Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
b37c8fef
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
337
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b37c8fef
编写于
6月 13, 2018
作者:
E
eclipsycn
提交者:
GitHub
6月 13, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #421 from Eclipsess/develop
fix
#420
optimize lrn op
上级
234cebcb
9700cf7e
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
151 addition
and
20 deletion
+151
-20
src/operators/kernel/arm/lrn_kernel.cpp
src/operators/kernel/arm/lrn_kernel.cpp
+3
-2
src/operators/kernel/lrn_kernel.h
src/operators/kernel/lrn_kernel.h
+117
-18
tools/run.sh
tools/run.sh
+31
-0
未找到文件。
src/operators/kernel/arm/lrn_kernel.cpp
浏览文件 @
b37c8fef
...
...
@@ -25,13 +25,14 @@ template <>
void
LrnKernel
<
CPU
,
float
>::
Compute
(
const
LrnParam
&
param
)
const
{
const
Tensor
*
input_x
=
param
.
InputX
();
auto
x_dims
=
input_x
->
dims
();
Tensor
*
out
=
param
.
Out
();
out
->
mutable_data
<
float
>
();
/// data_format = NCHW
const
int
N
=
x_dims
[
0
];
const
int
C
=
x_dims
[
1
];
const
int
H
=
x_dims
[
2
];
const
int
W
=
x_dims
[
3
];
Tensor
*
out
=
param
.
Out
();
out
->
mutable_data
<
float
>
();
const
int
n
=
param
.
N
();
const
float
alpha
=
param
.
Alpha
();
const
float
beta
=
param
.
Beta
();
...
...
src/operators/kernel/lrn_kernel.h
浏览文件 @
b37c8fef
...
...
@@ -15,10 +15,14 @@ limitations under the License. */
#ifdef LRN_OP
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
#ifdef __ARM_NEON
#include "arm_neon.h"
#include "operators/math/math_func_neon.h"
#endif
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -27,42 +31,137 @@ using namespace framework;
template
<
typename
T
>
struct
LRNFunctor
{
void
operator
()(
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
out
,
int
N
,
int
C
,
int
H
,
int
W
,
int
n
,
T
k
,
T
alpha
,
T
beta
)
{
auto
input_ptr
=
input
.
data
<
T
>
();
int
C
,
int
H
,
int
W
,
int
n
,
float
k
,
float
alpha
,
float
beta
)
{
const
float
*
input_ptr
=
input
.
data
<
float
>
();
const
int
start
=
-
(
n
-
1
)
/
2
;
const
int
end
=
start
+
n
;
auto
out_ptr
=
out
->
data
<
T
>
();
const
int
stride0
=
C
*
H
*
W
;
const
int
stride1
=
H
*
W
;
const
int
stride2
=
W
;
const
int
stride3
=
1
;
framework
::
Tensor
sqr_buffer
;
auto
sqr_buffer_ptr
=
sqr_buffer
.
mutable_data
<
T
>
(
input
.
dims
());
std
::
fill
(
sqr_buffer_ptr
,
sqr_buffer_ptr
+
sqr_buffer
.
numel
(),
k
);
auto
sqr_buffer_ptr
=
sqr_buffer
.
mutable_data
<
float
>
(
input
.
dims
());
std
::
fill
(
sqr_buffer_ptr
,
sqr_buffer_ptr
+
sqr_buffer
.
numel
(),
0.0
);
for
(
int
a
=
0
;
a
<
N
;
a
++
)
{
for
(
int
b
=
0
;
b
<
C
;
b
++
)
{
for
(
int
index
=
start
;
index
<
end
;
index
++
)
{
int
channel
=
b
+
index
;
if
(
channel
>=
0
&&
channel
<
C
)
{
int
tmp_u
=
a
*
stride0
+
b
*
stride1
;
int
tmp_i
=
a
*
stride0
+
channel
*
stride1
;
for
(
int
c
=
0
;
c
<
H
;
c
++
)
{
for
(
int
d
=
0
;
d
<
W
;
d
++
)
{
int
tmp
=
c
*
stride2
+
d
;
int
u
=
tmp_u
+
tmp
;
int
i
=
tmp_i
+
tmp
;
sqr_buffer_ptr
[
u
]
+=
alpha
*
input_ptr
[
i
]
*
input_ptr
[
i
];
}
int
tmp_s
=
a
*
stride0
+
b
*
stride1
;
int
tmp_c
=
a
*
stride0
+
channel
*
stride1
;
#ifdef __ARM_NEON
int
n4
=
stride1
/
4
;
int
m4
=
stride1
%
4
;
float32x4_t
sqr0
;
float32x4_t
in0
;
float32x4_t
res0
;
for
(
int
i
=
0
;
i
<
n4
;
i
++
)
{
sqr0
=
vld1q_f32
(
sqr_buffer_ptr
+
tmp_s
);
in0
=
vld1q_f32
(
input_ptr
+
tmp_c
);
res0
=
vmlaq_f32
(
sqr0
,
in0
,
in0
);
vst1q_f32
(
sqr_buffer_ptr
+
tmp_s
,
res0
);
tmp_s
+=
4
;
tmp_c
+=
4
;
}
for
(
int
i
=
0
;
i
<
m4
;
i
++
)
{
int
s_i
=
tmp_s
+
i
;
int
c_i
=
tmp_c
+
i
;
sqr_buffer_ptr
[
s_i
]
+=
input_ptr
[
c_i
]
*
input_ptr
[
c_i
];
}
#else
for
(
int
tmp
=
0
;
tmp
<
stride1
;
tmp
++
)
{
int
s_i
=
tmp_s
+
tmp
;
int
c_i
=
tmp_c
+
tmp
;
sqr_buffer_ptr
[
s_i
]
+=
input_ptr
[
c_i
]
*
input_ptr
[
c_i
];
}
#endif
}
}
}
}
auto
out_ptr
=
out
->
data
<
T
>
();
#ifdef __ARM_NEON
float32x4_t
sqr1
,
sqr2
,
sqr3
,
sqr4
;
float32x4_t
alpha4
;
float32x4_t
k4
;
float32x4_t
beta4
;
float32x4_t
res1
,
res2
,
res3
,
res4
;
float32x4_t
in1
,
in2
,
in3
,
in4
;
beta4
=
vdupq_n_f32
(
beta
);
alpha4
=
vdupq_n_f32
(
alpha
);
k4
=
vdupq_n_f32
(
k
);
auto
out_tmp_ptr
=
out_ptr
;
int
n16
=
input
.
numel
()
/
16
;
int
m16
=
input
.
numel
()
%
16
;
int
m16n4
=
m16
/
4
;
int
m16m4
=
m16
%
4
;
for
(
int
i
=
0
;
i
<
n16
;
i
++
)
{
sqr1
=
vld1q_f32
(
sqr_buffer_ptr
);
sqr2
=
vld1q_f32
(
sqr_buffer_ptr
+
4
);
sqr3
=
vld1q_f32
(
sqr_buffer_ptr
+
8
);
sqr4
=
vld1q_f32
(
sqr_buffer_ptr
+
12
);
in1
=
vld1q_f32
(
input_ptr
);
in2
=
vld1q_f32
(
input_ptr
+
4
);
in3
=
vld1q_f32
(
input_ptr
+
8
);
in4
=
vld1q_f32
(
input_ptr
+
12
);
sqr1
=
vmlaq_f32
(
k4
,
sqr1
,
alpha4
);
sqr2
=
vmlaq_f32
(
k4
,
sqr2
,
alpha4
);
sqr3
=
vmlaq_f32
(
k4
,
sqr3
,
alpha4
);
sqr4
=
vmlaq_f32
(
k4
,
sqr4
,
alpha4
);
sqr1
=
pow_ps
(
sqr1
,
-
beta4
);
sqr2
=
pow_ps
(
sqr2
,
-
beta4
);
sqr3
=
pow_ps
(
sqr3
,
-
beta4
);
sqr4
=
pow_ps
(
sqr4
,
-
beta4
);
sqr1
=
vmulq_f32
(
sqr1
,
in1
);
sqr2
=
vmulq_f32
(
sqr2
,
in2
);
sqr3
=
vmulq_f32
(
sqr3
,
in3
);
sqr4
=
vmulq_f32
(
sqr4
,
in4
);
vst1q_f32
(
out_tmp_ptr
,
sqr1
);
vst1q_f32
(
out_tmp_ptr
+
4
,
sqr2
);
vst1q_f32
(
out_tmp_ptr
+
8
,
sqr3
);
vst1q_f32
(
out_tmp_ptr
+
12
,
sqr4
);
sqr_buffer_ptr
+=
4
*
4
;
input_ptr
+=
4
*
4
;
out_tmp_ptr
+=
4
*
4
;
}
for
(
int
i
=
0
;
i
<
m16n4
;
i
++
)
{
sqr4
=
vld1q_f32
(
sqr_buffer_ptr
);
in4
=
vld1q_f32
(
input_ptr
);
sqr4
=
vmlaq_f32
(
k4
,
sqr4
,
alpha4
);
sqr4
=
pow_ps
(
sqr4
,
-
beta4
);
sqr4
=
vmulq_f32
(
sqr4
,
in4
);
vst1q_f32
(
out_tmp_ptr
,
sqr4
);
sqr_buffer_ptr
+=
4
;
input_ptr
+=
4
;
out_tmp_ptr
+=
4
;
}
for
(
int
i
=
0
;
i
<
m16m4
;
i
++
)
{
out_tmp_ptr
[
i
]
=
input_ptr
[
i
]
/
pow
(
k
+
alpha
*
sqr_buffer_ptr
[
i
],
beta
);
}
#else
for
(
int
i
=
0
;
i
<
input
.
numel
();
i
++
)
{
out_ptr
[
i
]
=
input_ptr
[
i
]
/
pow
(
sqr_buffer_ptr
[
i
],
beta
);
out_ptr
[
i
]
=
input_ptr
[
i
]
/
pow
(
k
+
alpha
*
sqr_buffer_ptr
[
i
],
beta
);
}
#endif
}
};
...
...
tools/run.sh
0 → 100644
浏览文件 @
b37c8fef
#!/usr/bin/env sh
# auto build and run
BUILDNET
=
"googlenet"
TESTUNIT
=
"test-googlenet"
push_fn
()
{
sh build.sh android
${
BUILDNET
}
MODELS_PATH
=
"../test/models/*"
MODELS_SRC
=
"../../test/models"
IMAGE_PATH
=
"../test/images/*"
EXE_FILE
=
"../test/build/*"
EXE_DIR
=
"data/local/tmp/bin"
adb shell
mkdir
${
EXE_DIR
}
MODELS_DIR
=
"data/local/tmp/models"
adb shell
mkdir
${
MODELS_DIR
}
for
file
in
`
ls
${
MODELS_SRC
}
`
do
adb shell
mkdir
${
MODELS_DIR
}
"/"
${
file
}
done
IMAGES_DIR
=
"data/local/tmp/images"
adb shell
mkdir
${
IMAGES_DIR
}
LIB_PATH
=
"../build/release/arm-v7a/build/*"
adb push
${
EXE_FILE
}
${
EXE_DIR
}
adb push
${
LIB_PATH
}
${
EXE_DIR
}
adb push
${
IMAGE_PATH
}
${
IMAGES_DIR
}
adb push
${
MODELS_PATH
}
${
MODELS_DIR
}
adb shell
"cd /data/local/tmp/bin; LD_LIBRARY_PATH=. ./
${
TESTUNIT
}
"
}
push_fn
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录