Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
af514209
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
af514209
编写于
7月 08, 2020
作者:
W
Wilber
提交者:
GitHub
7月 08, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[CUDA] [Kernel] Add cuda fp16 kernel (#3903)
上级
62c6d5d5
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
212 addition
and
13 deletion
+212
-13
lite/backends/cuda/math/sequence_padding.cu
lite/backends/cuda/math/sequence_padding.cu
+18
-0
lite/kernels/cuda/sequence_mask_compute.cu
lite/kernels/cuda/sequence_mask_compute.cu
+16
-5
lite/kernels/cuda/sequence_mask_compute_test.cc
lite/kernels/cuda/sequence_mask_compute_test.cc
+42
-3
lite/kernels/cuda/sequence_pad_compute.cu
lite/kernels/cuda/sequence_pad_compute.cu
+14
-1
lite/kernels/cuda/sequence_pad_compute_test.cc
lite/kernels/cuda/sequence_pad_compute_test.cc
+64
-2
lite/kernels/cuda/sequence_unpad_compute.cu
lite/kernels/cuda/sequence_unpad_compute.cu
+12
-1
lite/kernels/cuda/sequence_unpad_compute_test.cc
lite/kernels/cuda/sequence_unpad_compute_test.cc
+46
-1
未找到文件。
lite/backends/cuda/math/sequence_padding.cu
浏览文件 @
af514209
...
...
@@ -134,6 +134,16 @@ template void SequencePadding(float* pad_data,
int
step_width
,
cudaStream_t
*
stream
);
template
void
SequencePadding
(
half
*
pad_data
,
const
half
*
seq_data
,
const
half
*
pad_value_data
,
bool
is_constant_pad
,
const
size_t
*
seq_offsets_data
,
int
seq_num
,
int
pad_seq_len
,
int
step_width
,
cudaStream_t
*
stream
);
template
void
SequenceUnpadding
(
float
*
seq_data
,
const
float
*
pad_data
,
const
size_t
*
seq_offsets_data
,
...
...
@@ -142,6 +152,14 @@ template void SequenceUnpadding(float* seq_data,
int
step_width
,
cudaStream_t
*
stream
);
template
void
SequenceUnpadding
(
half
*
seq_data
,
const
half
*
pad_data
,
const
size_t
*
seq_offsets_data
,
int
seq_num
,
int
pad_seq_len
,
int
step_width
,
cudaStream_t
*
stream
);
}
// namespace math
}
// namespace cuda
}
// namespace lite
...
...
lite/kernels/cuda/sequence_mask_compute.cu
浏览文件 @
af514209
...
...
@@ -57,18 +57,18 @@ void SequenceMaskCompute<T, Ptype>::Run() {
}
if
(
maxlen
<
0
)
{
maxlen
=
thrust
::
reduce
(
x_data
,
x_data
+
x
->
numel
(),
0
,
thrust
::
maximum
<
T
>
());
maxlen
=
thrust
::
reduce
(
x_data
,
x_data
+
x
->
numel
(),
0
,
thrust
::
maximum
<
int64_t
>
());
}
auto
y_dim
=
x
->
dims
().
Vectorize
();
y_dim
.
push_back
(
maxlen
);
y
->
Resize
(
y_dim
);
const
int
count
=
y
->
numel
();
auto
*
dst_data
=
y
->
template
mutable_data
<
float
>(
TARGET
(
kCUDA
));
auto
*
dst_data
=
y
->
template
mutable_data
<
T
>(
TARGET
(
kCUDA
));
if
(
param
.
out_dtype
==
5
)
{
SequenceMaskKernel
<
float
><<<
CUDA_GET_BLOCKS
(
count
),
CUDA_NUM_THREADS
,
0
,
stream
>>>
(
T
><<<
CUDA_GET_BLOCKS
(
count
),
CUDA_NUM_THREADS
,
0
,
stream
>>>
(
dst_data
,
x_data
,
count
,
maxlen
);
}
else
{
LOG
(
FATAL
)
<<
"not supported out_dtype: "
<<
param
.
out_dtype
;
...
...
@@ -84,8 +84,19 @@ void SequenceMaskCompute<T, Ptype>::Run() {
using
SeqMaskFp32
=
paddle
::
lite
::
kernels
::
cuda
::
SequenceMaskCompute
<
float
,
PRECISION
(
kFloat
)
>
;
using
SeqMaskFp16
=
paddle
::
lite
::
kernels
::
cuda
::
SequenceMaskCompute
<
half
,
PRECISION
(
kFP16
)
>
;
REGISTER_LITE_KERNEL
(
sequence_mask
,
kCUDA
,
kFloat
,
kNCHW
,
SeqMaskFp32
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kInt64
))})
.
BindInput
(
"MaxLenTensor"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
))})
.
BindInput
(
"MaxLenTensor"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kInt32
))})
.
BindOutput
(
"Y"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
))})
.
Finalize
();
REGISTER_LITE_KERNEL
(
sequence_mask
,
kCUDA
,
kFP16
,
kNCHW
,
SeqMaskFp16
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kInt64
))})
.
BindInput
(
"MaxLenTensor"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kInt32
))})
.
BindOutput
(
"Y"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kFP16
))})
.
Finalize
();
lite/kernels/cuda/sequence_mask_compute_test.cc
浏览文件 @
af514209
...
...
@@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/cuda/sequence_mask_compute.h"
#include <gtest/gtest.h>
#include <memory>
...
...
@@ -21,8 +23,7 @@
#include "lite/api/test_helper.h"
#include "lite/backends/cuda/cuda_utils.h"
#include "lite/kernels/cuda/sequence_mask_compute.h"
// #include "lite/utils/float16.h"
#include "lite/utils/float16.h"
namespace
paddle
{
namespace
lite
{
...
...
@@ -70,7 +71,10 @@ class SequenceMaskTest : public ::testing::Test {
x_gpu_
.
dims
());
}
void
InitHalfInput
()
{}
void
InitHalfInput
()
{
x_gpu_
.
Assign
<
int64_t
,
lite
::
DDim
,
TARGET
(
kCUDA
)
>
(
x_ref_
.
data
<
int64_t
>
(),
x_gpu_
.
dims
());
}
void
RunBaseLine
(
const
lite
::
Tensor
*
x
,
lite
::
Tensor
*
out
)
{
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
...
...
@@ -125,6 +129,41 @@ TEST_F(SequenceMaskTest, fp32) {
}
}
TEST_F
(
SequenceMaskTest
,
TestFP16
)
{
InitHalfInput
();
SequenceMaskCompute
<
half
,
PRECISION
(
kFP16
)
>
kernel
;
kernel
.
SetParam
(
param_
);
kernel
.
SetContext
(
std
::
move
(
ctx_
));
for
(
int
i
=
0
;
i
<
FLAGS_warmup
;
++
i
)
{
kernel
.
Launch
();
cudaDeviceSynchronize
();
}
auto
start
=
GetCurrentUS
();
kernel
.
PrepareForRun
();
for
(
int
i
=
0
;
i
<
FLAGS_repeats
;
++
i
)
{
kernel
.
Run
();
}
cudaDeviceSynchronize
();
auto
duration
=
(
GetCurrentUS
()
-
start
)
/
1000.0
;
LOG
(
INFO
)
<<
"fp16, warmup: "
<<
FLAGS_warmup
<<
", repeats: "
<<
FLAGS_repeats
<<
", spend "
<<
duration
/
FLAGS_repeats
<<
" ms in average."
;
const
half
*
out_gpu_data
=
out_gpu_
.
data
<
half
>
();
half
*
out_cpu_data
=
out_cpu_
.
mutable_data
<
half
>
();
CopySync
<
TARGET
(
kCUDA
)
>
(
out_cpu_data
,
out_gpu_data
,
sizeof
(
half
)
*
out_gpu_
.
numel
(),
IoDirection
::
DtoH
);
for
(
int
i
=
0
;
i
<
out_gpu_
.
numel
();
++
i
)
{
float
res
=
static_cast
<
float
>
(
lite
::
float16
(
out_cpu_data
[
i
]));
float
ref
=
out_ref_
.
data
<
float
>
()[
i
];
EXPECT_NEAR
(
fabs
(
res
-
ref
)
/
(
ref
+
1e-5
),
0.
,
1e-2
);
}
}
}
// namespace cuda
}
// namespace kernels
}
// namespace lite
...
...
lite/kernels/cuda/sequence_pad_compute.cu
浏览文件 @
af514209
...
...
@@ -85,9 +85,22 @@ void SequencePadCompute<T, Ptype>::Run() {
using
SeqPadFp32
=
paddle
::
lite
::
kernels
::
cuda
::
SequencePadCompute
<
float
,
PRECISION
(
kFloat
)
>
;
using
SeqPadFp16
=
paddle
::
lite
::
kernels
::
cuda
::
SequencePadCompute
<
half
,
PRECISION
(
kFP16
)
>
;
REGISTER_LITE_KERNEL
(
sequence_pad
,
kCUDA
,
kFloat
,
kNCHW
,
SeqPadFp32
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
))})
.
BindInput
(
"PadValue"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
))})
.
BindOutput
(
"Length"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
))})
.
BindOutput
(
"Length"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kInt64
))})
.
Finalize
();
REGISTER_LITE_KERNEL
(
sequence_pad
,
kCUDA
,
kFP16
,
kNCHW
,
SeqPadFp16
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kFP16
))})
.
BindInput
(
"PadValue"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kFP16
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kFP16
))})
.
BindOutput
(
"Length"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kInt64
))})
.
Finalize
();
lite/kernels/cuda/sequence_pad_compute_test.cc
浏览文件 @
af514209
...
...
@@ -52,11 +52,11 @@ class SequencePadTest : public ::testing::Test {
length_ref_
.
Resize
(
lite
::
DDim
({
static_cast
<
int64_t
>
(
x_lod_
[
0
].
size
()
-
1
)}));
length_gpu_
.
Resize
(
length_ref_
.
dims
());
length_cpu_
.
Resize
(
length_ref_
.
dims
());
auto
x_ref_data
=
x_ref_
.
mutable_data
<
float
>
();
auto
pad_value_ref_data
=
pad_value_ref_
.
mutable_data
<
float
>
();
// prepare input
for
(
int64_t
i
=
0
;
i
<
x_ref_
.
numel
();
i
++
)
{
x_ref_data
[
i
]
=
static_cast
<
float
>
(
i
);
}
...
...
@@ -92,7 +92,23 @@ class SequencePadTest : public ::testing::Test {
pad_value_ref_
.
data
<
float
>
(),
pad_value_gpu_
.
dims
());
}
void
InitHalfInput
()
{}
void
InitHalfInput
()
{
x_half_
.
Resize
(
lite
::
DDim
(
x_shape_
));
auto
x_half_data
=
x_half_
.
mutable_data
<
half
>
();
for
(
int64_t
i
=
0
;
i
<
x_half_
.
numel
();
i
++
)
{
x_half_data
[
i
]
=
half
(
lite
::
float16
(
x_ref_
.
data
<
float
>
()[
i
]));
}
x_gpu_
.
Assign
<
half
,
lite
::
DDim
,
TARGET
(
kCUDA
)
>
(
x_half_data
,
x_gpu_
.
dims
());
x_gpu_
.
set_lod
(
x_ref_
.
lod
());
pad_value_half_
.
Resize
(
pad_value_ref_
.
dims
());
auto
pad_value_half_data
=
pad_value_half_
.
mutable_data
<
half
>
();
for
(
int64_t
i
=
0
;
i
<
pad_value_half_
.
numel
();
i
++
)
{
pad_value_half_data
[
i
]
=
half
(
lite
::
float16
(
pad_value_ref_
.
data
<
float
>
()[
i
]));
}
pad_value_gpu_
.
Assign
<
half
,
lite
::
DDim
,
TARGET
(
kCUDA
)
>
(
pad_value_half_data
,
pad_value_gpu_
.
dims
());
}
void
RunBaseLine
(
const
lite
::
Tensor
*
x
,
const
lite
::
Tensor
*
pad_value
,
...
...
@@ -119,6 +135,7 @@ class SequencePadTest : public ::testing::Test {
lite
::
Tensor
x_ref_
,
pad_value_ref_
,
out_ref_
,
length_ref_
;
lite
::
Tensor
x_gpu_
,
pad_value_gpu_
,
out_gpu_
,
length_gpu_
;
lite
::
Tensor
x_half_
,
pad_value_half_
;
lite
::
Tensor
out_cpu_
,
length_cpu_
;
operators
::
SequencePadParam
param_
;
...
...
@@ -165,6 +182,51 @@ TEST_F(SequencePadTest, fp32) {
}
}
TEST_F
(
SequencePadTest
,
TestFP16
)
{
InitHalfInput
();
SequencePadCompute
<
half
,
PRECISION
(
kFP16
)
>
kernel
;
kernel
.
SetParam
(
param_
);
kernel
.
SetContext
(
std
::
move
(
ctx_
));
for
(
int
i
=
0
;
i
<
FLAGS_warmup
;
++
i
)
{
kernel
.
Launch
();
cudaDeviceSynchronize
();
}
auto
start
=
GetCurrentUS
();
kernel
.
PrepareForRun
();
for
(
int
i
=
0
;
i
<
FLAGS_repeats
;
++
i
)
{
kernel
.
Run
();
}
cudaDeviceSynchronize
();
auto
duration
=
(
GetCurrentUS
()
-
start
)
/
1000.0
;
LOG
(
INFO
)
<<
"fp16, warmup: "
<<
FLAGS_warmup
<<
", repeats: "
<<
FLAGS_repeats
<<
", spend "
<<
duration
/
FLAGS_repeats
<<
" ms in average."
;
const
half
*
out_gpu_data
=
out_gpu_
.
data
<
half
>
();
half
*
out_cpu_data
=
out_cpu_
.
mutable_data
<
half
>
();
const
int64_t
*
length_gpu_data
=
length_gpu_
.
data
<
int64_t
>
();
int64_t
*
length_cpu_data
=
length_cpu_
.
mutable_data
<
int64_t
>
();
CopySync
<
TARGET
(
kCUDA
)
>
(
out_cpu_data
,
out_gpu_data
,
sizeof
(
half
)
*
out_gpu_
.
numel
(),
IoDirection
::
DtoH
);
CopySync
<
TARGET
(
kCUDA
)
>
(
length_cpu_data
,
length_gpu_data
,
sizeof
(
int64_t
)
*
length_gpu_
.
numel
(),
IoDirection
::
DtoH
);
for
(
int
i
=
0
;
i
<
out_gpu_
.
numel
();
++
i
)
{
float
res
=
static_cast
<
float
>
(
lite
::
float16
(
out_cpu_data
[
i
]));
float
ref
=
out_ref_
.
data
<
float
>
()[
i
];
EXPECT_NEAR
(
fabs
(
res
-
ref
)
/
(
ref
+
1e-5
),
0.
,
1e-2
);
}
for
(
int
i
=
0
;
i
<
length_gpu_
.
numel
();
++
i
)
{
EXPECT_NEAR
(
length_cpu_
.
data
<
int64_t
>
()[
i
],
length_ref_
.
data
<
int64_t
>
()[
i
],
1e-5
);
}
}
}
// namespace cuda
}
// namespace kernels
}
// namespace lite
...
...
lite/kernels/cuda/sequence_unpad_compute.cu
浏览文件 @
af514209
...
...
@@ -74,8 +74,19 @@ void SequenceUnpadCompute<T, Ptype>::Run() {
using
SeqUnadFp32
=
paddle
::
lite
::
kernels
::
cuda
::
SequenceUnpadCompute
<
float
,
PRECISION
(
kFloat
)
>
;
using
SeqUnadFp16
=
paddle
::
lite
::
kernels
::
cuda
::
SequenceUnpadCompute
<
half
,
PRECISION
(
kFP16
)
>
;
REGISTER_LITE_KERNEL
(
sequence_unpad
,
kCUDA
,
kFloat
,
kNCHW
,
SeqUnadFp32
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
))})
.
BindInput
(
"Length"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
))})
.
BindInput
(
"Length"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kInt64
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
))})
.
Finalize
();
REGISTER_LITE_KERNEL
(
sequence_unpad
,
kCUDA
,
kFP16
,
kNCHW
,
SeqUnadFp16
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kFP16
))})
.
BindInput
(
"Length"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kInt64
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kFP16
))})
.
Finalize
();
lite/kernels/cuda/sequence_unpad_compute_test.cc
浏览文件 @
af514209
...
...
@@ -88,7 +88,16 @@ class SequenceUnpadTest : public ::testing::Test {
length_ref_
.
data
<
int64_t
>
(),
length_gpu_
.
dims
());
}
void
InitHalfInput
()
{}
void
InitHalfInput
()
{
x_half_
.
Resize
(
lite
::
DDim
(
x_shape_
));
auto
x_half_data
=
x_half_
.
mutable_data
<
half
>
();
for
(
int64_t
i
=
0
;
i
<
x_half_
.
numel
();
i
++
)
{
x_half_data
[
i
]
=
half
(
lite
::
float16
(
x_ref_
.
data
<
float
>
()[
i
]));
}
x_gpu_
.
Assign
<
half
,
lite
::
DDim
,
TARGET
(
kCUDA
)
>
(
x_half_data
,
x_gpu_
.
dims
());
length_gpu_
.
Assign
<
int64_t
,
lite
::
DDim
,
TARGET
(
kCUDA
)
>
(
length_ref_
.
data
<
int64_t
>
(),
length_gpu_
.
dims
());
}
void
RunBaseLine
(
const
lite
::
Tensor
*
X
,
const
lite
::
Tensor
*
Length
,
...
...
@@ -109,6 +118,7 @@ class SequenceUnpadTest : public ::testing::Test {
lite
::
Tensor
x_ref_
,
out_ref_
,
length_ref_
;
lite
::
Tensor
x_gpu_
,
out_gpu_
,
length_gpu_
;
lite
::
Tensor
x_half_
;
lite
::
Tensor
out_cpu_
,
length_cpu_
;
operators
::
SequencePadParam
param_
;
...
...
@@ -147,6 +157,41 @@ TEST_F(SequenceUnpadTest, fp32) {
}
}
TEST_F
(
SequenceUnpadTest
,
TestFP16
)
{
InitHalfInput
();
SequenceUnpadCompute
<
half
,
PRECISION
(
kFP16
)
>
kernel
;
kernel
.
SetParam
(
param_
);
kernel
.
SetContext
(
std
::
move
(
ctx_
));
for
(
int
i
=
0
;
i
<
FLAGS_warmup
;
++
i
)
{
kernel
.
Launch
();
cudaDeviceSynchronize
();
}
auto
start
=
GetCurrentUS
();
kernel
.
PrepareForRun
();
for
(
int
i
=
0
;
i
<
FLAGS_repeats
;
++
i
)
{
kernel
.
Run
();
}
cudaDeviceSynchronize
();
auto
duration
=
(
GetCurrentUS
()
-
start
)
/
1000.0
;
LOG
(
INFO
)
<<
"fp16, warmup: "
<<
FLAGS_warmup
<<
", repeats: "
<<
FLAGS_repeats
<<
", spend "
<<
duration
/
FLAGS_repeats
<<
" ms in average."
;
const
half
*
out_gpu_data
=
out_gpu_
.
data
<
half
>
();
half
*
out_cpu_data
=
out_cpu_
.
mutable_data
<
half
>
();
CopySync
<
TARGET
(
kCUDA
)
>
(
out_cpu_data
,
out_gpu_data
,
sizeof
(
half
)
*
out_gpu_
.
numel
(),
IoDirection
::
DtoH
);
for
(
int
i
=
0
;
i
<
out_gpu_
.
numel
();
++
i
)
{
float
res
=
static_cast
<
float
>
(
lite
::
float16
(
out_cpu_data
[
i
]));
float
ref
=
out_ref_
.
data
<
float
>
()[
i
];
EXPECT_NEAR
(
fabs
(
res
-
ref
)
/
(
ref
+
1e-5
),
0.
,
1e-2
);
}
}
}
// namespace cuda
}
// namespace kernels
}
// namespace lite
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录