Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
adf3e730
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
adf3e730
编写于
3月 01, 2019
作者:
R
Ray Liu
提交者:
GitHub
3月 01, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into develop
上级
f1840b53
70baa872
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
193 addition
and
40 deletion
+193
-40
src/fpga/V1/api.cpp
src/fpga/V1/api.cpp
+11
-35
src/io/api_paddle_mobile.cc
src/io/api_paddle_mobile.cc
+4
-2
src/operators/kernel/fpga/V1/feed_kernel.cpp
src/operators/kernel/fpga/V1/feed_kernel.cpp
+4
-1
src/operators/kernel/fpga/V1/fetch_kernel.cpp
src/operators/kernel/fpga/V1/fetch_kernel.cpp
+3
-2
test/CMakeLists.txt
test/CMakeLists.txt
+4
-0
test/fpga/test_marker.cpp
test/fpga/test_marker.cpp
+167
-0
未找到文件。
src/fpga/V1/api.cpp
浏览文件 @
adf3e730
...
@@ -30,9 +30,10 @@ void format_image(framework::Tensor *image_tensor) {
...
@@ -30,9 +30,10 @@ void format_image(framework::Tensor *image_tensor) {
auto
data_ptr
=
image_tensor
->
data
<
float
>
();
auto
data_ptr
=
image_tensor
->
data
<
float
>
();
auto
external_ptr
=
reinterpret_cast
<
float
*>
(
image_tensor
->
external_data
);
auto
external_ptr
=
reinterpret_cast
<
float
*>
(
image_tensor
->
external_data
);
float
*
p_data
=
external_ptr
==
nullptr
?
data_ptr
:
external_ptr
;
float
*
p_data
=
external_ptr
==
nullptr
?
data_ptr
:
external_ptr
;
float
*
old_p
=
p_data
;
image
::
format_image
(
&
p_data
,
channel
,
height
,
width
);
image
::
format_image
(
&
p_data
,
channel
,
height
,
width
);
if
(
old_p
!=
p_data
)
{
if
(
p_data
!=
data_ptr
&&
external_ptr
==
nullptr
)
{
image_tensor
->
reset_data_ptr
(
p_data
);
image_tensor
->
reset_data_ptr
(
p_data
);
}
}
}
}
...
@@ -48,9 +49,9 @@ void format_fp16_ofm(framework::Tensor *ofm_tensor) {
...
@@ -48,9 +49,9 @@ void format_fp16_ofm(framework::Tensor *ofm_tensor) {
auto
dims
=
ofm_tensor
->
dims
();
auto
dims
=
ofm_tensor
->
dims
();
size_t
memory_size
=
0
;
size_t
memory_size
=
0
;
if
(
dims
.
size
()
==
4
)
{
if
(
dims
.
size
()
==
4
)
{
auto
channel
=
dims
[
1
],
height
=
dims
[
2
],
width
=
dims
[
3
];
auto
channel
=
dims
[
1
],
height
=
dims
[
2
],
width
=
dims
[
3
]
,
num
=
dims
[
0
]
;
memory_size
=
memory_size
=
num
*
height
*
align_to_x
(
channel
*
width
,
IMAGE_ALIGNMENT
)
*
height
*
align_to_x
(
channel
*
width
,
IMAGE_ALIGNMENT
)
*
sizeof
(
half
);
sizeof
(
half
);
}
else
if
(
dims
.
size
()
==
2
)
{
}
else
if
(
dims
.
size
()
==
2
)
{
memory_size
=
align_to_x
(
dims
[
1
],
IMAGE_ALIGNMENT
)
*
sizeof
(
half
);
memory_size
=
align_to_x
(
dims
[
1
],
IMAGE_ALIGNMENT
)
*
sizeof
(
half
);
}
else
{
}
else
{
...
@@ -713,7 +714,6 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
...
@@ -713,7 +714,6 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
}
}
for
(
int
j
=
0
;
j
<
split_num
;
++
j
)
{
for
(
int
j
=
0
;
j
<
split_num
;
++
j
)
{
// arg->split_conv_args[i]->conv_arg[j].relu_enabled = relu_enabled;
arg
->
split_conv_args
[
i
]
->
conv_arg
[
j
].
output
.
activation
.
activation_type
=
arg
->
split_conv_args
[
i
]
->
conv_arg
[
j
].
output
.
activation
.
activation_type
=
activation_enable
;
activation_enable
;
arg
->
split_conv_args
[
i
]
arg
->
split_conv_args
[
i
]
...
@@ -775,19 +775,6 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
...
@@ -775,19 +775,6 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
fpga_flush
(
arg
->
split_conv_args
[
i
]
->
conv_arg
[
j
].
filter_address
,
fpga_flush
(
arg
->
split_conv_args
[
i
]
->
conv_arg
[
j
].
filter_address
,
filter_size
);
filter_size
);
/*{
static int cnt = 0;
std::string str = "deconv_filter";
if(cnt <= 1){
cnt++;
str += std::to_string(cnt);
int8_t result = 0;
fpga::savefile<int8_t>(str,
arg->split_conv_args[i]->conv_arg[j].filter_address, filter_size, result);
}
}*/
size_t
bs_align_num
=
align_to_x
(
size_t
bs_align_num
=
align_to_x
(
arg
->
split_conv_args
[
i
]
->
conv_arg
[
j
].
filter_num
,
BS_NUM_ALIGNMENT
);
arg
->
split_conv_args
[
i
]
->
conv_arg
[
j
].
filter_num
,
BS_NUM_ALIGNMENT
);
size_t
bs_size
=
2
*
bs_align_num
*
sizeof
(
float
);
size_t
bs_size
=
2
*
bs_align_num
*
sizeof
(
float
);
...
@@ -803,20 +790,6 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
...
@@ -803,20 +790,6 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
memcpy
(
arg
->
split_conv_args
[
i
]
->
conv_arg
[
j
].
sb_address
,
bs_head
,
bs_size
);
memcpy
(
arg
->
split_conv_args
[
i
]
->
conv_arg
[
j
].
sb_address
,
bs_head
,
bs_size
);
fpga_flush
(
arg
->
split_conv_args
[
i
]
->
conv_arg
[
j
].
sb_address
,
bs_size
);
fpga_flush
(
arg
->
split_conv_args
[
i
]
->
conv_arg
[
j
].
sb_address
,
bs_size
);
/* {
static int cnt = 0;
std::string str = "deconv_sb";
if(cnt <= 1){
cnt++;
str += std::to_string(cnt);
float result = 0;
fpga::savefile<float>(str,
arg->split_conv_args[i]->conv_arg[j].sb_address, 2 * bs_align_num,
result);
}
}*/
if
(
split_num
==
1
)
{
if
(
split_num
==
1
)
{
arg
->
split_conv_args
[
i
]
->
conv_arg
[
j
].
output
.
address
=
arg
->
split_conv_args
[
i
]
->
conv_arg
[
j
].
output
.
address
=
arg
->
split_conv_args
[
i
]
->
output
.
address
;
arg
->
split_conv_args
[
i
]
->
output
.
address
;
...
@@ -863,10 +836,13 @@ void fill_dwconv_arg(struct DWconvArgs *arg, framework::Tensor *input,
...
@@ -863,10 +836,13 @@ void fill_dwconv_arg(struct DWconvArgs *arg, framework::Tensor *input,
int16_t
leaky_relu_negative_slope
,
int
stride_h
,
int16_t
leaky_relu_negative_slope
,
int
stride_h
,
int
stride_w
,
int
padding_h
,
int
padding_w
,
int
stride_w
,
int
padding_h
,
int
padding_w
,
float
*
bias_ptr
)
{
float
*
bias_ptr
)
{
auto
deleter
=
[](
void
*
p
)
{
fpga_free
(
p
);
};
arg
->
vector_dwconv_space
.
push_back
(
std
::
shared_ptr
<
char
>
(
reinterpret_cast
<
char
*>
(
bias_ptr
),
deleter
));
auto
filter_ptr
=
filter
->
data
<
int16_t
>
();
auto
filter_ptr
=
filter
->
data
<
int16_t
>
();
auto
input_ptr
=
input
->
data
<
half
>
();
auto
input_ptr
=
input
->
data
<
half
>
();
auto
output_ptr
=
out
->
data
<
half
>
();
auto
output_ptr
=
out
->
mutable_data
<
half
>
();
arg
->
sub_conv_num
=
1
;
arg
->
sub_conv_num
=
1
;
// arg->relu_enabled = relu_enabled;
// arg->relu_enabled = relu_enabled;
arg
->
output
.
activation
.
activation_type
=
activation_enable
;
arg
->
output
.
activation
.
activation_type
=
activation_enable
;
...
...
src/io/api_paddle_mobile.cc
浏览文件 @
adf3e730
...
@@ -41,10 +41,12 @@ bool PaddleMobilePredictor<Device, T>::Init(const PaddleMobileConfig &config) {
...
@@ -41,10 +41,12 @@ bool PaddleMobilePredictor<Device, T>::Init(const PaddleMobileConfig &config) {
config
.
memory_pack
.
combined_params_buf
);
config
.
memory_pack
.
combined_params_buf
);
}
else
if
(
!
config
.
model_dir
.
empty
())
{
}
else
if
(
!
config
.
model_dir
.
empty
())
{
paddle_mobile_
->
Load
(
config
.
model_dir
,
config
.
optimize
,
paddle_mobile_
->
Load
(
config
.
model_dir
,
config
.
optimize
,
config
.
quantification
,
config
.
batch_size
);
config
.
quantification
,
config
.
batch_size
,
config
.
lod_mode
);
}
else
if
(
!
config
.
prog_file
.
empty
()
&&
!
config
.
param_file
.
empty
())
{
}
else
if
(
!
config
.
prog_file
.
empty
()
&&
!
config
.
param_file
.
empty
())
{
paddle_mobile_
->
Load
(
config
.
prog_file
,
config
.
param_file
,
config
.
optimize
,
paddle_mobile_
->
Load
(
config
.
prog_file
,
config
.
param_file
,
config
.
optimize
,
config
.
quantification
,
config
.
batch_size
);
config
.
quantification
,
config
.
batch_size
,
config
.
lod_mode
);
}
else
{
}
else
{
LOG
(
kLOG_ERROR
)
<<
"fail to load inference model!"
;
LOG
(
kLOG_ERROR
)
<<
"fail to load inference model!"
;
return
false
;
return
false
;
...
...
src/operators/kernel/fpga/V1/feed_kernel.cpp
浏览文件 @
adf3e730
...
@@ -49,6 +49,9 @@ void FeedKernel<FPGA, float>::Compute(const FeedParam<FPGA> ¶m) {
...
@@ -49,6 +49,9 @@ void FeedKernel<FPGA, float>::Compute(const FeedParam<FPGA> ¶m) {
fpga
::
format_image
(
input
);
fpga
::
format_image
(
input
);
auto
input_ptr
=
input
->
data
<
float
>
();
auto
input_ptr
=
input
->
data
<
float
>
();
auto
external_ptr
=
reinterpret_cast
<
float
*>
(
input
->
external_data
);
float
*
p_data
=
external_ptr
==
nullptr
?
input_ptr
:
external_ptr
;
auto
output_ptr
=
output
->
data
<
half
>
();
auto
output_ptr
=
output
->
data
<
half
>
();
fpga
::
BypassArgs
args
=
{
fpga
::
DATA_TYPE_FP32
};
fpga
::
BypassArgs
args
=
{
fpga
::
DATA_TYPE_FP32
};
...
@@ -57,7 +60,7 @@ void FeedKernel<FPGA, float>::Compute(const FeedParam<FPGA> ¶m) {
...
@@ -57,7 +60,7 @@ void FeedKernel<FPGA, float>::Compute(const FeedParam<FPGA> ¶m) {
args
.
output_data_type
=
fpga
::
DATA_TYPE_FP16
;
args
.
output_data_type
=
fpga
::
DATA_TYPE_FP16
;
args
.
input_layout_type
=
fpga
::
LAYOUT_CHW
;
args
.
input_layout_type
=
fpga
::
LAYOUT_CHW
;
args
.
output_layout_type
=
fpga
::
LAYOUT_HWC
;
args
.
output_layout_type
=
fpga
::
LAYOUT_HWC
;
args
.
image
.
address
=
input_ptr
;
args
.
image
.
address
=
p_data
;
args
.
image
.
channels
=
(
uint32_t
)
input
->
dims
()[
1
];
args
.
image
.
channels
=
(
uint32_t
)
input
->
dims
()[
1
];
args
.
image
.
height
=
(
uint32_t
)
input
->
dims
()[
2
];
args
.
image
.
height
=
(
uint32_t
)
input
->
dims
()[
2
];
args
.
image
.
width
=
(
uint32_t
)
input
->
dims
()[
3
];
args
.
image
.
width
=
(
uint32_t
)
input
->
dims
()[
3
];
...
...
src/operators/kernel/fpga/V1/fetch_kernel.cpp
浏览文件 @
adf3e730
...
@@ -56,8 +56,9 @@ void FetchKernel<FPGA, float>::Compute(const FetchParam<FPGA> ¶m) {
...
@@ -56,8 +56,9 @@ void FetchKernel<FPGA, float>::Compute(const FetchParam<FPGA> ¶m) {
return
;
return
;
}
}
fpga
::
BypassArgs
args
=
param
.
fpga_bypass_args
;
fpga
::
BypassArgs
args
=
param
.
fpga_bypass_args
;
auto
data
=
(
input
->
mutable_data
<
half
>
());
auto
input_address
=
(
input
->
data
<
half
>
());
args
.
image
.
address
=
static_cast
<
void
*>
(
data
);
args
.
image
.
address
=
static_cast
<
void
*>
(
input_address
);
fpga
::
PerformBypass
(
args
);
fpga
::
PerformBypass
(
args
);
fpga
::
fpga_invalidate
(
param
.
fpga_bypass_args
.
output
.
address
,
fpga
::
fpga_invalidate
(
param
.
fpga_bypass_args
.
output
.
address
,
param
.
fpga_bypass_args
.
image
.
channels
*
sizeof
(
float
));
param
.
fpga_bypass_args
.
image
.
channels
*
sizeof
(
float
));
...
...
test/CMakeLists.txt
浏览文件 @
adf3e730
...
@@ -77,6 +77,10 @@ if (CON GREATER -1)
...
@@ -77,6 +77,10 @@ if (CON GREATER -1)
ADD_EXECUTABLE
(
test-rfcn fpga/test_rfcn.cpp test_helper.h test_include.h executor_for_test.h
)
ADD_EXECUTABLE
(
test-rfcn fpga/test_rfcn.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-rfcn paddle-mobile
)
target_link_libraries
(
test-rfcn paddle-mobile
)
ADD_EXECUTABLE
(
test-marker fpga/test_marker.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-marker paddle-mobile
)
set
(
FOUND_MATCH ON
)
set
(
FOUND_MATCH ON
)
endif
()
endif
()
...
...
test/fpga/test_marker.cpp
0 → 100644
浏览文件 @
adf3e730
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <iostream>
#include "../test_helper.h"
#include "../test_include.h"
#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif
#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
#endif
#include <string>
void
readStream
(
std
::
string
filename
,
char
*
buf
)
{
std
::
ifstream
in
;
in
.
open
(
filename
,
std
::
ios
::
in
|
std
::
ios
::
binary
);
if
(
!
in
.
is_open
())
{
std
::
cout
<<
"open File Failed."
<<
std
::
endl
;
return
;
}
in
.
seekg
(
0
,
std
::
ios
::
end
);
// go to the end
auto
length
=
in
.
tellg
();
// report location (this is the length)
in
.
seekg
(
0
,
std
::
ios
::
beg
);
// go back to the beginning
in
.
read
(
buf
,
length
);
DLOG
<<
length
;
in
.
close
();
}
void
convert_to_chw
(
int16_t
**
data_in
,
int
channel
,
int
height
,
int
width
,
int
num
,
int16_t
*
data_tmp
)
{
int64_t
amount_per_side
=
width
*
height
;
for
(
int
n
=
0
;
n
<
num
;
n
++
)
{
for
(
int
h
=
0
;
h
<
height
;
h
++
)
{
for
(
int
w
=
0
;
w
<
width
;
w
++
)
{
for
(
int
c
=
0
;
c
<
channel
;
c
++
)
{
*
(
data_tmp
+
n
*
amount_per_side
*
channel
+
c
*
amount_per_side
+
width
*
h
+
w
)
=
*
((
*
data_in
)
++
);
}
}
}
}
}
void
dump_stride_half
(
std
::
string
filename
,
Tensor
input_tensor
,
const
int
dumpnum
,
bool
use_chw
)
{
// bool use_chw = true;
if
(
input_tensor
.
dims
().
size
()
!=
4
)
return
;
int
c
=
(
input_tensor
.
dims
())[
1
];
int
h
=
(
input_tensor
.
dims
())[
2
];
int
w
=
(
input_tensor
.
dims
())[
3
];
int
n
=
(
input_tensor
.
dims
())[
0
];
auto
data_ptr
=
input_tensor
.
get_data
();
auto
*
data_ptr_16
=
reinterpret_cast
<
half
*>
(
data_ptr
);
auto
data_tmp
=
data_ptr_16
;
if
(
use_chw
)
{
data_tmp
=
reinterpret_cast
<
half
*>
(
malloc
(
n
*
c
*
h
*
w
*
sizeof
(
int16_t
)));
convert_to_chw
(
&
data_ptr_16
,
c
,
h
,
w
,
n
,
data_tmp
);
}
std
::
ofstream
out
(
filename
.
c_str
());
float
result
=
0
;
int
stride
=
input_tensor
.
numel
()
/
dumpnum
;
stride
=
stride
>
0
?
stride
:
1
;
for
(
int
i
=
0
;
i
<
input_tensor
.
numel
();
i
+=
stride
)
{
result
=
paddle_mobile
::
fpga
::
fp16_2_fp32
(
data_tmp
[
i
]);
out
<<
result
<<
std
::
endl
;
}
out
.
close
();
if
(
data_tmp
!=
data_ptr_16
)
{
free
(
data_tmp
);
}
}
void
dump_stride_float
(
std
::
string
filename
,
Tensor
input_tensor
,
const
int
dumpnum
)
{
auto
data_ptr
=
reinterpret_cast
<
float
*>
(
input_tensor
.
get_data
());
std
::
ofstream
out
(
filename
.
c_str
());
float
result
=
0
;
int
stride
=
input_tensor
.
numel
()
/
dumpnum
;
stride
=
stride
>
0
?
stride
:
1
;
for
(
int
i
=
0
;
i
<
input_tensor
.
numel
();
i
+=
stride
)
{
result
=
data_ptr
[
i
];
out
<<
result
<<
std
::
endl
;
}
out
.
close
();
}
void
dump_stride
(
std
::
string
filename
,
Tensor
input_tensor
,
const
int
dumpnum
,
bool
use_chw
)
{
static
int
i
=
0
;
if
(
input_tensor
.
numel
()
==
0
)
{
return
;
}
if
(
input_tensor
.
type
()
==
typeid
(
float
))
{
DLOG
<<
"op: "
<<
i
++
<<
", float data "
<<
input_tensor
.
numel
();
dump_stride_float
(
filename
,
input_tensor
,
dumpnum
);
}
else
{
DLOG
<<
"op: "
<<
i
++
<<
", half data "
<<
input_tensor
.
numel
();
dump_stride_half
(
filename
,
input_tensor
,
dumpnum
,
use_chw
);
}
DLOG
<<
"dump input address: "
<<
input_tensor
.
get_data
();
}
static
const
char
*
g_marker_combine
=
"../models/marker/model"
;
static
const
char
*
g_image_src_float
=
"../models/marker/model/input_0.bin"
;
int
main
()
{
paddle_mobile
::
fpga
::
open_device
();
paddle_mobile
::
PaddleMobile
<
paddle_mobile
::
FPGA
>
paddle_mobile
;
// if (paddle_mobile.Load(std::string(g_rfcn_combine) + "/model",
// std::string(g_rfcn_combine) + "/params", true, false,
// 1, true)) {
if
(
paddle_mobile
.
Load
(
std
::
string
(
g_marker_combine
),
true
))
{
float
img_info
[
3
]
=
{
720
,
1280
,
800.0
f
/
960.0
f
};
auto
img
=
reinterpret_cast
<
float
*>
(
fpga
::
fpga_malloc
(
720
*
1280
*
3
*
sizeof
(
float
)));
readStream
(
g_image_src_float
,
reinterpret_cast
<
char
*>
(
img
));
std
::
vector
<
void
*>
v
(
3
,
nullptr
);
paddle_mobile
.
FeedData
({
img
});
paddle_mobile
.
Predict_To
(
-
1
);
for
(
int
i
=
47
;
i
<
52
;
i
++
)
{
auto
tensor_ptr
=
paddle_mobile
.
FetchResult
(
i
);
std
::
string
saveName
=
"marker_"
+
std
::
to_string
(
i
);
// if(i != 58)
paddle_mobile
::
fpga
::
fpga_invalidate
((
*
tensor_ptr
).
get_data
(),
tensor_ptr
->
numel
()
*
sizeof
(
float
));
// tensor_ptr->numel() * sizeof(float));
dump_stride
(
saveName
,
(
*
tensor_ptr
),
tensor_ptr
->
numel
(),
true
);
// 20);//tensor_ptr->numel());
/* float result = 0;
std::string str = "softmax_input_data";
float* data =
static_cast<float*>(fpga::fpga_malloc(tensor_ptr->numel() *
sizeof(float))); str = "softmax_output_data"; auto output_ptr =
static_cast<half*>((*tensor_ptr).get_data()); for (int idx = 0; idx <
tensor_ptr->numel(); ++idx)
{
data[idx] = fpga::fp16_2_fp32(output_ptr[idx]);
}
fpga::savefile<float>(str,data, tensor_ptr->numel(), result ); */
}
// paddle_mobile.GetResults(&v);
DLOG
<<
"Computation done"
;
fpga
::
fpga_free
(
img
);
}
return
0
;
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录