dims
=
x
->
dims
();
auto
y_dims
=
y
->
dims
();
// PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
// "Rank of first input must >= rank of second
// input.");
PADDLE_MOBILE_ENFORCE
(
x_dims
.
size
()
>=
y_dims
.
size
(),
"Rank of first input must >= rank of second input."
);
if
(
x_dims
==
y_dims
)
{
functor
.
Run
();
return
;
}
/// axis = -1 represent the last dimension.
/// axis = -1 represent the last dimension
s
.
axis
=
(
axis
==
-
1
?
x_dims
.
size
()
-
y_dims
.
size
()
:
axis
);
// PADD
LE_ENFORCE(axis >= 0 && axis < x_dims.size(),
//
"Axis should be in range [0, x_dims)");
PADDLE_MOBI
LE_ENFORCE
(
axis
>=
0
&&
axis
<
x_dims
.
size
(),
"Axis should be in range [0, x_dims)"
);
trim_trailing_singular_dims
(
&
y_dims
);
axis
=
(
y_dims
.
size
()
==
0
)
?
x_dims
.
size
()
:
axis
;
int
pre
,
n
,
post
;
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
&
pre
,
&
n
,
&
post
);
if
(
post
==
1
)
{
functor
.
RunRowWise
(
n
,
pre
);
return
;
}
else
{
functor
.
RunMidWise
(
n
,
pre
,
post
);
return
;
}
functor
.
RunMidWise
(
n
,
pre
,
post
);
}
}
// namespace operators
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录