Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
bdbca339
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bdbca339
编写于
4月 03, 2020
作者:
C
chenjiaoAngel
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix format. test=develop
上级
a81f190b
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
242 addition
and
225 deletion
+242
-225
lite/kernels/opencl/box_coder_image_compute.cc
lite/kernels/opencl/box_coder_image_compute.cc
+65
-64
lite/kernels/opencl/box_coder_image_compute_test.cc
lite/kernels/opencl/box_coder_image_compute_test.cc
+177
-161
未找到文件。
lite/kernels/opencl/box_coder_image_compute.cc
浏览文件 @
bdbca339
...
...
@@ -28,9 +28,9 @@ namespace paddle {
namespace
lite
{
namespace
kernels
{
namespace
opencl
{
class
BoxCoderComputeImage
:
public
KernelLite
<
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
)
>
{
class
BoxCoderComputeImage
:
public
KernelLite
<
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
)
>
{
public:
using
param_t
=
operators
::
BoxCoderParam
;
...
...
@@ -39,10 +39,10 @@ namespace opencl {
boxcoder_param_
=
param_
.
get_mutable
<
param_t
>
();
if
(
boxcoder_param_
->
code_type
==
"decode_center_size"
&&
boxcoder_param_
->
box_normalized
==
true
)
{
kernel_func_name_
=
"decode_center_size"
;
kernel_func_name_
=
"decode_center_size"
;
}
else
{
printf
(
"This code_type %s doesn't support
\n
"
,
boxcoder_param_
->
code_type
.
c_str
());
return
;
printf
(
"This code_type %s doesn't support
\n
"
,
boxcoder_param_
->
code_type
.
c_str
());
return
;
}
CHECK
(
context
.
cl_context
()
!=
nullptr
);
VLOG
(
1
)
<<
"kernel_func_name_:"
<<
kernel_func_name_
;
...
...
@@ -55,8 +55,9 @@ namespace opencl {
const
auto
&
out_dims
=
boxcoder_param_
->
proposals
->
dims
();
auto
image_shape
=
InitImageDimInfoWith
(
out_dims
);
auto
*
out_buf
=
boxcoder_param_
->
proposals
->
mutable_data
<
half_t
,
cl
::
Image2D
>
(
image_shape
[
"width"
],
image_shape
[
"height"
]);
auto
*
out_buf
=
boxcoder_param_
->
proposals
->
mutable_data
<
half_t
,
cl
::
Image2D
>
(
image_shape
[
"width"
],
image_shape
[
"height"
]);
#ifndef LITE_SHUTDOWN_LOG
VLOG
(
4
)
<<
"boxcoder input shape: "
;
...
...
@@ -67,70 +68,70 @@ namespace opencl {
const
auto
*
input_targetbox
=
boxcoder_param_
->
target_box
;
const
auto
&
code_type
=
boxcoder_param_
->
code_type
;
if
(
code_type
==
"decode_center_size"
)
{
auto
*
prior_box_image
=
input_priorbox
->
data
<
half_t
,
cl
::
Image2D
>
();
auto
*
prior_box_var_image
=
input_priorboxvar
->
data
<
half_t
,
cl
::
Image2D
>
();
auto
*
target_box_image
=
input_targetbox
->
data
<
half_t
,
cl
::
Image2D
>
();
auto
*
prior_box_image
=
input_priorbox
->
data
<
half_t
,
cl
::
Image2D
>
();
auto
*
prior_box_var_image
=
input_priorboxvar
->
data
<
half_t
,
cl
::
Image2D
>
();
auto
*
target_box_image
=
input_targetbox
->
data
<
half_t
,
cl
::
Image2D
>
();
int
new_dims
[
4
]
=
{
1
,
1
,
1
,
1
};
for
(
int
i
=
0
;
i
<
out_dims
.
size
();
i
++
)
{
new_dims
[
4
-
out_dims
.
size
()
+
i
]
=
out_dims
[
i
];
}
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
CHECK
(
context
.
cl_context
()
!=
nullptr
);
STL
::
stringstream
kernel_key
;
kernel_key
<<
kernel_func_name_
<<
build_options_
;
auto
kernel
=
context
.
cl_context
()
->
GetKernel
(
kernel_key
.
str
());
int
new_dims
[
4
]
=
{
1
,
1
,
1
,
1
};
for
(
int
i
=
0
;
i
<
out_dims
.
size
();
i
++
)
{
new_dims
[
4
-
out_dims
.
size
()
+
i
]
=
out_dims
[
i
];
}
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
CHECK
(
context
.
cl_context
()
!=
nullptr
);
STL
::
stringstream
kernel_key
;
kernel_key
<<
kernel_func_name_
<<
build_options_
;
auto
kernel
=
context
.
cl_context
()
->
GetKernel
(
kernel_key
.
str
());
auto
default_work_size
=
DefaultWorkSize
(
out_dims
,
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
static_cast
<
int64_t
>
(
image_shape
[
"width"
]),
static_cast
<
int64_t
>
(
image_shape
[
"height"
])}));
auto
default_work_size
=
DefaultWorkSize
(
out_dims
,
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
static_cast
<
int64_t
>
(
image_shape
[
"width"
]),
static_cast
<
int64_t
>
(
image_shape
[
"height"
])}));
int
out_C
=
new_dims
[
1
];
int
out_H
=
new_dims
[
2
];
int
out_C
=
new_dims
[
1
];
int
out_H
=
new_dims
[
2
];
#ifndef LITE_SHUTDOWN_LOG
VLOG
(
4
)
<<
TargetToStr
(
boxcoder_param_
->
proposals
->
target
());
VLOG
(
4
)
<<
"output shape: "
<<
out_dims
[
0
]
<<
", "
<<
out_dims
[
1
]
<<
", "
<<
out_dims
[
2
]
<<
", "
<<
out_dims
[
3
];
VLOG
(
4
)
<<
"image_shape(w,h):"
<<
image_shape
[
"width"
]
<<
" "
<<
image_shape
[
"height"
];
VLOG
(
4
)
<<
"out_C = "
<<
out_C
;
VLOG
(
4
)
<<
"out_H = "
<<
out_H
;
VLOG
(
4
)
<<
"default_work_size = "
<<
default_work_size
[
0
]
<<
", "
<<
default_work_size
[
1
]
<<
", "
<<
default_work_size
[
2
];
VLOG
(
4
)
<<
TargetToStr
(
boxcoder_param_
->
proposals
->
target
());
VLOG
(
4
)
<<
"output shape: "
<<
out_dims
[
0
]
<<
", "
<<
out_dims
[
1
]
<<
", "
<<
out_dims
[
2
]
<<
", "
<<
out_dims
[
3
];
VLOG
(
4
)
<<
"image_shape(w,h):"
<<
image_shape
[
"width"
]
<<
" "
<<
image_shape
[
"height"
];
VLOG
(
4
)
<<
"out_C = "
<<
out_C
;
VLOG
(
4
)
<<
"out_H = "
<<
out_H
;
VLOG
(
4
)
<<
"default_work_size = "
<<
default_work_size
[
0
]
<<
", "
<<
default_work_size
[
1
]
<<
", "
<<
default_work_size
[
2
];
#endif
int
arg_idx
=
0
;
cl_int
status
=
kernel
.
setArg
(
arg_idx
++
,
*
prior_box_image
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
*
prior_box_var_image
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
*
target_box_image
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
*
out_buf
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
out_C
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
out_H
);
CL_CHECK_FATAL
(
status
);
auto
global_work_size
=
cl
::
NDRange
{
static_cast
<
cl
::
size_type
>
(
default_work_size
[
0
]),
static_cast
<
cl
::
size_type
>
(
default_work_size
[
2
])};
int
arg_idx
=
0
;
cl_int
status
=
kernel
.
setArg
(
arg_idx
++
,
*
prior_box_image
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
*
prior_box_var_image
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
*
target_box_image
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
*
out_buf
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
out_C
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
out_H
);
CL_CHECK_FATAL
(
status
);
auto
global_work_size
=
cl
::
NDRange
{
static_cast
<
cl
::
size_type
>
(
default_work_size
[
0
]),
static_cast
<
cl
::
size_type
>
(
default_work_size
[
2
])};
status
=
context
.
cl_context
()
->
GetCommandQueue
().
enqueueNDRangeKernel
(
kernel
,
cl
::
NullRange
,
global_work_size
,
cl
::
NullRange
,
nullptr
,
event_
.
get
());
CL_CHECK_FATAL
(
status
);
context
.
cl_wait_list
()
->
emplace
(
out_buf
,
event_
);
status
=
context
.
cl_context
()
->
GetCommandQueue
().
enqueueNDRangeKernel
(
kernel
,
cl
::
NullRange
,
global_work_size
,
cl
::
NullRange
,
nullptr
,
event_
.
get
());
CL_CHECK_FATAL
(
status
);
context
.
cl_wait_list
()
->
emplace
(
out_buf
,
event_
);
#ifndef LITE_SHUTDOWN_LOG
VLOG
(
4
)
<<
"global_work_size:[2D]:"
<<
global_work_size
[
0
]
<<
" "
<<
global_work_size
[
1
];
VLOG
(
4
)
<<
"global_work_size:[2D]:"
<<
global_work_size
[
0
]
<<
" "
<<
global_work_size
[
1
];
#endif
}
}
...
...
lite/kernels/opencl/box_coder_image_compute_test.cc
浏览文件 @
bdbca339
...
...
@@ -24,14 +24,14 @@
namespace
paddle
{
namespace
lite
{
void
box_coder_ref
(
float
*
proposals_data
,
const
float
*
anchors_data
,
const
float
*
bbox_deltas_data
,
const
float
*
variances_data
,
int
axis
,
bool
box_normalized
,
std
::
string
code_type
,
int
row
,
int
col
)
{
const
float
*
anchors_data
,
const
float
*
bbox_deltas_data
,
const
float
*
variances_data
,
int
axis
,
bool
box_normalized
,
std
::
string
code_type
,
int
row
,
int
col
)
{
if
(
code_type
==
"decode_center_size"
)
{
int
anchor_len
=
4
;
int
out_len
=
4
;
...
...
@@ -99,178 +99,194 @@ TEST(box_coder_image2d, compute) {
const
int
axis
=
0
;
#endif // BOXCODER_FP16_LOOP_TEST
LOG
(
INFO
)
<<
"======== input shape[n,c,h,w]:"
<<
n
<<
" "
<<
m
<<
" ========"
;
LOG
(
INFO
)
<<
"======== parameters: norm = "
<<
norm
<<
", axis = "
<<
axis
<<
"code_type: "
<<
code_type
;
LOG
(
INFO
)
<<
"======== input shape[n,c,h,w]:"
<<
n
<<
" "
<<
m
<<
" ========"
;
LOG
(
INFO
)
<<
"======== parameters: norm = "
<<
norm
<<
", axis = "
<<
axis
<<
"code_type: "
<<
code_type
;
auto
kernels
=
KernelRegistry
::
Global
().
Create
(
"box_coder"
,
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
));
ASSERT_FALSE
(
kernels
.
empty
());
auto
kernel
=
std
::
move
(
kernels
.
front
());
LOG
(
INFO
)
<<
"get kernel:"
<<
kernel
->
doc
();
auto
kernels
=
KernelRegistry
::
Global
().
Create
(
"box_coder"
,
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
));
ASSERT_FALSE
(
kernels
.
empty
());
auto
kernel
=
std
::
move
(
kernels
.
front
());
LOG
(
INFO
)
<<
"get kernel:"
<<
kernel
->
doc
();
lite
::
Tensor
prior_box
,
prior_box_var
,
target_box
,
output_box
;
operators
::
BoxCoderParam
param
;
param
.
prior_box
=
&
prior_box
;
param
.
prior_box_var
=
&
prior_box_var
;
param
.
target_box
=
&
target_box
;
param
.
proposals
=
&
output_box
;
param
.
axis
=
axis
;
param
.
box_normalized
=
norm
;
param
.
code_type
=
code_type
;
lite
::
Tensor
prior_box
,
prior_box_var
,
target_box
,
output_box
;
operators
::
BoxCoderParam
param
;
param
.
prior_box
=
&
prior_box
;
param
.
prior_box_var
=
&
prior_box_var
;
param
.
target_box
=
&
target_box
;
param
.
proposals
=
&
output_box
;
param
.
axis
=
axis
;
param
.
box_normalized
=
norm
;
param
.
code_type
=
code_type
;
std
::
unique_ptr
<
KernelContext
>
context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
InitOnce
();
std
::
unique_ptr
<
KernelContext
>
context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
InitOnce
();
kernel
->
SetParam
(
param
);
std
::
unique_ptr
<
KernelContext
>
boxcoder_context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
CopySharedTo
(
&
(
boxcoder_context
->
As
<
OpenCLContext
>
()));
kernel
->
SetContext
(
std
::
move
(
boxcoder_context
));
kernel
->
SetParam
(
param
);
std
::
unique_ptr
<
KernelContext
>
boxcoder_context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
CopySharedTo
(
&
(
boxcoder_context
->
As
<
OpenCLContext
>
()));
kernel
->
SetContext
(
std
::
move
(
boxcoder_context
));
const
DDim
prior_box_dims
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
1
,
1
,
m
,
4
});
const
DDim
prior_box_var_dims
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
1
,
1
,
m
,
4
});
const
DDim
target_box_dims
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
1
,
n
,
m
,
4
});
const
DDim
prior_box_dims
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
1
,
1
,
m
,
4
});
const
DDim
prior_box_var_dims
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
1
,
1
,
m
,
4
});
const
DDim
target_box_dims
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
1
,
n
,
m
,
4
});
const
DDim
out_dim
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
1
,
n
,
m
,
4
});
prior_box
.
Resize
(
prior_box_dims
);
prior_box_var
.
Resize
(
prior_box_var_dims
);
target_box
.
Resize
(
target_box_dims
);
output_box
.
Resize
(
out_dim
);
const
DDim
out_dim
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
1
,
n
,
m
,
4
});
prior_box
.
Resize
(
prior_box_dims
);
prior_box_var
.
Resize
(
prior_box_var_dims
);
target_box
.
Resize
(
target_box_dims
);
output_box
.
Resize
(
out_dim
);
std
::
vector
<
float
>
prior_box_data
(
prior_box_dims
.
production
());
std
::
vector
<
float
>
prior_box_var_data
(
prior_box_var_dims
.
production
());
std
::
vector
<
float
>
target_box_data
(
target_box_dims
.
production
());
for
(
int
i
=
0
;
i
<
prior_box_dims
.
production
();
i
++
)
{
prior_box_data
[
i
]
=
i
*
1.1
/
prior_box_dims
.
production
();
}
for
(
int
i
=
0
;
i
<
prior_box_var_dims
.
production
();
i
++
)
{
prior_box_var_data
[
i
]
=
i
*
1.2
/
prior_box_var_dims
.
production
();
}
for
(
int
i
=
0
;
i
<
target_box_dims
.
production
();
i
++
)
{
target_box_data
[
i
]
=
i
*
1.3
/
target_box_dims
.
production
();
}
std
::
vector
<
float
>
prior_box_data
(
prior_box_dims
.
production
());
std
::
vector
<
float
>
prior_box_var_data
(
prior_box_var_dims
.
production
());
std
::
vector
<
float
>
target_box_data
(
target_box_dims
.
production
());
for
(
int
i
=
0
;
i
<
prior_box_dims
.
production
();
i
++
)
{
prior_box_data
[
i
]
=
i
*
1.1
/
prior_box_dims
.
production
();
}
for
(
int
i
=
0
;
i
<
prior_box_var_dims
.
production
();
i
++
)
{
prior_box_var_data
[
i
]
=
i
*
1.2
/
prior_box_var_dims
.
production
();
}
for
(
int
i
=
0
;
i
<
target_box_dims
.
production
();
i
++
)
{
target_box_data
[
i
]
=
i
*
1.3
/
target_box_dims
.
production
();
}
LOG
(
INFO
)
<<
"prepare input"
;
CLImageConverterDefault
*
default_converter
=
new
CLImageConverterDefault
();
DDim
prior_box_image_shape
=
default_converter
->
InitImageDimInfoWith
(
prior_box_dims
);
LOG
(
INFO
)
<<
"prior_box_image_shape = "
<<
prior_box_image_shape
[
0
]
<<
" "
<<
prior_box_image_shape
[
1
];
std
::
vector
<
half_t
>
prior_box_image_data
(
prior_box_image_shape
.
production
()
*
4
);
// 4 : RGBA
default_converter
->
NCHWToImage
(
prior_box_data
.
data
(),
prior_box_image_data
.
data
(),
prior_box_dims
);
auto
*
prior_box_image
=
prior_box
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
prior_box_image_shape
[
0
],
prior_box_image_shape
[
1
],
prior_box_image_data
.
data
());
LOG
(
INFO
)
<<
"prepare input"
;
CLImageConverterDefault
*
default_converter
=
new
CLImageConverterDefault
();
DDim
prior_box_image_shape
=
default_converter
->
InitImageDimInfoWith
(
prior_box_dims
);
LOG
(
INFO
)
<<
"prior_box_image_shape = "
<<
prior_box_image_shape
[
0
]
<<
" "
<<
prior_box_image_shape
[
1
];
std
::
vector
<
half_t
>
prior_box_image_data
(
prior_box_image_shape
.
production
()
*
4
);
// 4 : RGBA
default_converter
->
NCHWToImage
(
prior_box_data
.
data
(),
prior_box_image_data
.
data
(),
prior_box_dims
);
auto
*
prior_box_image
=
prior_box
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
prior_box_image_shape
[
0
],
prior_box_image_shape
[
1
],
prior_box_image_data
.
data
());
DDim
prior_box_var_image_shape
=
default_converter
->
InitImageDimInfoWith
(
prior_box_var_dims
);
LOG
(
INFO
)
<<
"prior_box_var_image_shape = "
<<
prior_box_var_image_shape
[
0
]
<<
" "
<<
prior_box_var_image_shape
[
1
];
std
::
vector
<
half_t
>
prior_box_var_image_data
(
prior_box_var_image_shape
.
production
()
*
4
);
// 4 : RGBA
default_converter
->
NCHWToImage
(
prior_box_var_data
.
data
(),
prior_box_var_image_data
.
data
(),
prior_box_var_dims
);
auto
*
prior_box_var_image
=
prior_box_var
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
prior_box_var_image_shape
[
0
],
prior_box_var_image_shape
[
1
],
prior_box_var_image_data
.
data
());
DDim
prior_box_var_image_shape
=
default_converter
->
InitImageDimInfoWith
(
prior_box_var_dims
);
LOG
(
INFO
)
<<
"prior_box_var_image_shape = "
<<
prior_box_var_image_shape
[
0
]
<<
" "
<<
prior_box_var_image_shape
[
1
];
std
::
vector
<
half_t
>
prior_box_var_image_data
(
prior_box_var_image_shape
.
production
()
*
4
);
// 4 : RGBA
default_converter
->
NCHWToImage
(
prior_box_var_data
.
data
(),
prior_box_var_image_data
.
data
(),
prior_box_var_dims
);
auto
*
prior_box_var_image
=
prior_box_var
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
prior_box_var_image_shape
[
0
],
prior_box_var_image_shape
[
1
],
prior_box_var_image_data
.
data
());
DDim
target_box_image_shape
=
default_converter
->
InitImageDimInfoWith
(
target_box_dims
);
LOG
(
INFO
)
<<
"target_box_image_shape = "
<<
target_box_image_shape
[
0
]
<<
" "
<<
target_box_image_shape
[
1
];
std
::
vector
<
half_t
>
target_box_image_data
(
target_box_image_shape
.
production
()
*
4
);
// 4 : RGBA
default_converter
->
NCHWToImage
(
target_box_data
.
data
(),
target_box_image_data
.
data
(),
target_box_dims
);
auto
*
target_box_image
=
target_box
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
target_box_image_shape
[
0
],
target_box_image_shape
[
1
],
target_box_image_data
.
data
());
DDim
target_box_image_shape
=
default_converter
->
InitImageDimInfoWith
(
target_box_dims
);
LOG
(
INFO
)
<<
"target_box_image_shape = "
<<
target_box_image_shape
[
0
]
<<
" "
<<
target_box_image_shape
[
1
];
std
::
vector
<
half_t
>
target_box_image_data
(
target_box_image_shape
.
production
()
*
4
);
// 4 : RGBA
default_converter
->
NCHWToImage
(
target_box_data
.
data
(),
target_box_image_data
.
data
(),
target_box_dims
);
auto
*
target_box_image
=
target_box
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
target_box_image_shape
[
0
],
target_box_image_shape
[
1
],
target_box_image_data
.
data
());
DDim
out_image_shape
=
default_converter
->
InitImageDimInfoWith
(
out_dim
);
LOG
(
INFO
)
<<
"out_image_shape = "
<<
out_image_shape
[
0
]
<<
" "
<<
out_image_shape
[
1
];
auto
*
out_image
=
output_box
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
out_image_shape
[
0
],
out_image_shape
[
1
]);
kernel
->
Launch
();
DDim
out_image_shape
=
default_converter
->
InitImageDimInfoWith
(
out_dim
);
LOG
(
INFO
)
<<
"out_image_shape = "
<<
out_image_shape
[
0
]
<<
" "
<<
out_image_shape
[
1
];
auto
*
out_image
=
output_box
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
out_image_shape
[
0
],
out_image_shape
[
1
]);
kernel
->
Launch
();
auto
*
wait_list
=
context
->
As
<
OpenCLContext
>
().
cl_wait_list
();
auto
*
out_ptr
=
param
.
proposals
->
data
<
half_t
,
cl
::
Image2D
>
();
auto
it
=
wait_list
->
find
(
out_ptr
);
if
(
it
!=
wait_list
->
end
())
{
VLOG
(
4
)
<<
"--- Find the sync event for the target cl "
"tensor. ---"
;
auto
&
event
=
*
(
it
->
second
);
event
.
wait
();
}
else
{
LOG
(
FATAL
)
<<
"Could not find the sync event for the "
auto
*
wait_list
=
context
->
As
<
OpenCLContext
>
().
cl_wait_list
();
auto
*
out_ptr
=
param
.
proposals
->
data
<
half_t
,
cl
::
Image2D
>
();
auto
it
=
wait_list
->
find
(
out_ptr
);
if
(
it
!=
wait_list
->
end
())
{
VLOG
(
4
)
<<
"--- Find the sync event for the target cl "
"tensor. ---"
;
auto
&
event
=
*
(
it
->
second
);
event
.
wait
();
}
else
{
LOG
(
FATAL
)
<<
"Could not find the sync event for the "
"target cl tensor."
;
}
}
lite
::
Tensor
out_ref_tensor
;
out_ref_tensor
.
Resize
(
out_dim
);
box_coder_ref
(
out_ref_tensor
.
mutable_data
<
float
>
(),
prior_box_data
.
data
(),
target_box_data
.
data
(),
prior_box_var_data
.
data
(),
axis
,
norm
,
code_type
,
target_box_dims
[
0
],
target_box_dims
[
1
]);
lite
::
Tensor
out_ref_tensor
;
out_ref_tensor
.
Resize
(
out_dim
);
box_coder_ref
(
out_ref_tensor
.
mutable_data
<
float
>
(),
prior_box_data
.
data
(),
target_box_data
.
data
(),
prior_box_var_data
.
data
(),
axis
,
norm
,
code_type
,
target_box_dims
[
0
],
target_box_dims
[
1
]);
const
size_t
cl_image2d_row_pitch
{
0
};
const
size_t
cl_image2d_slice_pitch
{
0
};
half_t
*
out_image_data
=
new
half_t
[
out_image_shape
.
production
()
*
4
];
TargetWrapperCL
::
ImgcpySync
(
out_image_data
,
out_image
,
out_image_shape
[
0
],
out_image_shape
[
1
],
cl_image2d_row_pitch
,
cl_image2d_slice_pitch
,
IoDirection
::
DtoH
);
float
*
out_data
=
new
float
[
out_image_shape
.
production
()
*
4
];
default_converter
->
ImageToNCHW
(
out_image_data
,
out_data
,
out_image_shape
,
out_dim
);
const
size_t
cl_image2d_row_pitch
{
0
};
const
size_t
cl_image2d_slice_pitch
{
0
};
half_t
*
out_image_data
=
new
half_t
[
out_image_shape
.
production
()
*
4
];
TargetWrapperCL
::
ImgcpySync
(
out_image_data
,
out_image
,
out_image_shape
[
0
],
out_image_shape
[
1
],
cl_image2d_row_pitch
,
cl_image2d_slice_pitch
,
IoDirection
::
DtoH
);
float
*
out_data
=
new
float
[
out_image_shape
.
production
()
*
4
];
default_converter
->
ImageToNCHW
(
out_image_data
,
out_data
,
out_image_shape
,
out_dim
);
// result
#ifdef BOXCODER_FP16_PRINT_RESULT
LOG
(
INFO
)
<<
"---- print kernel result (input -> output) ----"
;
for
(
int
eidx
=
0
;
eidx
<
out_dim
.
production
();
++
eidx
)
{
std
::
cout
<<
target_box_data
[
eidx
]
<<
" -> "
<<
out_data
[
eidx
]
<<
std
::
endl
;
}
LOG
(
INFO
)
<<
"---- print kernel result (input -> output) ----"
;
for
(
int
eidx
=
0
;
eidx
<
out_dim
.
production
();
++
eidx
)
{
std
::
cout
<<
target_box_data
[
eidx
]
<<
" -> "
<<
out_data
[
eidx
]
<<
std
::
endl
;
}
#endif // BOXCODER_FP16_PRINT_RESULT
const
float
*
out_ref
=
out_ref_tensor
.
data
<
float
>
();
for
(
int
i
=
0
;
i
<
out_dim
.
production
();
i
++
)
{
auto
abs_diff
=
abs
(
out_data
[
i
]
-
out_ref
[
i
]);
auto
relative_diff
=
COMPUTE_RELATIVE_DIFF
(
out_data
[
i
],
out_ref
[
i
]);
EXPECT_EQ
((
relative_diff
<=
FP16_MAX_DIFF
)
||
(
abs_diff
<=
FP16_MAX_DIFF
),
true
);
if
((
relative_diff
>
FP16_MAX_DIFF
)
&&
(
abs_diff
>
FP16_MAX_DIFF
))
{
LOG
(
ERROR
)
<<
"error idx:"
<<
i
<<
", in_data["
<<
i
<<
"]: "
<<
target_box_data
[
i
]
<<
", out_data["
<<
i
<<
"]: "
<<
out_data
[
i
]
<<
", out_ref["
<<
i
<<
"]: "
<<
out_ref
[
i
]
<<
", abs_diff: "
<<
abs_diff
<<
", relative_diff: "
<<
relative_diff
<<
", FP16_MAX_DIFF: "
<<
FP16_MAX_DIFF
;
}
}
const
float
*
out_ref
=
out_ref_tensor
.
data
<
float
>
();
for
(
int
i
=
0
;
i
<
out_dim
.
production
();
i
++
)
{
auto
abs_diff
=
abs
(
out_data
[
i
]
-
out_ref
[
i
]);
auto
relative_diff
=
COMPUTE_RELATIVE_DIFF
(
out_data
[
i
],
out_ref
[
i
]);
EXPECT_EQ
((
relative_diff
<=
FP16_MAX_DIFF
)
||
(
abs_diff
<=
FP16_MAX_DIFF
),
true
);
if
((
relative_diff
>
FP16_MAX_DIFF
)
&&
(
abs_diff
>
FP16_MAX_DIFF
))
{
LOG
(
ERROR
)
<<
"error idx:"
<<
i
<<
", in_data["
<<
i
<<
"]: "
<<
target_box_data
[
i
]
<<
", out_data["
<<
i
<<
"]: "
<<
out_data
[
i
]
<<
", out_ref["
<<
i
<<
"]: "
<<
out_ref
[
i
]
<<
", abs_diff: "
<<
abs_diff
<<
", relative_diff: "
<<
relative_diff
<<
", FP16_MAX_DIFF: "
<<
FP16_MAX_DIFF
;
}
}
#ifdef BOXCODER_FP16_LOOP_TEST
}
// axis
}
// code_type
}
// norm
}
// m
}
// n
}
// axis
}
// code_type
}
// norm
}
// m
}
// n
#else
// nothing to do.
#endif
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录