Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
ad8aa3c3
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ad8aa3c3
编写于
10月 24, 2018
作者:
H
hjchen2
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Remove experimental code for int8 3x3 and 5x5 conv
上级
77fe9936
变更
5
展开全部
隐藏空白更改
内联
并排
Showing
5 changed file
with
9 addition
and
1410 deletion
+9
-1410
src/operators/kernel/central-arm-func/conv_arm_func.h
src/operators/kernel/central-arm-func/conv_arm_func.h
+8
-64
src/operators/kernel/central-arm-func/depthwise_conv_arm_func.h
...erators/kernel/central-arm-func/depthwise_conv_arm_func.h
+1
-1
src/operators/math/conv3x3_arm_int8.cpp
src/operators/math/conv3x3_arm_int8.cpp
+0
-761
src/operators/math/conv5x5_arm_int8.cpp
src/operators/math/conv5x5_arm_int8.cpp
+0
-551
src/operators/math/conv_arm_int8.h
src/operators/math/conv_arm_int8.h
+0
-33
未找到文件。
src/operators/kernel/central-arm-func/conv_arm_func.h
浏览文件 @
ad8aa3c3
...
@@ -16,7 +16,6 @@ limitations under the License. */
...
@@ -16,7 +16,6 @@ limitations under the License. */
#pragma once
#pragma once
#include <vector>
#include <vector>
#include "operators/math/conv_arm_int8.h"
#include "operators/math/conv_func.h"
#include "operators/math/conv_func.h"
#include "operators/math/depthwise_conv_3x3.h"
#include "operators/math/depthwise_conv_3x3.h"
#include "operators/math/im2col.h"
#include "operators/math/im2col.h"
...
@@ -28,11 +27,12 @@ limitations under the License. */
...
@@ -28,11 +27,12 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
paddle_mobile
{
namespace
operators
{
namespace
operators
{
template
<
typename
D
type
>
template
<
typename
Itype
,
typename
O
type
>
inline
void
ConvBasic
(
const
ConvParam
<
CPU
>
&
param
)
{
inline
void
ConvBasic
(
const
ConvParam
<
CPU
>
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
*
output
=
param
.
Output
();
Tensor
*
output
=
param
.
Output
();
output
->
mutable_data
<
Otype
>
();
int
groups
=
param
.
Groups
();
int
groups
=
param
.
Groups
();
const
std
::
vector
<
int
>
strides
=
param
.
Strides
();
const
std
::
vector
<
int
>
strides
=
param
.
Strides
();
const
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
const
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
...
@@ -60,7 +60,7 @@ inline void ConvBasic(const ConvParam<CPU> ¶m) {
...
@@ -60,7 +60,7 @@ inline void ConvBasic(const ConvParam<CPU> ¶m) {
Tensor
col
;
Tensor
col
;
Tensor
col_matrix
;
Tensor
col_matrix
;
if
(
is_expand
)
{
if
(
is_expand
)
{
col
.
mutable_data
<
D
type
>
(
col_shape
);
col
.
mutable_data
<
I
type
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
}
...
@@ -79,8 +79,8 @@ inline void ConvBasic(const ConvParam<CPU> ¶m) {
...
@@ -79,8 +79,8 @@ inline void ConvBasic(const ConvParam<CPU> ¶m) {
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
output
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
output
->
dims
()[
1
])
/
groups
;
math
::
Vol2ColFunctor
<
CPU
,
D
type
>
vol2col
;
math
::
Vol2ColFunctor
<
CPU
,
I
type
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
D
type
>
im2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
I
type
>
im2col
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
...
@@ -109,74 +109,18 @@ inline void ConvBasic(const ConvParam<CPU> ¶m) {
...
@@ -109,74 +109,18 @@ inline void ConvBasic(const ConvParam<CPU> ¶m) {
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
D
type
>
(
filter_slice
,
false
,
col_matrix
,
false
,
math
::
matmul
<
I
type
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
));
static_cast
<
float
>
(
0
));
}
}
}
}
}
}
inline
void
ConvCompute_int8
(
const
ConvParam
<
CPU
>
&
param
)
{
typedef
void
(
*
ConvFunc
)(
const
Tensor
&
input
,
const
Tensor
&
kernel
,
Tensor
*
output
);
static
ConvFunc
conv_funcs_table
[
7
][
5
]
=
{
{
0
,
0
,
0
,
0
,
0
},
// k = 1
// {0, 0, 0, 0, 0}, {conv3x3s1_int8, 0, 0, 0, 0}, // k = 3
// {0, 0, 0, 0, 0}, {conv5x5s1_int8, 0, 0, 0, 0}, // k = 5
{
0
,
0
,
0
,
0
,
0
},
{
0
,
0
,
0
,
0
,
0
},
// k = 3
{
0
,
0
,
0
,
0
,
0
},
{
0
,
0
,
0
,
0
,
0
},
// k = 5
{
0
,
0
,
0
,
0
,
0
},
{
0
,
0
,
0
,
0
,
0
},
// k = 7
};
const
Tensor
*
input
=
param
.
Input
();
Tensor
*
filter
=
param
.
Filter
();
Tensor
*
output
=
param
.
Output
();
int
groups
=
param
.
Groups
();
const
std
::
vector
<
int
>
&
strides
=
param
.
Strides
();
const
std
::
vector
<
int
>
&
paddings
=
param
.
Paddings
();
const
std
::
vector
<
int
>
&
dilations
=
param
.
Dilations
();
int
kernel_h
=
filter
->
dims
()[
2
];
int
kernel_w
=
filter
->
dims
()[
3
];
output
->
mutable_data
<
int32_t
>
();
ConvFunc
conv_func
=
0
;
if
(
strides
[
1
]
==
strides
[
0
]
&&
strides
[
1
]
<
6
&&
kernel_h
==
kernel_w
&&
kernel_h
<
8
&&
groups
==
1
&&
dilations
[
0
]
==
dilations
[
1
]
&&
dilations
[
1
]
==
1
)
{
conv_func
=
conv_funcs_table
[
kernel_h
-
1
][
strides
[
0
]
-
1
];
}
if
(
conv_func
)
{
int
batch_size
=
input
->
dims
()[
0
];
math
::
PadFunctor
<
CPU
,
int8_t
>
pad
;
Tensor
input_pad
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
);
if
(
paddings
[
0
]
==
0
&&
paddings
[
1
]
==
0
)
{
input_pad
=
in_batch
;
}
else
{
framework
::
DDim
pad_shape
=
in_batch
.
dims
();
pad_shape
[
2
]
+=
2
*
paddings
[
0
];
pad_shape
[
3
]
+=
2
*
paddings
[
1
];
input_pad
.
mutable_data
<
int8_t
>
(
pad_shape
);
pad
(
in_batch
,
paddings
[
0
],
paddings
[
1
],
&
input_pad
);
}
conv_func
(
input_pad
,
*
filter
,
&
out_batch
);
}
}
else
{
ConvBasic
<
int8_t
>
(
param
);
}
}
template
<
typename
P
>
template
<
typename
P
>
void
ConvCompute
(
const
ConvParam
<
CPU
>
&
param
)
{
void
ConvCompute
(
const
ConvParam
<
CPU
>
&
param
)
{
if
(
param
.
Input
()
->
type
()
==
typeid
(
int8_t
))
{
if
(
param
.
Input
()
->
type
()
==
typeid
(
int8_t
))
{
Conv
Compute_int8
(
param
);
Conv
Basic
<
int8_t
,
int32_t
>
(
param
);
}
else
{
}
else
{
param
.
Output
()
->
mutable_data
<
float
>
();
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
...
@@ -190,7 +134,7 @@ void ConvCompute(const ConvParam<CPU> ¶m) {
...
@@ -190,7 +134,7 @@ void ConvCompute(const ConvParam<CPU> ¶m) {
math
::
DepthwiseConv3x3
(
param
.
Input
(),
param
.
Strides
(),
param
.
Paddings
(),
math
::
DepthwiseConv3x3
(
param
.
Input
(),
param
.
Strides
(),
param
.
Paddings
(),
param
.
Filter
(),
nullptr
,
param
.
Output
(),
false
);
param
.
Filter
(),
nullptr
,
param
.
Output
(),
false
);
}
else
{
}
else
{
ConvBasic
<
float
>
(
param
);
ConvBasic
<
float
,
float
>
(
param
);
}
}
}
}
}
}
...
...
src/operators/kernel/central-arm-func/depthwise_conv_arm_func.h
浏览文件 @
ad8aa3c3
...
@@ -44,7 +44,7 @@ void DepthwiseConvCompute(const ConvParam<CPU> ¶m) {
...
@@ -44,7 +44,7 @@ void DepthwiseConvCompute(const ConvParam<CPU> ¶m) {
Bias
,
false
);
Bias
,
false
);
}
else
{
}
else
{
ConvBasic
<
float
>
(
param
);
ConvBasic
<
float
,
float
>
(
param
);
}
}
}
}
...
...
src/operators/math/conv3x3_arm_int8.cpp
已删除
100644 → 0
浏览文件 @
77fe9936
此差异已折叠。
点击以展开。
src/operators/math/conv5x5_arm_int8.cpp
已删除
100644 → 0
浏览文件 @
77fe9936
此差异已折叠。
点击以展开。
src/operators/math/conv_arm_int8.h
已删除
100644 → 0
浏览文件 @
77fe9936
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONV_OP
#pragma once
#include "framework/tensor.h"
namespace
paddle_mobile
{
namespace
operators
{
void
conv3x3s1_int8
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
);
void
conv5x5s1_int8
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
);
}
// namespace operators
}
// namespace paddle_mobile
#endif
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录