Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
bc6d5adc
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
bc6d5adc
编写于
12月 31, 2019
作者:
Z
zhupengyang
提交者:
GitHub
12月 31, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[XPU] bn unit test (#2706)
test=develop
上级
a29c84a2
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
186 addition
and
164 deletion
+186
-164
lite/kernels/xpu/bridges/batch_norm_op.cc
lite/kernels/xpu/bridges/batch_norm_op.cc
+6
-0
lite/kernels/xpu/bridges/batch_norm_op_test.cc
lite/kernels/xpu/bridges/batch_norm_op_test.cc
+0
-164
lite/tests/kernels/CMakeLists.txt
lite/tests/kernels/CMakeLists.txt
+1
-0
lite/tests/kernels/batch_norm_compute_test.cc
lite/tests/kernels/batch_norm_compute_test.cc
+179
-0
未找到文件。
lite/kernels/xpu/bridges/batch_norm_op.cc
浏览文件 @
bc6d5adc
...
...
@@ -37,30 +37,36 @@ int BatchNormConverter(void* ctx, OpLite* op, KernelBase* kernel) {
CHECK
(
x_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
x
=
scope
->
FindMutableTensor
(
x_name
);
auto
x_dims
=
x
->
dims
();
auto
scale_name
=
op_info
->
Input
(
"Scale"
).
front
();
auto
scale_type
=
kernel
->
GetInputDeclType
(
"Scale"
);
CHECK
(
scale_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
scale_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
scale
=
scope
->
FindMutableTensor
(
scale_name
);
auto
bias_name
=
op_info
->
Input
(
"Bias"
).
front
();
auto
bias_type
=
kernel
->
GetInputDeclType
(
"Bias"
);
CHECK
(
bias_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
bias_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
bias
=
scope
->
FindMutableTensor
(
bias_name
);
auto
mean_name
=
op_info
->
Input
(
"Mean"
).
front
();
auto
mean_type
=
kernel
->
GetInputDeclType
(
"Mean"
);
CHECK
(
mean_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
mean_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
mean
=
scope
->
FindMutableTensor
(
mean_name
);
auto
variance_name
=
op_info
->
Input
(
"Variance"
).
front
();
auto
variance_type
=
kernel
->
GetInputDeclType
(
"Variance"
);
CHECK
(
variance_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
variance_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
variance
=
scope
->
FindMutableTensor
(
variance_name
);
auto
y_name
=
op_info
->
Output
(
"Y"
).
front
();
auto
y_type
=
kernel
->
GetOutputDeclType
(
"Y"
);
CHECK
(
y_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
y_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
epsilon
=
op_info
->
GetAttr
<
float
>
(
"epsilon"
);
// X node
...
...
lite/kernels/xpu/bridges/batch_norm_op_test.cc
已删除
100644 → 0
浏览文件 @
a29c84a2
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/batch_norm_op.h"
#include <gtest/gtest.h>
#include "lite/core/op_registry.h"
#include "lite/kernels/xpu/bridges/registry.h"
#include "lite/kernels/xpu/bridges/test_helper.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
xpu
{
namespace
bridges
{
template
<
typename
dtype
>
void
batch_norm_ref
(
const
std
::
shared_ptr
<
operators
::
BatchNormOp
>
op
)
{
Scope
*
scope
=
op
->
scope
();
const
OpInfo
*
op_info
=
op
->
op_info
();
auto
x
=
scope
->
FindVar
(
op_info
->
Input
(
"X"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
y
=
scope
->
FindVar
(
op_info
->
Output
(
"Y"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
bias
=
scope
->
FindVar
(
op_info
->
Input
(
"Bias"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
scale
=
scope
->
FindVar
(
op_info
->
Input
(
"Scale"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
mean
=
scope
->
FindVar
(
op_info
->
Input
(
"Mean"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
variance
=
scope
->
FindVar
(
op_info
->
Input
(
"Variance"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
x_data
=
x
->
data
<
dtype
>
();
auto
y_data
=
y
->
mutable_data
<
dtype
>
();
auto
scale_data
=
scale
->
mutable_data
<
dtype
>
();
auto
bias_data
=
bias
->
mutable_data
<
dtype
>
();
auto
mean_data
=
mean
->
mutable_data
<
dtype
>
();
auto
variance_data
=
variance
->
mutable_data
<
dtype
>
();
DDim
x_dims
=
x
->
dims
();
float
epsilon
=
op_info
->
GetAttr
<
float
>
(
"epsilon"
);
auto
data_layout
=
op_info
->
GetAttr
<
std
::
string
>
(
"data_layout"
);
bool
global_stats
=
op_info
->
GetAttr
<
bool
>
(
"use_global_stats"
);
if
(
global_stats
)
{
int64_t
outer_size
=
0
;
int64_t
channel_size
=
0
;
int64_t
inner_size
=
0
;
if
(
data_layout
==
"NCHW"
)
{
outer_size
=
x_dims
[
0
];
channel_size
=
x_dims
[
1
];
inner_size
=
x_dims
.
Slice
(
2
,
x_dims
.
size
()).
production
();
}
else
{
LOG
(
FATAL
)
<<
"Unknown storage order: "
<<
data_layout
;
}
auto
x_ptr
=
x_data
;
auto
y_ptr
=
y_data
;
for
(
int
o
=
0
;
o
<
outer_size
;
o
++
)
{
for
(
int
c
=
0
;
c
<
channel_size
;
c
++
)
{
for
(
int
i
=
0
;
i
<
inner_size
;
i
++
)
{
dtype
norm_x
=
(
*
x_ptr
-
mean_data
[
c
])
/
std
::
sqrt
(
variance_data
[
c
]
+
epsilon
);
*
y_ptr
=
norm_x
*
scale_data
[
c
]
+
bias_data
[
c
];
x_ptr
++
;
y_ptr
++
;
}
}
}
}
}
void
test_batch_norm
(
int
bs
,
int
ic
,
int
ih
,
int
iw
,
float
epsilon
)
{
// prepare input&output variables
Scope
scope
;
std
::
string
x_var_name
=
"x"
;
std
::
string
out_var_name
=
"out"
;
std
::
string
out_ref_var_name
=
"out_ref"
;
std
::
string
scale_var_name
=
"scale"
;
std
::
string
bias_var_name
=
"bias"
;
std
::
string
mean_var_name
=
"mean"
;
std
::
string
variance_var_name
=
"variance"
;
auto
*
x
=
scope
.
Var
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
scale
=
scope
.
Var
(
scale_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
bias
=
scope
.
Var
(
bias_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
mean
=
scope
.
Var
(
mean_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
variance
=
scope
.
Var
(
variance_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out
=
scope
.
Var
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out_ref
=
scope
.
Var
(
out_ref_var_name
)
->
GetMutable
<
Tensor
>
();
x
->
Resize
({
bs
,
ic
,
ih
,
iw
});
scale
->
Resize
({
ic
});
bias
->
Resize
({
ic
});
mean
->
Resize
({
ic
});
variance
->
Resize
({
ic
});
// initialize input&output data
FillTensor
<
float
>
(
x
);
FillTensor
<
float
>
(
scale
);
FillTensor
<
float
>
(
bias
);
FillTensor
<
float
>
(
mean
);
// variance > 0
FillTensor
<
float
>
(
variance
,
1.
f
,
5.
f
);
// initialize op desc
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
"batch_norm"
);
opdesc
.
SetInput
(
"X"
,
{
x_var_name
});
opdesc
.
SetInput
(
"Scale"
,
{
scale_var_name
});
opdesc
.
SetInput
(
"Bias"
,
{
bias_var_name
});
opdesc
.
SetInput
(
"Mean"
,
{
mean_var_name
});
opdesc
.
SetInput
(
"Variance"
,
{
variance_var_name
});
opdesc
.
SetOutput
(
"Y"
,
{
out_var_name
});
opdesc
.
SetAttr
(
"is_test"
,
1
);
opdesc
.
SetAttr
(
"use_global_stats"
,
true
);
opdesc
.
SetAttr
(
"epsilon"
,
epsilon
);
opdesc
.
SetAttr
(
"momentum"
,
0.9
f
);
opdesc
.
SetAttr
(
"data_layout"
,
std
::
string
(
"NCHW"
));
// create and convert op to XPU model, then run it on XPU
auto
op
=
CreateOp
<
operators
::
BatchNormOp
>
(
opdesc
,
&
scope
);
LauchOp
(
op
,
{
x_var_name
},
{
out_var_name
});
out_ref
->
CopyDataFrom
(
*
out
);
// execute reference implementation and save to output tensor
batch_norm_ref
<
float
>
(
op
);
// compare results
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
auto
*
out_ref_data
=
out_ref
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
out
->
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
out_data
[
i
],
out_ref_data
[
i
],
1e-5
);
}
}
TEST
(
NPUBridges
,
batch_norm
)
{
for
(
auto
bs
:
{
1
,
3
})
{
for
(
auto
ic
:
{
2
,
3
})
{
for
(
auto
ih
:
{
4
})
{
for
(
auto
iw
:
{
5
})
{
for
(
auto
epsilon
:
{
1e-5
f
})
{
test_batch_norm
(
bs
,
ic
,
ih
,
iw
,
epsilon
);
}
}
}
}
}
}
}
// namespace bridges
}
// namespace xpu
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_OP
(
batch_norm
);
USE_XPU_BRIDGE
(
batch_norm
);
lite/tests/kernels/CMakeLists.txt
浏览文件 @
bc6d5adc
...
...
@@ -31,6 +31,7 @@ if((NOT LITE_WITH_OPENCL AND NOT LITE_WITH_FPGA) AND (LITE_WITH_X86 OR LITE_WITH
lite_cc_test
(
test_kernel_dropout_compute SRCS dropout_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_softmax_compute SRCS softmax_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_mul_compute SRCS mul_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_batch_norm_compute SRCS batch_norm_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
if
(
LITE_BUILD_EXTRA
)
lite_cc_test
(
test_gru_unit SRCS gru_unit_test.cc DEPS arena_framework
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
...
...
lite/tests/kernels/batch_norm_compute_test.cc
0 → 100644
浏览文件 @
bc6d5adc
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
#include "lite/tests/utils/fill_data.h"
namespace
paddle
{
namespace
lite
{
class
BatchNormComputeTest
:
public
arena
::
TestCase
{
protected:
// common attributes for this op.
std
::
string
op_type_
=
"batch_norm"
;
std
::
string
input_
=
"x"
;
std
::
string
scale_
=
"scale"
;
std
::
string
bias_
=
"bias"
;
std
::
string
mean_
=
"mean"
;
std
::
string
variance_
=
"variance"
;
std
::
string
output_
=
"y"
;
std
::
string
mean_out_
=
"mean_out"
;
std
::
string
saved_mean_
=
"saved_mean"
;
std
::
string
variance_out_
=
"variance_out"
;
std
::
string
saved_variance_
=
"saved_variance"
;
DDim
dims_
{{
1
,
2
,
3
,
4
}};
bool
use_global_stats_
=
false
;
float
momentum_
=
0.9
;
float
epsilon_
=
1e-5
f
;
std
::
string
data_layout_
=
"NCHW"
;
int
is_test_
=
1
;
public:
BatchNormComputeTest
(
const
Place
&
place
,
const
std
::
string
&
alias
,
DDim
dims
,
float
epsilon
)
:
TestCase
(
place
,
alias
),
dims_
(
dims
),
epsilon_
(
epsilon
)
{}
void
RunBaseline
(
Scope
*
scope
)
override
{
auto
x
=
scope
->
FindTensor
(
input_
);
auto
scale
=
scope
->
FindTensor
(
scale_
);
auto
bias
=
scope
->
FindTensor
(
bias_
);
auto
mean
=
scope
->
FindTensor
(
mean_
);
auto
variance
=
scope
->
FindTensor
(
variance_
);
auto
y
=
scope
->
NewTensor
(
output_
);
auto
mean_out
=
scope
->
NewTensor
(
mean_out_
);
auto
variance_out
=
scope
->
NewTensor
(
variance_out_
);
auto
saved_mean
=
scope
->
NewTensor
(
saved_mean_
);
auto
saved_variance
=
scope
->
NewTensor
(
saved_variance_
);
CHECK
(
y
);
CHECK
(
mean_out
);
CHECK
(
variance_out
);
CHECK
(
saved_mean
);
CHECK
(
saved_variance
);
y
->
Resize
(
dims_
);
int64_t
channel_size
=
0
;
if
(
data_layout_
==
"NCHW"
)
{
channel_size
=
dims_
[
1
];
}
else
{
LOG
(
FATAL
)
<<
"Unknown storage order: "
<<
data_layout_
;
}
mean_out
->
Resize
({
channel_size
});
variance_out
->
Resize
({
channel_size
});
saved_mean
->
Resize
({
channel_size
});
saved_variance
->
Resize
({
channel_size
});
auto
x_data
=
x
->
data
<
float
>
();
auto
y_data
=
y
->
mutable_data
<
float
>
();
auto
scale_data
=
scale
->
data
<
float
>
();
auto
bias_data
=
bias
->
data
<
float
>
();
auto
mean_data
=
mean
->
data
<
float
>
();
auto
variance_data
=
variance
->
data
<
float
>
();
int64_t
outer_size
=
0
;
int64_t
inner_size
=
0
;
if
(
data_layout_
==
"NCHW"
)
{
outer_size
=
dims_
[
0
];
inner_size
=
dims_
.
Slice
(
2
,
dims_
.
size
()).
production
();
}
else
{
LOG
(
FATAL
)
<<
"Unknown storage order: "
<<
data_layout_
;
}
auto
x_ptr
=
x_data
;
auto
y_ptr
=
y_data
;
for
(
int
o
=
0
;
o
<
outer_size
;
o
++
)
{
for
(
int
c
=
0
;
c
<
channel_size
;
c
++
)
{
for
(
int
i
=
0
;
i
<
inner_size
;
i
++
)
{
float
norm_x
=
(
*
x_ptr
-
mean_data
[
c
])
/
std
::
sqrt
(
variance_data
[
c
]
+
epsilon_
);
*
y_ptr
=
norm_x
*
scale_data
[
c
]
+
bias_data
[
c
];
x_ptr
++
;
y_ptr
++
;
}
}
}
}
void
PrepareOpDesc
(
cpp
::
OpDesc
*
op_desc
)
{
op_desc
->
SetType
(
op_type_
);
op_desc
->
SetInput
(
"X"
,
{
input_
});
op_desc
->
SetInput
(
"Bias"
,
{
bias_
});
op_desc
->
SetInput
(
"Scale"
,
{
scale_
});
op_desc
->
SetInput
(
"Mean"
,
{
mean_
});
op_desc
->
SetInput
(
"Variance"
,
{
variance_
});
op_desc
->
SetOutput
(
"Y"
,
{
output_
});
op_desc
->
SetOutput
(
"MeanOut"
,
{
mean_out_
});
op_desc
->
SetOutput
(
"VarianceOut"
,
{
variance_out_
});
op_desc
->
SetOutput
(
"SavedMean"
,
{
saved_mean_
});
op_desc
->
SetOutput
(
"SavedVariance"
,
{
saved_variance_
});
op_desc
->
SetAttr
(
"epsilon"
,
epsilon_
);
op_desc
->
SetAttr
(
"momentum"
,
momentum_
);
op_desc
->
SetAttr
(
"use_global_stats"
,
use_global_stats_
);
op_desc
->
SetAttr
(
"data_layout"
,
data_layout_
);
op_desc
->
SetAttr
(
"is_test"
,
is_test_
);
}
void
PrepareData
()
override
{
std
::
vector
<
float
>
din
(
dims_
.
production
());
fill_data_rand
(
din
.
data
(),
-
1.
f
,
1.
f
,
dims_
.
production
());
DDim
scale_dim
({
dims_
[
1
]});
std
::
vector
<
float
>
scale
(
scale_dim
.
production
());
fill_data_rand
(
scale
.
data
(),
-
1.
f
,
1.
f
,
scale_dim
.
production
());
std
::
vector
<
float
>
bias
(
scale_dim
.
production
());
fill_data_rand
(
bias
.
data
(),
-
1.
f
,
1.
f
,
scale_dim
.
production
());
std
::
vector
<
float
>
mean
(
scale_dim
.
production
());
fill_data_rand
(
mean
.
data
(),
-
1.
f
,
1.
f
,
scale_dim
.
production
());
std
::
vector
<
float
>
variance
(
scale_dim
.
production
());
fill_data_rand
(
variance
.
data
(),
0.
f
,
1.
f
,
scale_dim
.
production
());
SetCommonTensor
(
input_
,
dims_
,
din
.
data
());
SetCommonTensor
(
scale_
,
scale_dim
,
scale
.
data
());
SetCommonTensor
(
bias_
,
scale_dim
,
bias
.
data
());
SetCommonTensor
(
mean_
,
scale_dim
,
mean
.
data
());
SetCommonTensor
(
variance_
,
scale_dim
,
variance
.
data
());
}
};
TEST
(
BatchNorm
,
precision
)
{
LOG
(
INFO
)
<<
"test BatchNorm op"
;
float
abs_error
=
2e-5
;
Place
place
;
#if defined(LITE_WITH_XPU)
place
=
TARGET
(
kXPU
);
#else
return
;
#endif
for
(
auto
dims
:
std
::
vector
<
std
::
vector
<
int64_t
>>
{{
1
,
2
,
3
,
4
},
{
5
,
6
,
7
,
8
}})
{
for
(
auto
epsilon
:
{
1e-5
f
})
{
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
BatchNormComputeTest
(
place
,
"def"
,
DDim
(
dims
),
epsilon
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
abs_error
);
arena
.
TestPrecision
(
{
"mean_out"
,
"saved_mean"
,
"variance_out"
,
"saved_variance"
});
}
}
}
}
// namespace lite
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录