Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
b1e877e9
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b1e877e9
编写于
10月 17, 2018
作者:
D
dolphin8
浏览文件
操作
浏览文件
下载
差异文件
merge
上级
386e6b42
752befc4
变更
31
隐藏空白更改
内联
并排
Showing
31 changed file
with
1007 addition
and
169 deletion
+1007
-169
CMakeLists.txt
CMakeLists.txt
+5
-6
src/framework/cl/cl_half.cpp
src/framework/cl/cl_half.cpp
+6
-0
src/framework/cl/cl_half.h
src/framework/cl/cl_half.h
+6
-0
src/framework/cl/cl_helper.h
src/framework/cl/cl_helper.h
+10
-0
src/framework/cl/cl_image.cpp
src/framework/cl/cl_image.cpp
+64
-4
src/framework/cl/cl_image.h
src/framework/cl/cl_image.h
+33
-24
src/framework/cl/cl_tensor.h
src/framework/cl/cl_tensor.h
+44
-8
src/framework/executor.cpp
src/framework/executor.cpp
+8
-5
src/framework/operator.cpp
src/framework/operator.cpp
+4
-20
src/io/ios_io/PaddleMobileCPU.h
src/io/ios_io/PaddleMobileCPU.h
+0
-0
src/io/ios_io/PaddleMobileCPU.mm
src/io/ios_io/PaddleMobileCPU.mm
+0
-0
src/io/ios_io/op_symbols.h
src/io/ios_io/op_symbols.h
+0
-0
src/io/jni/PML.java
src/io/jni/PML.java
+0
-0
src/io/jni/paddle_mobile_jni.cpp
src/io/jni/paddle_mobile_jni.cpp
+0
-0
src/io/jni/paddle_mobile_jni.h
src/io/jni/paddle_mobile_jni.h
+0
-0
src/operators/kernel/cl/batchnorm_kernel.cpp
src/operators/kernel/cl/batchnorm_kernel.cpp
+4
-2
src/operators/kernel/cl/cl_kernel/cl_common.h
src/operators/kernel/cl/cl_kernel/cl_common.h
+2
-4
src/operators/kernel/cl/cl_kernel/conv_add_bn_relu_kernel.cl
src/operators/kernel/cl/cl_kernel/conv_add_bn_relu_kernel.cl
+322
-4
src/operators/kernel/cl/cl_kernel/conv_add_kernel.cl
src/operators/kernel/cl/cl_kernel/conv_add_kernel.cl
+320
-2
src/operators/kernel/cl/cl_kernel/conv_kernel.cl
src/operators/kernel/cl/cl_kernel/conv_kernel.cl
+1
-0
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
+54
-6
src/operators/kernel/cl/conv_add_kernel.cpp
src/operators/kernel/cl/conv_add_kernel.cpp
+32
-4
src/operators/kernel/cl/conv_kernel.cpp
src/operators/kernel/cl/conv_kernel.cpp
+13
-1
src/operators/kernel/cl/depthwise_conv_kernel.cpp
src/operators/kernel/cl/depthwise_conv_kernel.cpp
+2
-1
src/operators/kernel/cl/elementwise_add_kernel.cpp
src/operators/kernel/cl/elementwise_add_kernel.cpp
+20
-19
src/operators/kernel/cl/feed_kernel.cpp
src/operators/kernel/cl/feed_kernel.cpp
+3
-9
src/operators/kernel/cl/fetch_kernel.cpp
src/operators/kernel/cl/fetch_kernel.cpp
+34
-33
src/operators/kernel/cl/reshape_kernel.cpp
src/operators/kernel/cl/reshape_kernel.cpp
+10
-10
src/operators/kernel/cl/softmax_kernel.cpp
src/operators/kernel/cl/softmax_kernel.cpp
+8
-5
test/net/test_mobilenet_GPU.cpp
test/net/test_mobilenet_GPU.cpp
+1
-1
tools/pre-commit.hooks/clang-format.hook
tools/pre-commit.hooks/clang-format.hook
+1
-1
未找到文件。
CMakeLists.txt
浏览文件 @
b1e877e9
...
...
@@ -16,7 +16,6 @@ file(GLOB_RECURSE PADDLE_MOBILE_CC src/*.cc src/*.cpp src/*.c src/*.mm)
file
(
GLOB_RECURSE PADDLE_MOBILE_H src/*.h
)
include_directories
(
src/
)
if
(
IS_IOS
)
set
(
CMAKE_CXX_FLAGS
"-mfpu=neon -marm -fobjc-abi-version=2 -fobjc-arc -std=gnu++11 -stdlib=libc++ -O3 -s -isysroot
${
CMAKE_OSX_SYSROOT
}
${
CMAKE_CXX_FLAGS
}
"
)
else
()
...
...
@@ -145,16 +144,16 @@ endif()
if
(
ANDROID_NDK_TOOLCHAIN_INCLUDED
)
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-llog"
)
else
()
list
(
REMOVE_ITEM PADDLE_MOBILE_H
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/jni/paddle_mobile_jni.h
)
list
(
REMOVE_ITEM PADDLE_MOBILE_CC
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/jni/paddle_mobile_jni.cpp
)
list
(
REMOVE_ITEM PADDLE_MOBILE_H
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/
io/
jni/paddle_mobile_jni.h
)
list
(
REMOVE_ITEM PADDLE_MOBILE_CC
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/
io/
jni/paddle_mobile_jni.cpp
)
list
(
REMOVE_ITEM PADDLE_MOBILE_H
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/operators/math/math_func_neon.h
)
endif
()
if
(
IS_IOS
)
else
()
list
(
REMOVE_ITEM PADDLE_MOBILE_H
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/ios_io/PaddleMobileCPU.h
)
list
(
REMOVE_ITEM PADDLE_MOBILE_CC
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/ios_io/PaddleMobileCPU.mm
)
list
(
REMOVE_ITEM PADDLE_MOBILE_H
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/ios_io/op_symbols.h
)
list
(
REMOVE_ITEM PADDLE_MOBILE_H
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/io
/io
s_io/PaddleMobileCPU.h
)
list
(
REMOVE_ITEM PADDLE_MOBILE_CC
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/io
/io
s_io/PaddleMobileCPU.mm
)
list
(
REMOVE_ITEM PADDLE_MOBILE_H
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/io
/io
s_io/op_symbols.h
)
endif
()
set
(
CMAKE_VERBOSE_MAKEFILE ON
)
...
...
src/framework/cl/cl_half.cpp
浏览文件 @
b1e877e9
...
...
@@ -16,6 +16,9 @@ limitations under the License. */
#include "framework/cl/cl_half.h"
namespace
paddle_mobile
{
namespace
framework
{
static
const
uint32_t
mantissatable
[
2048
]
=
{
0x00000000
,
0x33800000
,
0x34000000
,
0x34400000
,
0x34800000
,
0x34a00000
,
0x34c00000
,
0x34e00000
,
0x35000000
,
0x35100000
,
0x35200000
,
0x35300000
,
...
...
@@ -510,3 +513,6 @@ void HalfArray2FloatArray(half_t *h_array, float *f_array, int count) {
f_array
[
i
]
=
Half2Float
(
h_array
[
i
]);
}
}
}
// namespace framework
}
// namespace paddle_mobile
src/framework/cl/cl_half.h
浏览文件 @
b1e877e9
...
...
@@ -15,6 +15,9 @@ limitations under the License. */
#pragma once
#include <cstdint>
namespace
paddle_mobile
{
namespace
framework
{
typedef
uint16_t
half_t
;
half_t
Float2Half
(
float
f
);
...
...
@@ -24,3 +27,6 @@ float Half2Float(half_t h);
void
FloatArray2HalfArray
(
float
*
f_array
,
half_t
*
h_array
,
int
count
);
void
HalfArray2FloatArray
(
half_t
*
h_array
,
float
*
f_array
,
int
count
);
}
// namespace framework
}
// namespace paddle_mobile
src/framework/cl/cl_helper.h
浏览文件 @
b1e877e9
...
...
@@ -64,6 +64,16 @@ class CLHelper {
auto
work_size_2
=
n
*
h
;
return
{
work_size_0
,
work_size_1
,
work_size_2
};
}
else
if
(
image_dim
.
size
()
==
2
)
{
auto
image_width
=
image
.
ImageWidth
();
auto
work_size_0
=
image_width
/
image_dim
[
1
];
auto
work_size_1
=
image_dim
[
1
];
auto
work_size_2
=
image_dim
[
0
];
return
{
work_size_0
,
work_size_1
,
work_size_2
};
}
PADDLE_MOBILE_THROW_EXCEPTION
(
"not support this dim, need imp"
);
...
...
src/framework/cl/cl_image.cpp
浏览文件 @
b1e877e9
...
...
@@ -12,7 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "cl_image.h"
#include "framework/cl/cl_image.h"
namespace
paddle_mobile
{
namespace
framework
{
void
CLImageToTensor
(
CLImage
*
cl_image
,
Tensor
*
tensor
,
...
...
@@ -37,7 +38,7 @@ void CLImageToTensor(CLImage *cl_image, Tensor *tensor,
size_t
width
=
W
*
((
C
+
3
)
/
4
);
size_t
height
=
H
*
N
;
float
*
p
=
tensor
->
data
<
float
>
();
float
*
p
=
tensor
->
mutable_
data
<
float
>
();
half
imageData
[
width
*
height
*
4
];
cl_int
err
;
cl_mem
image
=
cl_image
->
GetCLImage
();
...
...
@@ -63,7 +64,7 @@ void CLImageToTensor(CLImage *cl_image, Tensor *tensor,
}
if
(
err
!=
CL_SUCCESS
)
{
// TODO: error handling
CL_CHECK_ERRORS
(
err
);
}
}
void
TensorToCLImage
(
const
Tensor
*
tensor
,
CLImage
*
cl_image
,
...
...
@@ -97,7 +98,7 @@ void TensorToCLImage(const Tensor *tensor, CLImage *cl_image,
err
=
clEnqueueReadImage
(
commandQueue
,
image
,
CL_TRUE
,
origin
,
region
,
0
,
0
,
imageData
,
0
,
NULL
,
NULL
);
if
(
err
!=
CL_SUCCESS
)
{
// TODO: error handling
CL_CHECK_ERRORS
(
err
);
}
size_t
i0
=
0
;
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
...
...
@@ -116,5 +117,64 @@ void TensorToCLImage(const Tensor *tensor, CLImage *cl_image,
i0
+=
width
*
H
;
}
}
#ifdef PADDLE_MOBILE_DEBUG
Print
&
operator
<<
(
Print
&
printer
,
const
CLImage
&
cl_image
)
{
printer
<<
" dims: "
<<
cl_image
.
dims
()
<<
"
\n
"
;
int
stride
=
cl_image
.
numel
()
/
20
;
stride
=
stride
>
0
?
stride
:
1
;
float
*
data
=
new
float
[
cl_image
.
numel
()];
DDim
ddim
=
cl_image
.
dims
();
size_t
N
,
C
,
H
,
W
;
if
(
ddim
.
size
()
==
4
)
{
N
=
ddim
[
0
];
if
(
N
<
0
)
{
N
=
1
;
}
C
=
ddim
[
1
];
H
=
ddim
[
2
];
W
=
ddim
[
3
];
}
else
if
(
ddim
.
size
()
==
1
)
{
N
=
1
;
C
=
ddim
[
0
];
H
=
1
;
W
=
1
;
}
size_t
width
=
W
*
((
C
+
3
)
/
4
);
size_t
height
=
H
*
N
;
float
*
p
=
data
;
half
imageData
[
width
*
height
*
4
];
cl_int
err
;
cl_mem
image
=
cl_image
.
GetCLImage
();
size_t
origin
[
3
]
=
{
0
,
0
,
0
};
size_t
region
[
3
]
=
{
width
,
height
,
1
};
err
=
clEnqueueReadImage
(
cl_image
.
CommandQueue
(),
image
,
CL_TRUE
,
origin
,
region
,
0
,
0
,
imageData
,
0
,
NULL
,
NULL
);
size_t
i0
=
0
;
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
c
=
0
;
c
<
C
;
c
++
)
{
size_t
i1
=
i0
;
for
(
int
h
=
0
;
h
<
H
;
h
++
)
{
size_t
i2
=
(
i1
<<
2
)
+
c
%
4
;
for
(
int
w
=
0
;
w
<
W
;
w
++
)
{
*
p
=
Half2Float
(
imageData
[
i2
]);
i2
+=
4
;
p
++
;
}
i1
+=
width
;
}
}
i0
+=
width
*
H
;
}
CL_CHECK_ERRORS
(
err
);
for
(
int
i
=
0
;
i
<
cl_image
.
numel
();
i
+=
stride
)
{
printer
<<
data
[
i
]
<<
" "
;
}
return
printer
;
}
#endif
}
// namespace framework
}
// namespace paddle_mobile
src/framework/cl/cl_image.h
浏览文件 @
b1e877e9
...
...
@@ -46,27 +46,28 @@ class CLImage {
/*
* need call SetTensorData first
* */
void
InitCLImage
(
cl_context
context
)
{
void
InitCLImage
(
cl_context
context
,
cl_command_queue
command_queue
)
{
if
(
tensor_data_
==
nullptr
)
{
PADDLE_MOBILE_THROW_EXCEPTION
(
" need call SetTensorData first"
);
}
if
(
tensor_dims_
.
size
()
<=
2
)
{
InitCLImage2C
(
context
,
tensor_data_
,
tensor_dims_
);
InitCLImage2C
(
context
,
command_queue
,
tensor_data_
,
tensor_dims_
);
}
else
{
InitCLImage
(
context
,
tensor_data_
,
tensor_dims_
);
InitCLImage
(
context
,
command_queue
,
tensor_data_
,
tensor_dims_
);
}
delete
[](
tensor_data_
);
tensor_data_
=
nullptr
;
initialized_
=
true
;
}
void
InitEmptyImage
(
cl_context
context
,
const
DDim
&
dim
)
{
void
InitEmptyImage
(
cl_context
context
,
cl_command_queue
command_queue
,
const
DDim
&
dim
)
{
if
(
tensor_data_
!=
nullptr
)
{
PADDLE_MOBILE_THROW_EXCEPTION
(
" empty image tensor data shouldn't have value"
);
}
DLOG
<<
" init empty image "
;
InitCLImage
(
context
,
nullptr
,
dim
);
InitCLImage
(
context
,
command_queue
,
nullptr
,
dim
);
initialized_
=
true
;
}
...
...
@@ -93,6 +94,8 @@ class CLImage {
* */
inline
size_t
HeightOfOneBlock
()
const
{
return
height_of_one_block_
;
}
inline
cl_command_queue
CommandQueue
()
const
{
return
command_queue_
;
}
/*
* resize original tensor dim
* */
...
...
@@ -122,7 +125,9 @@ class CLImage {
const
DDim
&
dims
()
const
{
return
tensor_dims_
;
}
private:
void
InitCLImage2C
(
cl_context
context
,
float
*
tensor_data
,
const
DDim
&
dim
)
{
void
InitCLImage2C
(
cl_context
context
,
cl_command_queue
command_queue
,
float
*
tensor_data
,
const
DDim
&
dim
)
{
command_queue_
=
command_queue
;
assert
(
dim
.
size
()
<=
2
);
int
tdim
[
2
]
=
{
1
,
1
};
if
(
dim
.
size
()
==
1
)
{
...
...
@@ -138,7 +143,8 @@ class CLImage {
imageData
.
reset
(
new
half_t
[
width
*
height
*
4
]);
for
(
int
h
=
0
;
h
<
tdim
[
0
];
h
++
)
{
for
(
int
w
=
0
;
w
<
tdim
[
1
];
w
++
)
{
imageData
[(
h
*
width
+
w
/
4
)
*
4
+
(
w
%
4
)]
=
Float2Half
(
tensor_data
[
h
*
tdim
[
1
]
+
w
]);
imageData
[(
h
*
width
+
w
/
4
)
*
4
+
(
w
%
4
)]
=
Float2Half
(
tensor_data
[
h
*
tdim
[
1
]
+
w
]);
}
}
}
...
...
@@ -149,35 +155,36 @@ class CLImage {
cl_image_format
cf
=
{.
image_channel_order
=
CL_RGBA
,
.
image_channel_data_type
=
CL_HALF_FLOAT
};
cl_image_desc
cid
=
{
.
image_type
=
CL_MEM_OBJECT_IMAGE2D
,
.
image_width
=
width
,
.
image_height
=
height
,
.
image_depth
=
1
,
.
image_array_size
=
1
,
.
image_row_pitch
=
0
,
.
image_slice_pitch
=
0
,
.
num_mip_levels
=
0
,
.
num_samples
=
0
,
// .buffer = nullptr
.
image_type
=
CL_MEM_OBJECT_IMAGE2D
,
.
image_width
=
width
,
.
image_height
=
height
,
.
image_depth
=
1
,
.
image_array_size
=
1
,
.
image_row_pitch
=
0
,
.
image_slice_pitch
=
0
,
.
num_mip_levels
=
0
,
.
num_samples
=
0
,
// .buffer = nullptr
};
cid
.
buffer
=
nullptr
;
cl_int
err
;
cl_image_
=
clCreateImage
(
context
,
CL_MEM_READ_WRITE
|
(
data
?
CL_MEM_COPY_HOST_PTR
:
0
),
&
cf
,
// const cl_image_format *image_format
&
cid
,
// const cl_image_desc *image_desc
data
,
// void *host_ptr
&
err
);
context
,
CL_MEM_READ_WRITE
|
(
data
?
CL_MEM_COPY_HOST_PTR
:
0
),
&
cf
,
// const cl_image_format *image_format
&
cid
,
// const cl_image_desc *image_desc
data
,
// void *host_ptr
&
err
);
if
(
err
!=
CL_SUCCESS
)
{
CL_CHECK_ERRORS
(
err
);
PADDLE_MOBILE_THROW_EXCEPTION
(
" create image 2d error "
);
}
}
void
InitCLImage
(
cl_context
context
,
float
*
tensor_data
,
const
DDim
&
dim
)
{
void
InitCLImage
(
cl_context
context
,
cl_command_queue
command_queue
,
float
*
tensor_data
,
const
DDim
&
dim
)
{
DLOG
<<
" tensor dim: "
<<
dim
;
// NCHW -> [W * (C+3)/4, H * N]
tensor_dims_
=
dim
;
command_queue_
=
command_queue
;
if
(
tensor_data
)
{
tensor_data_
=
tensor_data
;
}
...
...
@@ -203,6 +210,7 @@ class CLImage {
image_width_
=
width
;
image_height_
=
height
;
image_dims_
=
make_ddim
({
image_width_
,
image_height_
});
c_block_
=
W
/
width
;
std
::
unique_ptr
<
half_t
[]
>
imageData
{};
int
count
=
0
;
...
...
@@ -241,6 +249,7 @@ class CLImage {
DDim
image_dims_
;
float
*
tensor_data_
;
cl_context
context_
;
cl_command_queue
command_queue_
;
};
void
TensorToCLImage
(
Tensor
*
tensor
,
CLImage
*
image
,
...
...
src/framework/cl/cl_tensor.h
浏览文件 @
b1e877e9
...
...
@@ -28,7 +28,19 @@ namespace framework {
class
CLTensor
:
TensorBase
{
public:
explicit
CLTensor
(
cl_context
context
)
:
context_
(
context
)
{}
CLTensor
(
cl_context
context
,
cl_command_queue
command_queue
)
:
context_
(
context
),
command_queue_
(
command_queue
)
{}
CLTensor
()
=
default
;
/*
* if init method haven't set context and command_queue, need set
* */
void
SetContextAndCommandQueue
(
cl_context
context
,
cl_command_queue
command_queue
)
{
context_
=
context
;
command_queue_
=
command_queue
;
}
/*! Resize the dimensions of the memory block. */
inline
CLTensor
&
Resize
(
const
DDim
&
dims
)
{
...
...
@@ -39,7 +51,8 @@ class CLTensor : TensorBase {
template
<
typename
T
>
inline
T
mutable_with_data
(
void
*
data
)
{
int64_t
size
=
numel
()
*
sizeof
(
float
);
holder_
.
reset
(
new
PlaceholderImpl
(
size
,
data
,
typeid
(
T
),
context_
));
holder_
.
reset
(
new
PlaceholderImpl
(
size
,
data
,
typeid
(
T
),
context_
,
command_queue_
));
return
reinterpret_cast
<
T
>
(
reinterpret_cast
<
void
*>
(
reinterpret_cast
<
uintptr_t
>
(
holder_
->
ptr
())));
}
...
...
@@ -51,7 +64,7 @@ class CLTensor : TensorBase {
PADDLE_MOBILE_ENFORCE
(
numel
()
>=
0
,
"the Tensor's numel must >=0."
)
int64_t
size
=
numel
()
*
SizeOfType
(
type
);
if
(
holder_
==
nullptr
||
holder_
->
size
()
<
size
+
offset_
)
{
holder_
.
reset
(
new
PlaceholderImpl
(
size
,
type
,
context_
));
holder_
.
reset
(
new
PlaceholderImpl
(
size
,
type
,
context_
,
command_queue_
));
offset_
=
0
;
}
return
reinterpret_cast
<
void
*>
(
...
...
@@ -85,6 +98,7 @@ class CLTensor : TensorBase {
private:
cl_context
context_
;
cl_command_queue
command_queue_
;
/*
* virtual ~Placeholder() = default;
...
...
@@ -99,20 +113,31 @@ class CLTensor : TensorBase {
* */
struct
PlaceholderImpl
:
public
Placeholder
{
PlaceholderImpl
(
size_t
size
,
void
*
input
,
std
::
type_index
type
,
cl_context
context
)
cl_context
context
,
cl_command_queue
command_queue
)
:
ptr_
(
clCreateBuffer
(
context
,
CL_MEM_READ_ONLY
|
CL_MEM_COPY_HOST_PTR
,
size
,
reinterpret_cast
<
void
*>
(
input
),
NULL
)),
size_
(
size
),
type_
(
type
)
{}
type_
(
type
),
command_queue_
(
command_queue
)
{}
PlaceholderImpl
(
size_t
size
,
std
::
type_index
type
,
cl_context
context
)
PlaceholderImpl
(
size_t
size
,
std
::
type_index
type
,
cl_context
context
,
cl_command_queue
command_queue
)
:
ptr_
(
clCreateBuffer
(
context
,
CL_MEM_READ_WRITE
,
size
,
NULL
,
NULL
)),
size_
(
size
),
type_
(
type
)
{}
type_
(
type
),
command_queue_
(
command_queue
)
{}
virtual
size_t
size
()
const
{
return
size_
;
}
virtual
void
*
ptr
()
const
{
return
static_cast
<
void
*>
(
ptr_
.
get
());
}
virtual
void
*
ptr
()
const
{
if
(
host_ptr_
)
{
delete
(
host_ptr_
);
}
char
*
host_ptr
=
new
char
[
size_
];
clEnqueueReadBuffer
(
command_queue_
,
ptr_
.
get
(),
CL_TRUE
,
0
,
size_
,
host_ptr
,
0
,
NULL
,
NULL
);
return
static_cast
<
void
*>
(
host_ptr
);
}
virtual
std
::
type_index
type
()
const
{
return
type_
;
}
...
...
@@ -124,6 +149,17 @@ class CLTensor : TensorBase {
/* the current type of memory */
std
::
type_index
type_
;
cl_command_queue
command_queue_
;
~
PlaceholderImpl
()
{
if
(
host_ptr_
)
{
delete
(
host_ptr_
);
}
}
private:
void
*
host_ptr_
;
};
};
...
...
src/framework/executor.cpp
浏览文件 @
b1e877e9
...
...
@@ -87,7 +87,7 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
for
(
int
i
=
0
;
i
<
blocks
.
size
();
++
i
)
{
std
::
shared_ptr
<
framework
::
BlockDesc
>
block_desc
=
blocks
[
i
];
std
::
vector
<
std
::
shared_ptr
<
framework
::
OpDesc
>>
ops
=
block_desc
->
Ops
();
for
(
int
j
=
0
;
j
<
debug_to
;
++
j
)
{
for
(
int
j
=
0
;
j
<
ops
.
size
()
;
++
j
)
{
std
::
shared_ptr
<
framework
::
OpDesc
>
op
=
ops
[
j
];
DLOG
<<
"create op: "
<<
j
<<
" "
<<
op
->
Type
();
auto
op_base
=
framework
::
OpRegistry
<
Dtype
>::
CreateOp
(
...
...
@@ -416,7 +416,7 @@ std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
}
}
#else
for
(
int
i
=
0
;
i
<
debug_to
;
i
++
)
{
for
(
int
i
=
0
;
i
<
ops
.
size
()
;
i
++
)
{
#ifdef PADDLE_MOBILE_PROFILE
struct
timespec
ts
;
clock_gettime
(
CLOCK_MONOTONIC
,
&
ts
);
...
...
@@ -953,12 +953,14 @@ void Executor<GPU_CL, Precision::FP32>::InitMemory() {
if
(
var_desc
->
Type
()
==
framework
::
VARTYPE_TYPE_LOD_TENSOR
)
{
auto
cl_image
=
var
->
template
GetMutable
<
framework
::
CLImage
>();
cl_context
context
=
program_
.
scope
->
GetCLScpoe
()
->
Context
();
cl_command_queue
command_queue
=
program_
.
scope
->
GetCLScpoe
()
->
CommandQueue
();
const
framework
::
TensorDesc
&
desc
=
var_desc
->
Tensor_desc
();
// framework::DDim ddim = framework::make_ddim(desc.Dims());
framework
::
DDim
ddim
=
cl_image
->
dims
();
DLOG
<<
var_desc
->
Name
();
cl_image
->
InitEmptyImage
(
context
,
ddim
);
cl_image
->
InitEmptyImage
(
context
,
command_queue
,
ddim
);
}
}
}
...
...
@@ -1010,11 +1012,12 @@ void Executor<GPU_CL, Precision::FP32>::InitCombineMemory() {
}
else
{
auto
cl_image
=
var
->
template
GetMutable
<
framework
::
CLImage
>();
cl_context
context
=
program_
.
scope
->
GetCLScpoe
()
->
Context
();
cl_command_queue
command_queue
=
program_
.
scope
->
GetCLScpoe
()
->
CommandQueue
();
const
framework
::
TensorDesc
&
desc
=
var_desc
->
Tensor_desc
();
framework
::
DDim
ddim
=
cl_image
->
dims
();
// framework::DDim ddim = framework::make_ddim(desc.Dims());
cl_image
->
InitEmptyImage
(
context
,
ddim
);
cl_image
->
InitEmptyImage
(
context
,
command_queue
,
ddim
);
}
}
}
...
...
src/framework/operator.cpp
浏览文件 @
b1e877e9
...
...
@@ -57,10 +57,9 @@ void OperatorBase<Dtype>::CheckAllInputOutputSet() const {}
template
<
typename
Dtype
>
void
OperatorBase
<
Dtype
>::
Run
()
{
DLOG
<<
"
begin run "
<<
type_
;
DLOG
<<
"
----- Begin run impl --- "
<<
type_
<<
" ----- "
;
RunImpl
();
DLOG
<<
" end run "
<<
type_
;
return
;
DLOG
<<
" ----- End run impl --- "
<<
type_
<<
" ----- "
;
#ifdef PADDLE_MOBILE_DEBUG
DLOG
<<
"-------------"
<<
type_
<<
"----------------------------"
;
vector
<
string
>
input_keys
=
GetInputKeys
();
...
...
@@ -75,16 +74,8 @@ void OperatorBase<Dtype>::Run() {
if
(
tensor
)
DLOG
<<
type_
<<
" input- "
<<
key
<<
"="
<<
*
tensor
;
}
else
{
CLImage
*
cl_image
=
vari
->
template
GetMutable
<
framework
::
CLImage
>();
// cl_command_queue commandQueue =
// scope_->GetCLScpoe()->CommandQueue(); Tensor
// *tmp ;
// CLImageToTensor(cl_image,tmp,commandQueue);
// tmp->Resize(cl_image->dims());
const
float
*
input
=
cl_image
->
data
<
float
>
();
if
(
cl_image
)
{
DLOG
<<
type_
<<
" input- "
<<
key
<<
"="
<<
cl_image
->
dims
();
// if(input)
// DLOG<<type_<<" input- "<<key<<"="<<*input;
DLOG
<<
type_
<<
" input- "
<<
key
<<
"="
<<
*
cl_image
;
}
}
...
...
@@ -108,15 +99,8 @@ void OperatorBase<Dtype>::Run() {
}
}
else
{
CLImage
*
cl_image
=
vari
->
template
GetMutable
<
framework
::
CLImage
>();
// cl_command_queue commandQueue =
// scope_->GetCLScpoe()->CommandQueue(); Tensor *tmp ;
// CLImageToTensor(cl_image,tmp,commandQueue);
// tmp->Resize(cl_image->dims());
if
(
cl_image
)
{
const
float
*
output
=
cl_image
->
data
<
float
>
();
DLOG
<<
type_
<<
" output- "
<<
key
<<
"="
<<
cl_image
->
dims
();
// if(output)
// DLOG<<type_<<" output- "<<key<<"="<<*output;
DLOG
<<
type_
<<
" output- "
<<
key
<<
"="
<<
*
cl_image
;
}
}
...
...
src/ios_io/PaddleMobileCPU.h
→
src/io
/io
s_io/PaddleMobileCPU.h
浏览文件 @
b1e877e9
文件已移动
src/ios_io/PaddleMobileCPU.mm
→
src/io
/io
s_io/PaddleMobileCPU.mm
浏览文件 @
b1e877e9
文件已移动
src/ios_io/op_symbols.h
→
src/io
/io
s_io/op_symbols.h
浏览文件 @
b1e877e9
文件已移动
src/jni/PML.java
→
src/
io/
jni/PML.java
浏览文件 @
b1e877e9
文件已移动
src/jni/paddle_mobile_jni.cpp
→
src/
io/
jni/paddle_mobile_jni.cpp
浏览文件 @
b1e877e9
文件已移动
src/jni/paddle_mobile_jni.h
→
src/
io/
jni/paddle_mobile_jni.h
浏览文件 @
b1e877e9
文件已移动
src/operators/kernel/cl/batchnorm_kernel.cpp
浏览文件 @
b1e877e9
...
...
@@ -49,11 +49,13 @@ bool BatchNormKernel<GPU_CL, float>::Init(BatchNormParam<GPU_CL> *param) {
framework
::
CLImage
*
new_scale
=
new
framework
::
CLImage
();
new_scale
->
SetTensorData
(
new_scale_ptr
,
variance
->
dims
());
new_scale
->
InitCLImage
(
this
->
cl_helper_
.
CLContext
());
new_scale
->
InitCLImage
(
this
->
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
());
framework
::
CLImage
*
new_bias
=
new
framework
::
CLImage
();
new_bias
->
SetTensorData
(
new_bias_ptr
,
variance
->
dims
());
new_bias
->
InitCLImage
(
this
->
cl_helper_
.
CLContext
());
new_bias
->
InitCLImage
(
this
->
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
());
param
->
SetNewScale
(
new_scale
);
param
->
SetNewBias
(
new_bias
);
...
...
src/operators/kernel/cl/cl_kernel/cl_common.h
浏览文件 @
b1e877e9
...
...
@@ -12,11 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once;
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
inline
ha
fl
4
activation
(
half4
in
inline
ha
lf
4
activation
(
half4
in
#ifdef PRELU
,
half4
prelu_alpha
...
...
@@ -28,7 +26,7 @@ inline hafl4 activation(half4 in
#endif
#ifdef RELU
fmax
(
in
,
0
.
0
);
output
=
fmax
(
in
,
(
half4
)(
0
.
0
f
)
);
#endif
return
output
;
}
src/operators/kernel/cl/cl_kernel/conv_add_bn_relu_kernel.cl
浏览文件 @
b1e877e9
...
...
@@ -12,10 +12,328 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
define
BIASE
#
define
BATCH_NORM
#
define
RELU
#
include
"conv_kernel.inc.cl"
#
undef
#
undef
#
undef
#
include
"cl_kernel/cl_common.h"
__kernel
void
conv_3x3
(
__private
const
int
global_size_dim0,
__private
const
int
global_size_dim1,
__private
const
int
global_size_dim2,
__read_only
image2d_t
input_image,
__read_only
image2d_t
filter,
#
ifdef
BIASE
__read_only
image2d_t
bias,
#
endif
#
ifdef
BATCH_NORM
__read_only
image2d_t
new_scale,
__read_only
image2d_t
new_biase,
#
endif
__write_only
image2d_t
output_image,
__private
const
int
stride,
__private
const
int
offset,
__private
const
int
input_c,
__private
const
int
dilation,
__private
const
int
input_width,/*
of
one
block
*/
__private
const
int
input_height,/*
of
one
block
*/
__private
const
int
output_width,
__private
const
int
output_height
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
int2
stride_xy
;
stride_xy.x
=
stride
;
stride_xy.y
=
stride
;
int2
ouput_pos_in_one_block
;
ouput_pos_in_one_block.x
=
out_w
;
ouput_pos_in_one_block.y
=
out_nh
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
int2
in_pos_in_one_block
;
in_pos_in_one_block.x
=
ouput_pos_in_one_block.x
*
stride
+
offset
;
in_pos_in_one_block.y
=
ouput_pos_in_one_block.y
*
stride
+
offset
;
#
ifdef
BIASE
half4
output
=
read_imageh
(
bias,
sampler,
(
int2
)(
out_c,
0
))
;
#
else
half4
output
=
0.0f
;
#
endif
half4
input[9]
;
for
(
int
i
=
0
; i < input_c; ++i) {
int2
pos_in
=
(
int2
)(
i
*
input_width
+
in_pos_in_one_block.x,
in_pos_in_one_block.y
)
;
input[0]
=
select
(
read_imageh
(
input_image,
sampler,
(
int2
)(
pos_in.x
-
dilation,
pos_in.y
-
dilation
))
,
(
half4
)(
0.0f
)
,
(
ushort4
)(
in_pos_in_one_block.x
-
dilation
<
0
|
| in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height));
input[1] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x, pos_in.y - dilation)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - dilation >= input_height));
input[2] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y - dilation)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height));
input[3] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y >= input_height));
input[4] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x, pos_in.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height));
input[5] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y >= input_height));
input[6] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height));
input[7] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + dilation >= input_height));
input[8] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)(pos_in.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || pos_in.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height));
for (int j = 0; j < 9; ++j) {
int2 fuck;
fuck.x = i * 3 + j % 3;
fuck.y = out_c * 4 * 3 + 0 * out_c * 3 + j / 3;
half4 weight_x = read_imageh(filter, sampler, fuck);
output.x += dot(input[j], weight_x);
fuck.y = out_c * 4 * 3 + 1 * out_c * 3 + j / 3;
half4 weight_y = read_imageh(filter, sampler, fuck);
output.y += dot(input[j], weight_y);
fuck.y = out_c * 4 * 3 + 2 * out_c * 3 + j / 3;
half4 weight_z = read_imageh(filter, sampler, fuck);
output.z += dot(input[j], weight_z);
fuck.y = out_c * 4 * 3 + 3 * out_c * 3 + j / 3;
half4 weight_w = read_imageh(filter, sampler, fuck);
output.w += dot(input[j], weight_w);
}
}
#ifdef BATCH_NORM
output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output = activation(output);
#endif
write_imageh(output_image, (int2)(out_c * global_size_dim1 + out_w, out_nh), output);
}
__kernel void depth_conv_3x3(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height, /* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
|
CLK_FILTER_NEAREST;
const int batch_index = out_nh / output_height;
const int out_nh_in_one_batch = out_nh % output_height;
const uint kernelHXW = 1;
int2 stride_xy = (int2)(stride, stride);
int2 ouput_pos_in_one_block = (int2)(out_w, out_nh_in_one_batch);
int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + (int2)(offset, offset);
#ifdef BIASE
half4 output = read_imageh(bias, sampler, (int2)(out_c, 0));
#else
half4 output = 0.0f;
#endif
int2 pos_in_input_block = (int2)(out_c * input_width, batch_index * input_height);
int weight_x_to = out_c * 3;
half4 inputs[9];
inputs[0] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y - 1 >= input_height));
inputs[1] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - 1 >= input_height));
inputs[2] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y - 1 >= input_height));
inputs[3] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y >= input_height));
inputs[4] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height));
inputs[5] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y >= input_height));
inputs[6] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y + 1 >= input_height));
inputs[7] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + 1 >= input_height));
inputs[8] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y + 1 >= input_height));
for (int j = 0; j < 9; ++j) {
half4 input = inputs[j];
half4 weight = read_imageh(filter, sampler, (int2)(weight_x_to + j % 3, j / 3));
output.x += input.x * weight.x;
output.y += input.y * weight.y;
output.z += input.z * weight.z;
output.w += input.w * weight.w;
}
#ifdef BATCH_NORM
output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output = activation(output);
#endif
int2 output_pos = (int2)(out_c * global_size_dim1 + out_w, out_nh);
write_imageh(output_image, output_pos, output);
}
__kernel void conv_1x1(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input_image,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height,/* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
|
CLK_FILTER_NEAREST
;
const
uint
kernelHXW
=
1
;
int2
stride_xy
=
(
int2
)(
stride,
stride
)
;
int2
ouput_pos_in_one_block
=
(
int2
)(
out_w,
out_nh
)
;
int2
in_pos_in_one_block
=
ouput_pos_in_one_block
*
stride_xy
+
(
int2
)(
offset,
offset
)
;
#
ifdef
BIASE
half4
output
=
read_imageh
(
bias,
sampler,
(
int2
)(
out_c,
0
))
;
#
else
half4
output
=
0.0f
;
#
endif
for
(
int
i
=
0
; i < input_c; ++i) {
int2
pos_in
=
(
int2
)(
i
*
input_width
+
in_pos_in_one_block.x,
in_pos_in_one_block.y
)
;
if
(
pos_in.x
>=0
&&
pos_in.y
>=
0
&&
pos_in.x
<
input_width
&&
pos_in.y
<
input_height
)
{
half4
input
=
read_imageh
(
input_image,
sampler,
pos_in
)
;
half4
weight_x
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
0
))
;
output.x
+=
dot
(
input,
weight_x
)
;
half4
weight_y
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
1
))
;
output.y
+=
dot
(
input,
weight_y
)
;
half4
weight_z
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
2
))
;
output.z
+=
dot
(
input,
weight_z
)
;
half4
weight_w
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
3
))
;
output.w
+=
dot
(
input,
weight_w
)
;
}
}
#
ifdef
BATCH_NORM
output
=
output
*
read_imageh
(
new_scale,
sampler,
(
int2
)(
out_c,
0
))
+
read_imageh
(
new_biase,
sampler,
(
int2
)(
out_c,
0
))
;
#
endif
#
ifdef
RELU
output
=
activation
(
output
)
;
#
endif
int2
output_pos
=
(
int2
)(
out_c
*
global_size_dim1
+
out_w,
out_nh
)
;
write_imageh
(
output_image,
output_pos,
output
)
;
}
src/operators/kernel/cl/cl_kernel/conv_add_kernel.cl
浏览文件 @
b1e877e9
...
...
@@ -12,6 +12,324 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
#
define
BIASE
#
include
"conv_kernel.inc.cl"
#
undef
__kernel
void
conv_3x3
(
__private
const
int
global_size_dim0,
__private
const
int
global_size_dim1,
__private
const
int
global_size_dim2,
__read_only
image2d_t
input_image,
__read_only
image2d_t
filter,
#
ifdef
BIASE
__read_only
image2d_t
bias,
#
endif
#
ifdef
BATCH_NORM
__read_only
image2d_t
new_scale,
__read_only
image2d_t
new_biase,
#
endif
__write_only
image2d_t
output_image,
__private
const
int
stride,
__private
const
int
offset,
__private
const
int
input_c,
__private
const
int
dilation,
__private
const
int
input_width,/*
of
one
block
*/
__private
const
int
input_height,/*
of
one
block
*/
__private
const
int
output_width,
__private
const
int
output_height
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
int2
stride_xy
;
stride_xy.x
=
stride
;
stride_xy.y
=
stride
;
int2
ouput_pos_in_one_block
;
ouput_pos_in_one_block.x
=
out_w
;
ouput_pos_in_one_block.y
=
out_nh
;
int2
in_pos_in_one_block
;
in_pos_in_one_block.x
=
ouput_pos_in_one_block.x
*
stride
+
offset
;
in_pos_in_one_block.y
=
ouput_pos_in_one_block.y
*
stride
+
offset
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
#
ifdef
BIASE
half4
output
=
read_imageh
(
bias,
sampler,
(
int2
)(
out_c,
0
))
;
#
else
half4
output
=
0.0f
;
#
endif
half4
input[9]
;
for
(
int
i
=
0
; i < input_c; ++i) {
int2
pos_in
=
(
int2
)(
i
*
input_width
+
in_pos_in_one_block.x,
in_pos_in_one_block.y
)
;
input[0]
=
select
(
read_imageh
(
input_image,
sampler,
(
int2
)(
pos_in.x
-
dilation,
pos_in.y
-
dilation
))
,
(
half4
)(
0.0f
)
,
(
ushort4
)(
in_pos_in_one_block.x
-
dilation
<
0
|
| in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height));
input[1] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x, pos_in.y - dilation)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - dilation >= input_height));
input[2] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y - dilation)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height));
input[3] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y >= input_height));
input[4] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x, pos_in.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height));
input[5] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y >= input_height));
input[6] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height));
input[7] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + dilation >= input_height));
input[8] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)(pos_in.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || pos_in.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height));
for (int j = 0; j < 9; ++j) {
int2 fuck;
fuck.x = i * 3 + j % 3;
fuck.y = out_c * 4 * 3 + 0 * out_c * 3 + j / 3;
half4 weight_x = read_imageh(filter, sampler, fuck);
output.x += dot(input[j], weight_x);
fuck.y = out_c * 4 * 3 + 1 * out_c * 3 + j / 3;
half4 weight_y = read_imageh(filter, sampler, fuck);
output.y += dot(input[j], weight_y);
fuck.y = out_c * 4 * 3 + 2 * out_c * 3 + j / 3;
half4 weight_z = read_imageh(filter, sampler, fuck);
output.z += dot(input[j], weight_z);
fuck.y = out_c * 4 * 3 + 3 * out_c * 3 + j / 3;
half4 weight_w = read_imageh(filter, sampler, fuck);
output.w += dot(input[j], weight_w);
}
}
#ifdef BATCH_NORM
output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output = activation(output);
#endif
write_imageh(output_image, (int2)(out_c * global_size_dim1 + out_w, out_nh), output);
}
__kernel void depth_conv_3x3(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height, /* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
|
CLK_FILTER_NEAREST;
const int batch_index = out_nh / output_height;
const int out_nh_in_one_batch = out_nh % output_height;
const uint kernelHXW = 1;
int2 stride_xy = (int2)(stride, stride);
int2 ouput_pos_in_one_block = (int2)(out_w, out_nh_in_one_batch);
int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + (int2)(offset, offset);
#ifdef BIASE
half4 output = read_imageh(bias, sampler, (int2)(out_c, 0));
#else
half4 output = 0.0f;
#endif
int2 pos_in_input_block = (int2)(out_c * input_width, batch_index * input_height);
int weight_x_to = out_c * 3;
half4 inputs[9];
inputs[0] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y - 1 >= input_height));
inputs[1] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - 1 >= input_height));
inputs[2] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y - 1 >= input_height));
inputs[3] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y >= input_height));
inputs[4] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height));
inputs[5] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y >= input_height));
inputs[6] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y + 1 >= input_height));
inputs[7] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + 1 >= input_height));
inputs[8] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
(half4)(0.0f),
(ushort4)(in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y + 1 >= input_height));
for (int j = 0; j < 9; ++j) {
half4 input = inputs[j];
half4 weight = read_imageh(filter, sampler, (int2)(weight_x_to + j % 3, j / 3));
output.x += input.x * weight.x;
output.y += input.y * weight.y;
output.z += input.z * weight.z;
output.w += input.w * weight.w;
}
#ifdef BATCH_NORM
output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output = activation(output);
#endif
int2 output_pos = (int2)(out_c * global_size_dim1 + out_w, out_nh);
write_imageh(output_image, output_pos, output);
}
__kernel void conv_1x1(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input_image,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height,/* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
|
CLK_FILTER_NEAREST
;
const
uint
kernelHXW
=
1
;
int2
stride_xy
=
(
int2
)(
stride,
stride
)
;
int2
ouput_pos_in_one_block
=
(
int2
)(
out_w,
out_nh
)
;
int2
in_pos_in_one_block
=
ouput_pos_in_one_block
*
stride_xy
+
(
int2
)(
offset,
offset
)
;
#
ifdef
BIASE
half4
output
=
read_imageh
(
bias,
sampler,
(
int2
)(
out_c,
0
))
;
#
else
half4
output
=
0.0f
;
#
endif
for
(
int
i
=
0
; i < input_c; ++i) {
int2
pos_in
=
(
int2
)(
i
*
input_width
+
in_pos_in_one_block.x,
in_pos_in_one_block.y
)
;
if
(
pos_in.x
>=0
&&
pos_in.y
>=
0
&&
pos_in.x
<
input_width
&&
pos_in.y
<
input_height
)
{
half4
input
=
read_imageh
(
input_image,
sampler,
pos_in
)
;
half4
weight_x
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
0
))
;
output.x
+=
dot
(
input,
weight_x
)
;
half4
weight_y
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
1
))
;
output.y
+=
dot
(
input,
weight_y
)
;
half4
weight_z
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
2
))
;
output.z
+=
dot
(
input,
weight_z
)
;
half4
weight_w
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
3
))
;
output.w
+=
dot
(
input,
weight_w
)
;
}
}
#
ifdef
BATCH_NORM
output
=
output
*
read_imageh
(
new_scale,
sampler,
(
int2
)(
out_c,
0
))
+
read_imageh
(
new_biase,
sampler,
(
int2
)(
out_c,
0
))
;
#
endif
#
ifdef
RELU
output
=
activation
(
output
)
;
#
endif
int2
output_pos
=
(
int2
)(
out_c
*
global_size_dim1
+
out_w,
out_nh
)
;
write_imageh
(
output_image,
output_pos,
output
)
;
}
src/operators/kernel/cl/cl_kernel/conv_kernel.cl
浏览文件 @
b1e877e9
...
...
@@ -19,6 +19,7 @@ __kernel void conv_3x3(__private const int global_size_dim0,
__private
const
int
global_size_dim2,
__read_only
image2d_t
input_image,
__read_only
image2d_t
filter,
#
ifdef
BIASE
__read_only
image2d_t
bias,
#
endif
...
...
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
浏览文件 @
b1e877e9
...
...
@@ -29,8 +29,10 @@ bool ConvAddBNReluKernel<GPU_CL, float>::Init(
param
->
Paddings
()[
0
]
==
param
->
Paddings
()[
1
],
"need equal"
);
param
->
Filter
()
->
InitCLImage
(
cl_helper_
.
CLContext
());
param
->
Bias
()
->
InitCLImage
(
cl_helper_
.
CLContext
());
param
->
Filter
()
->
InitCLImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
param
->
Bias
()
->
InitCLImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
// const CL *mean = param->InputMean();
const
framework
::
CLImage
*
mean
=
param
->
InputMean
();
...
...
@@ -38,6 +40,11 @@ bool ConvAddBNReluKernel<GPU_CL, float>::Init(
const
framework
::
CLImage
*
scale
=
param
->
InputScale
();
const
framework
::
CLImage
*
bias
=
param
->
InputBias
();
const
float
epsilon
=
param
->
Epsilon
();
//
// DLOG << " climage mean: " << *mean;
// DLOG << " climage variance: " << *variance;
// DLOG << " climage scale: " << *scale;
// DLOG << " climage bias: " << *bias;
auto
mean_ptr
=
mean
->
data
<
float
>
();
auto
variance_ptr
=
variance
->
data
<
float
>
();
...
...
@@ -62,12 +69,22 @@ bool ConvAddBNReluKernel<GPU_CL, float>::Init(
framework
::
CLImage
*
new_scale
=
new
framework
::
CLImage
();
new_scale
->
SetTensorData
(
new_scale_ptr
,
variance
->
dims
());
new_scale
->
InitCLImage
(
this
->
cl_helper_
.
CLContext
());
new_scale
->
InitCLImage
(
this
->
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
DLOG
<<
" climage - y bias: "
<<
*
(
param
->
Bias
());
DLOG
<<
" climage - new scale: "
<<
*
new_scale
;
framework
::
CLImage
*
new_bias
=
new
framework
::
CLImage
();
new_bias
->
SetTensorData
(
new_bias_ptr
,
variance
->
dims
());
new_bias
->
InitCLImage
(
this
->
cl_helper_
.
CLContext
());
new_bias
->
InitCLImage
(
this
->
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
DLOG
<<
" climage - new bias: "
<<
*
new_bias
;
DLOG
<<
" climage - filter: "
<<
*
(
param
->
Filter
());
param
->
SetNewScale
(
new_scale
);
param
->
SetNewBias
(
new_bias
);
...
...
@@ -113,7 +130,7 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
auto
biase
=
param
.
Bias
()
->
GetCLImage
();
auto
new_scale
=
param
.
NewScale
()
->
GetCLImage
();
auto
new_bias
=
param
.
NewBias
()
->
GetCLImage
();
auto
output
=
param
.
Output
();
auto
output
=
param
.
Output
()
->
GetCLImage
()
;
int
stride
=
param
.
Strides
()[
0
];
int
offset
=
param
.
Offset
();
int
input_c
=
param
.
Input
()
->
CBlock
();
...
...
@@ -126,23 +143,54 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_scale
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
new_bias
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_width
);
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
...
...
src/operators/kernel/cl/conv_add_kernel.cpp
浏览文件 @
b1e877e9
...
...
@@ -25,8 +25,10 @@ bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
param
->
Filter
()
->
dims
()[
2
]
==
param
->
Filter
()
->
dims
()[
3
]
&&
param
->
Paddings
()[
0
]
==
param
->
Paddings
()[
1
],
"need equal"
);
param
->
Filter
()
->
InitCLImage
(
cl_helper_
.
CLContext
());
param
->
Bias
()
->
InitCLImage
(
cl_helper_
.
CLContext
());
param
->
Filter
()
->
InitCLImage
(
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
());
param
->
Bias
()
->
InitCLImage
(
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
());
int
offset
=
static_cast
<
int
>
(
param
->
Filter
()
->
dims
()[
2
])
/
2
-
static_cast
<
int
>
(
param
->
Paddings
()[
1
]);
...
...
@@ -71,27 +73,53 @@ void ConvAddKernel<GPU_CL, float>::Compute(
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_width
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
...
...
src/operators/kernel/cl/conv_kernel.cpp
浏览文件 @
b1e877e9
...
...
@@ -26,7 +26,8 @@ bool ConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
param
->
Paddings
()[
0
]
==
param
->
Paddings
()[
1
],
"need equal"
);
param
->
Filter
()
->
InitCLImage
(
cl_helper_
.
CLContext
());
param
->
Filter
()
->
InitCLImage
(
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
());
int
offset
=
static_cast
<
int
>
(
param
->
Filter
()
->
dims
()[
2
])
/
2
-
static_cast
<
int
>
(
param
->
Paddings
()[
1
]);
...
...
@@ -95,6 +96,17 @@ void ConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> ¶m) {
cl_int
status
;
DLOG
<<
" begin set kernel arg "
;
DLOG
<<
" c block "
<<
c_block
;
DLOG
<<
" w "
<<
w
;
DLOG
<<
" nh "
<<
nh
;
DLOG
<<
" stride "
<<
stride
;
DLOG
<<
" offset "
<<
offset
;
DLOG
<<
" input_c "
<<
input_c
;
DLOG
<<
" dilation "
<<
dilation
;
DLOG
<<
" input width "
<<
input_width
;
DLOG
<<
" input height "
<<
input_height
;
DLOG
<<
" output width "
<<
output_width
;
DLOG
<<
" output height "
<<
output_height
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
...
...
src/operators/kernel/cl/depthwise_conv_kernel.cpp
浏览文件 @
b1e877e9
...
...
@@ -27,7 +27,8 @@ bool DepthwiseConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
param
->
Filter
()
->
dims
()[
2
]
==
param
->
Filter
()
->
dims
()[
3
]
&&
param
->
Paddings
()[
0
]
==
param
->
Paddings
()[
1
],
"need equal"
);
param
->
Filter
()
->
InitCLImage
(
cl_helper_
.
CLContext
());
param
->
Filter
()
->
InitCLImage
(
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
());
int
offset
=
static_cast
<
int
>
(
param
->
Filter
()
->
dims
()[
2
])
/
2
-
static_cast
<
int
>
(
param
->
Paddings
()[
1
]);
param
->
SetOffset
(
offset
);
...
...
src/operators/kernel/cl/elementwise_add_kernel.cpp
浏览文件 @
b1e877e9
...
...
@@ -22,16 +22,16 @@ namespace operators {
template
<
>
bool
ElementwiseAddKernel
<
GPU_CL
,
float
>::
Init
(
ElementwiseAddParam
<
GPU_CL
>
*
param
)
{
CLImage
*
bias
=
(
CLImage
*
)
param
->
InputY
();
bias
->
InitCLImage
(
cl_helper_
.
CLContext
());
if
(
bias
->
dims
().
size
()
==
4
)
{
this
->
cl_helper_
.
AddKernel
(
"elementwise_add"
,
"elementwise_add_kernel.cl"
);
}
else
if
(
param
->
InputY
()
->
dims
().
size
()
==
1
)
{
DLOG
<<
"-----init add-----"
;
this
->
cl_helper_
.
AddKernel
(
"channel_add"
,
"channel_add_kernel.cl"
);
}
else
{
DLOG
<<
"error:bias dims is error"
;
}
CLImage
*
bias
=
(
CLImage
*
)
param
->
InputY
();
bias
->
InitCLImage
(
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
());
if
(
bias
->
dims
().
size
()
==
4
)
{
this
->
cl_helper_
.
AddKernel
(
"elementwise_add"
,
"elementwise_add_kernel.cl"
);
}
else
if
(
param
->
InputY
()
->
dims
().
size
()
==
1
)
{
DLOG
<<
"-----init add-----"
;
this
->
cl_helper_
.
AddKernel
(
"channel_add"
,
"channel_add_kernel.cl"
);
}
else
{
DLOG
<<
"error:bias dims is error"
;
}
return
true
;
}
...
...
@@ -44,7 +44,7 @@ void ElementwiseAddKernel<GPU_CL, float>::Compute(
auto
output
=
param
.
Out
();
cl_int
status
;
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
if
(
bias
->
dims
().
size
()
==
4
)
{
if
(
bias
->
dims
().
size
()
==
4
)
{
cl_mem
input_image
=
input
->
GetCLImage
();
cl_mem
bias_image
=
bias
->
GetCLImage
();
cl_mem
output_image
=
output
->
GetCLImage
();
...
...
@@ -57,14 +57,15 @@ void ElementwiseAddKernel<GPU_CL, float>::Compute(
int
width
=
input
->
ImageWidth
();
int
height
=
input
->
ImageHeight
();
size_t
global_work_size
[
2
]
=
{
width
,
height
};
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
global_work_size
,
NULL
,
0
,
NULL
,
NULL
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
global_work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
else
if
(
bias
->
dims
().
size
()
==
1
)
{
}
else
if
(
bias
->
dims
().
size
()
==
1
)
{
cl_mem
input_image
=
input
->
GetCLImage
();
cl_mem
bias_image
=
bias
->
GetCLImage
();
cl_mem
output_image
=
output
->
GetCLImage
();
int
tensor_w
=
input
->
dims
()[
4
];
int
tensor_w
=
input
->
dims
()[
3
];
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
(
void
*
)
&
input_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
(
void
*
)
&
bias_image
);
...
...
@@ -76,13 +77,13 @@ void ElementwiseAddKernel<GPU_CL, float>::Compute(
int
width
=
input
->
ImageWidth
();
int
height
=
input
->
ImageHeight
();
size_t
global_work_size
[
2
]
=
{
width
,
height
};
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
global_work_size
,
NULL
,
0
,
NULL
,
NULL
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
global_work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
else
{
}
else
{
DLOG
<<
"error:bias dims is error"
;
}
}
template
class
ElementwiseAddKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/feed_kernel.cpp
浏览文件 @
b1e877e9
...
...
@@ -30,12 +30,14 @@ void FeedKernel<GPU_CL, float>::Compute(const FeedParam<GPU_CL> ¶m) {
cl_int
status
;
auto
output
=
param
.
Out
();
const
Tensor
*
input
=
param
.
InputX
();
DLOG
<<
*
input
;
const
float
*
input_data
=
input
->
data
<
float
>
();
int
numel
=
input
->
numel
();
cl_mem
cl_image
=
output
->
GetCLImage
();
int
height
=
output
->
dims
()[
2
];
int
width
=
output
->
dims
()[
3
];
CLTensor
input_cl_tensor
(
this
->
cl_helper_
.
CLContext
());
CLTensor
input_cl_tensor
(
this
->
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
());
input_cl_tensor
.
Resize
(
input
->
dims
());
cl_mem
inputBuffer
=
input_cl_tensor
.
mutable_with_data
<
cl_mem
>
((
void
*
)
input_data
);
...
...
@@ -53,14 +55,6 @@ void FeedKernel<GPU_CL, float>::Compute(const FeedParam<GPU_CL> ¶m) {
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
global_work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
int
len
=
4
*
224
*
224
;
half
*
out
=
new
half
[
len
];
cl_command_queue
commandQueue
=
this
->
cl_helper_
.
CLCommandQueue
();
size_t
origin
[
3
]
=
{
0
,
0
,
0
};
size_t
region
[
3
]
=
{
height
,
width
,
1
};
clEnqueueReadImage
(
commandQueue
,
cl_image
,
CL_TRUE
,
origin
,
region
,
0
,
0
,
out
,
0
,
NULL
,
NULL
);
}
template
class
FeedKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/fetch_kernel.cpp
浏览文件 @
b1e877e9
...
...
@@ -19,44 +19,45 @@ namespace operators {
template
<
>
bool
FetchKernel
<
GPU_CL
,
float
>::
Init
(
FetchParam
<
GPU_CL
>
*
param
)
{
this
->
cl_helper_
.
AddKernel
(
"fetch"
,
"fetch_kernel.cl"
);
//
this->cl_helper_.AddKernel("fetch", "fetch_kernel.cl");
return
true
;
}
template
<
>
void
FetchKernel
<
GPU_CL
,
float
>::
Compute
(
const
FetchParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
InputX
());
auto
input
=
param
.
InputX
()
->
GetCLImage
();
auto
*
out
=
param
.
Out
();
const
auto
&
dims
=
param
.
InputX
()
->
dims
();
const
int
N
=
dims
[
0
];
const
int
C
=
dims
[
1
];
const
int
in_height
=
dims
[
2
];
const
int
in_width
=
dims
[
3
];
int
size_ch
=
in_height
*
in_width
;
int
size_block
=
size_ch
*
4
;
int
size_batch
=
size_ch
*
C
;
// need create outputBuffer
cl_image_format
imageFormat
;
imageFormat
.
image_channel_order
=
CL_RGBA
;
imageFormat
.
image_channel_data_type
=
CL_FLOAT
;
cl_mem
outputBuffer
;
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
in_height
);
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
in_width
);
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
size_ch
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
int
),
&
size_block
);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
&
size_batch
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
input
);
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
outputBuffer
);
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
// auto kernel = this->cl_helper_.KernelAt(0);
// auto default_work_size =
// this->cl_helper_.DefaultWorkSize(*param.InputX());
//
// auto input = param.InputX()->GetCLImage();
// auto *out = param.Out();
//
// const auto &dims = param.InputX()->dims();
// const int N = dims[0];
// const int C = dims[1];
// const int in_height = dims[2];
// const int in_width = dims[3];
//
// int size_ch = in_height * in_width;
// int size_block = size_ch * 4;
// int size_batch = size_ch * C;
//
// // need create outputBuffer
// cl_image_format imageFormat;
// imageFormat.image_channel_order = CL_RGBA;
// imageFormat.image_channel_data_type = CL_FLOAT;
// cl_mem outputBuffer;
//
// clSetKernelArg(kernel, 0, sizeof(int), &in_height);
// clSetKernelArg(kernel, 1, sizeof(int), &in_width);
// clSetKernelArg(kernel, 2, sizeof(int), &size_ch);
// clSetKernelArg(kernel, 3, sizeof(int), &size_block);
// clSetKernelArg(kernel, 4, sizeof(int), &size_batch);
// clSetKernelArg(kernel, 5, sizeof(cl_mem), &input);
// clSetKernelArg(kernel, 6, sizeof(cl_mem), &outputBuffer);
//
// clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL,
// default_work_size.data(), NULL, 0, NULL, NULL);
}
template
class
FetchKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/reshape_kernel.cpp
浏览文件 @
b1e877e9
...
...
@@ -37,19 +37,19 @@ void ReshapeKernel<GPU_CL, float>::Compute(const ReshapeParam<GPU_CL> ¶m) {
int
dims
[
4
]
=
{
1
,
1
,
1
,
1
};
int
odims
[
4
]
=
{
1
,
1
,
1
,
1
};
for
(
int
i
=
0
;
i
<
inputDim
.
size
();
i
++
)
{
dims
[
4
-
inputDim
.
size
()
+
i
]
=
inputDim
[
i
];
dims
[
4
-
inputDim
.
size
()
+
i
]
=
inputDim
[
i
];
}
for
(
int
i
=
0
;
i
<
outputDim
.
size
();
i
++
)
{
odims
[
4
-
outputDim
.
size
()
+
i
]
=
outputDim
[
i
];
odims
[
4
-
outputDim
.
size
()
+
i
]
=
outputDim
[
i
];
}
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
dims
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
int
),
dims
+
1
);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
dims
+
2
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
int
),
dims
+
3
);
clSetKernelArg
(
kernel
,
6
,
sizeof
(
int
),
odims
);
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
odims
+
1
);
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
odims
+
2
);
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
odims
+
3
);
clSetKernelArg
(
kernel
,
2
,
sizeof
(
cl_int
),
&
dims
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_int
),
&
dims
[
1
]
);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_int
),
&
dims
[
2
]
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_int
),
&
dims
[
3
]
);
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_int
),
&
odims
);
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_int
),
&
odims
[
1
]
);
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_int
),
&
odims
[
1
]
);
clSetKernelArg
(
kernel
,
9
,
sizeof
(
cl_int
),
&
odims
[
1
]
);
const
size_t
work_size
[
2
]
=
{
output
->
ImageWidth
(),
output
->
ImageHeight
()};
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
...
...
src/operators/kernel/cl/softmax_kernel.cpp
浏览文件 @
b1e877e9
...
...
@@ -36,11 +36,14 @@ void SoftmaxKernel<GPU_CL, float>::Compute(const SoftmaxParam<GPU_CL> ¶m) {
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
inputImage
);
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
outputImage
);
const
auto
&
inputDim
=
input
->
dims
();
int
dims
[
4
]
=
{
inputDim
[
0
],
inputDim
[
1
],
inputDim
[
2
],
inputDim
[
3
]};
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
dims
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
int
),
dims
+
1
);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
dims
+
2
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
int
),
dims
+
3
);
int
dims
[
4
]
=
{
1
,
1
,
1
,
1
};
for
(
int
i
=
0
;
i
<
inputDim
.
size
();
i
++
)
{
dims
[
4
-
inputDim
.
size
()
+
i
]
=
inputDim
[
i
];
}
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
dims
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
int
),
&
dims
[
1
]);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
&
dims
[
2
]);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
int
),
&
dims
[
3
]);
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
...
...
test/net/test_mobilenet_GPU.cpp
浏览文件 @
b1e877e9
...
...
@@ -23,7 +23,7 @@ int main() {
// auto isok = paddle_mobile.Load(std::string(g_mobilenet_detect) + "/model",
// std::string(g_mobilenet_detect) + "/params", true);
auto
isok
=
paddle_mobile
.
Load
(
g_mobilenet
,
fals
e
);
auto
isok
=
paddle_mobile
.
Load
(
g_mobilenet
,
tru
e
);
if
(
isok
)
{
auto
time2
=
paddle_mobile
::
time
();
std
::
cout
<<
"load cost :"
<<
paddle_mobile
::
time_diff
(
time1
,
time1
)
<<
"ms"
...
...
tools/pre-commit.hooks/clang-format.hook
浏览文件 @
b1e877e9
...
...
@@ -17,7 +17,7 @@ shift
perl
-i
-pe
's|^\s+#pragma\s+omp|// <TRICKY-CLANG-FORMAT-PRAGMA-FIX> #pragma omp|'
"
$@
"
(
# remove clang format ios_io folder
flist
=
$(
echo
"
$@
"
| perl
-pe
's|src/ios_io/[^ ]*||'
)
flist
=
$(
echo
"
$@
"
| perl
-pe
's|src/io
/io
s_io/[^ ]*||'
)
clang-format
-i
$flist
)
perl
-i
-pe
's|// <TRICKY-CLANG-FORMAT-PRAGMA-FIX> ||'
"
$@
"
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录