未验证 提交 b7b9fc26 编写于 作者: R Ray Liu 提交者: GitHub

Merge pull request #1043 from codeWorm2015/opencl

Opencl
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once;
/*
inline hafl4 activation(half4 in
#ifdef PRELU
,half4 prelu_alpha
#endif
) {
half4 output;
#ifdef PRELU
output = select(prelu_alpha * in, in, in >= (half4)0.0);
#endif
#ifdef RELU
fmax(in, 0.0);
#endif
return output;
}
*/
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
__kernel void conv_3x3(__global float* in, __global float* out) {
int num = get_global_id(0);
out[num] = in[num] * 0.1 + 102;
}
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
/*
#include "common.h"
__kernel void conv_1x1(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input,
__read_only image2d_t filter,
__read_only image2d_t bias,
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int input_width,/* of one block */
__private const int input_height/* of one block */) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST;
const uint kernelHXW = 1;
int2 stride_xy = int2(stride, stride);
int2 ouput_pos_in_one_block = int2(out_w, out_nh);
int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + int2(offset, offset);
int input_c;
half4 output = read_imageh(bias, sampler, int2(out_c, 0));
for (int i = 0; i < input_c;h ++i) {
int2 pos_in = int2(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
if (pos_in.x >=0 && pos_in.y >= 0 && pos_in.x < input_width && pos_in.y < input_height) {
hafl4 input = read_imageh(input, sampler, pos_in);
half4 weight_x = read_imageh(filter, sampler, int2(i, out_c * 4 + 0));
output.x += dot(input, weight_x);
half4 weight_y = read_imageh(filter, sampler, int2(i, out_c * 4 + 1));
output.y += dot(input, weight_y);
half4 weight_z = read_imageh(filter, sampler, int2(i, out_c * 4 + 2));
output.z += dot(input, weight_z);
half4 weight_w = read_imageh(filter, sampler, int2(i, out_c * 4 + 3));
output.w += dot(input, weight_w);
}
}
#if defined(RELU)
output = activation(output);
#endif
int2 output_pos(out_c * global_size_dim1 + out_w, out_nh);
write_imageh(output_image, output_pos, output);
}
__kernel void conv_3x3(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input,
__read_only image2d_t filter,
__read_only image2d_t bias,
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height/* of one block */) {
int2 stride_xy = int2(stride, stride);
int2 ouput_pos_in_one_block = int2(out_w, out_nh);
int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + int2(offset, offset);
half4 output = read_imageh(bias, sampler, int2(out_c, 0));
half4 input[9];
for (int i = 0; i < input_c; ++i) {
int2 pos_in = int2(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
input[0] = select(read_imageh(input, sampler,
int2(pos_in.x - dilation, pos_in.y - dilation)),
half4(0.0),in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height);
input[1] = select(read_imageh(input, sampler,
int2(pos_in.x, pos_in.y - dilation)),
half4(0.0),in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - dilation >= input_height);
input[2] = select(read_imageh(input, sampler,
int2(pos_in.x + dilation, pos_in.y - dilation)),
half4(0.0),in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height);
input[3] = select(read_imageh(input, sampler,
int2(pos_in.x - dilation, pos_in.y)),
half4(0.0), in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y >= input_height);
input[4] = select(read_imageh(input, sampler,
int2(pos_in.x, pos_in.y)),
half4(0.0), in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height);
input[5] = select(read_imageh(input, sampler,
int2(pos_in.x + dilation, pos_in.y)),
half4(0.0), in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y >= input_height);
input[6] = select(read_imageh(input, sampler,
int2(pos_in.x - dilation, pos_in.y + dilation)),
half4(0.0), in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height);
input[7] = select(read_imageh(input, sampler,
int2(pos_in.x, pos_in.y + dilation)),
half4(0.0), in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + dilation >= input_height);
input[8] = select(read_imageh(input, sampler,
int2(pos_in.x + dilation, pos_in.y + dilation)),
half4(0.0), pos_in.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || pos_in.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height);
for (int j = 0; j < 9; ++j) {
half4 weight_x = read_imageh(filter, sampler, int2(i * 3 + j % 3, out_c * 4 * 3 + 0 * out_c * 3 + j / 3));
output.x += dot(input[j], weight_x);
half4 weight_y = read_imageh(filter, sampler, int2(i * 3 + j % 3, out_c * 4 * 3 + 1 * out_c * 3 + j / 3));
output.y += dot(input[j], weight_y);
half4 weight_z = read_imageh(filter, sampler, int2(i * 3 + j % 3, out_c * 4 * 3 + 2 * out_c * 3 + j / 3));
output.z += dot(input[j], weight_z);
half4 weight_w = read_imageh(filter, sampler, int2(i * 3 + j % 3, out_c * 4 * 3 + 3 * out_c * 3 + j / 3));
output.w += dot(input[j], weight_w);
}
}
#if defined(RELU)
output = activation(output);
#endif
int2 output_pos(out_c * global_size_dim1 + out_w, out_nh);
write_imageh(output_image, output_pos, output);
}
*/
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
/*
#include "common.h"
__kernel void conv_1x1(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input,
__read_only image2d_t filter,
__read_only image2d_t bias,
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int input_width,/* of one block */
__private const int input_height/* of one block */) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST;
const uint kernelHXW = 1;
int2 stride_xy = int2(stride, stride);
int2 ouput_pos_in_one_block = int2(out_w, out_nh);
int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + int2(offset, offset);
int input_c;
half4 output = read_imageh(bias, sampler, int2(out_c, 0));
for (int i = 0; i < input_c;h ++i) {
int2 pos_in = int2(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
if (pos_in.x >=0 && pos_in.y >= 0 && pos_in.x < input_width && pos_in.y < input_height) {
hafl4 input = read_imageh(input, sampler, pos_in);
half4 weight_x = read_imageh(filter, sampler, int2(i, out_c * 4 + 0));
output.x += dot(input, weight_x);
half4 weight_y = read_imageh(filter, sampler, int2(i, out_c * 4 + 1));
output.y += dot(input, weight_y);
half4 weight_z = read_imageh(filter, sampler, int2(i, out_c * 4 + 2));
output.z += dot(input, weight_z);
half4 weight_w = read_imageh(filter, sampler, int2(i, out_c * 4 + 3));
output.w += dot(input, weight_w);
}
}
#if defined(RELU)
output = activation(output);
#endif
int2 output_pos(out_c * global_size_dim1 + out_w, out_nh);
write_imageh(output_image, output_pos, output);
}
__kernel void conv_3x3(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input,
__read_only image2d_t filter,
__read_only image2d_t bias,
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height/* of one block */) {
int2 stride_xy = int2(stride, stride);
int2 ouput_pos_in_one_block = int2(out_w, out_nh);
int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + int2(offset, offset);
half4 output = read_imageh(bias, sampler, int2(out_c, 0));
half4 input[9];
for (int i = 0; i < input_c; ++i) {
int2 pos_in = int2(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
input[0] = select(read_imageh(input, sampler,
int2(pos_in.x - dilation, pos_in.y - dilation)),
half4(0.0),in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height);
input[1] = select(read_imageh(input, sampler,
int2(pos_in.x, pos_in.y - dilation)),
half4(0.0),in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - dilation >= input_height);
input[2] = select(read_imageh(input, sampler,
int2(pos_in.x + dilation, pos_in.y - dilation)),
half4(0.0),in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height);
input[3] = select(read_imageh(input, sampler,
int2(pos_in.x - dilation, pos_in.y)),
half4(0.0), in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y >= input_height);
input[4] = select(read_imageh(input, sampler,
int2(pos_in.x, pos_in.y)),
half4(0.0), in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height);
input[5] = select(read_imageh(input, sampler,
int2(pos_in.x + dilation, pos_in.y)),
half4(0.0), in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y >= input_height);
input[6] = select(read_imageh(input, sampler,
int2(pos_in.x - dilation, pos_in.y + dilation)),
half4(0.0), in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height);
input[7] = select(read_imageh(input, sampler,
int2(pos_in.x, pos_in.y + dilation)),
half4(0.0), in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + dilation >= input_height);
input[8] = select(read_imageh(input, sampler,
int2(pos_in.x + dilation, pos_in.y + dilation)),
half4(0.0), pos_in.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || pos_in.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height);
for (int j = 0; j < 9; ++j) {
half4 weight_x = read_imageh(filter, sampler, int2(i * 3 + j % 3, out_c * 4 * 3 + 0 * out_c * 3 + j / 3));
output.x += dot(input[j], weight_x);
half4 weight_y = read_imageh(filter, sampler, int2(i * 3 + j % 3, out_c * 4 * 3 + 1 * out_c * 3 + j / 3));
output.y += dot(input[j], weight_y);
half4 weight_z = read_imageh(filter, sampler, int2(i * 3 + j % 3, out_c * 4 * 3 + 2 * out_c * 3 + j / 3));
output.z += dot(input[j], weight_z);
half4 weight_w = read_imageh(filter, sampler, int2(i * 3 + j % 3, out_c * 4 * 3 + 3 * out_c * 3 + j / 3));
output.w += dot(input[j], weight_w);
}
}
#if defined(RELU)
output = activation(output);
#endif
int2 output_pos(out_c * global_size_dim1 + out_w, out_nh);
write_imageh(output_image, output_pos, output);
}
*/
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
/*
__kernel void depth_conv_3x3(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input,
__read_only image2d_t filter,
__read_only image2d_t bias,
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height, /* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST;
const int batch_index = out_nh / output_height;
const int out_nh_in_one_batch = out_nh % output_height;
const uint kernelHXW = 1;
int2 stride_xy = int2(stride, stride);
int2 ouput_pos_in_one_block = int2(out_w, out_nh_in_one_batch);
int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + int2(offset, offset);
half4 output = read_imageh(bias, sampler, int2(out_c, 0));
int2 pos_in_input_block = int2(out_c * input_width, batch_index * input_height);
int weight_x_to = out_c * 3;
half4 inputs[9];
inputs[0] = select(read_imageh(input, sampler, int2(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
0.0,
in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y - 1 >= input_height);
inputs[1] = select(read_imageh(input, sampler, int2(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
0.0,
n_pos_in_one_block.x < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - 1 >= input_height);
inputs[2] = select(read_imageh(input, sampler, int2(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
0.0,
in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y - 1 >= input_height);
inputs[3] = select(read_imageh(input, sampler, int2(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y)),
0.0,
in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y >= input_height);
inputs[4] = select(read_imageh(input, sampler, int2(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y)),
0.0,
in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height);
inputs[5] = select(read_imageh(input, sampler, int2(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y)),
0.0,
in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y >= input_height);
inputs[6] = select(read_imageh(input, sampler, int2(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
0.0,
in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y + 1 >= input_height);
inputs[7] = select(read_imageh(input, sampler, int2(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
0.0,
in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + 1 >= input_height);
inputs[8] = select(read_imageh(input, sampler, int2(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
0.0,
in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y + 1 >= input_height);
for (int j = 0; j < 9; ++j) {
half4 input = inputs[j];
half4 weight = read_imageh(filter, sampler, int2(weight_x_to + j % 3, j / 3));
output.x += input.x * weight.x;
output.y += input.y * weight.y;
output.z += input.z * weight.z;
output.w += input.w * weight.w;
}
#if defined(RELU)
output = activation(output);
#endif
int2 output_pos(out_c * global_size_dim1 + out_w, out_nh);
write_imageh(output_image, output_pos, output);
}
*/
\ No newline at end of file
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADDBNRELU_OP
#include "operators/kernel/conv_add_bn_relu_kernel.h"
#include "operators/kernel/central-arm-func/conv_add_bn_relu_arm_func.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ConvAddBNReluKernel<GPU_CL, float>::Init(
FusionConvAddBNReluParam<GPU_CL> *param) {
return true;
}
template <>
void ConvAddBNReluKernel<GPU_CL, float>::Compute(
const FusionConvAddBNReluParam<GPU_CL> &param) {
}
template class ConvAddBNReluKernel<GPU_CL, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADD_OP
#include "operators/kernel/conv_add_kernel.h"
#include "../central-arm-func/conv_add_arm_func.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
return true;
}
template <>
void ConvAddKernel<GPU_CL, float>::Compute(
const FusionConvAddParam<GPU_CL> &param) {
}
template class ConvAddKernel<GPU_CL, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册