提交 ad8aa3c3 编写于 作者: H hjchen2

Remove experimental code for int8 3x3 and 5x5 conv

上级 77fe9936
...@@ -16,7 +16,6 @@ limitations under the License. */ ...@@ -16,7 +16,6 @@ limitations under the License. */
#pragma once #pragma once
#include <vector> #include <vector>
#include "operators/math/conv_arm_int8.h"
#include "operators/math/conv_func.h" #include "operators/math/conv_func.h"
#include "operators/math/depthwise_conv_3x3.h" #include "operators/math/depthwise_conv_3x3.h"
#include "operators/math/im2col.h" #include "operators/math/im2col.h"
...@@ -28,11 +27,12 @@ limitations under the License. */ ...@@ -28,11 +27,12 @@ limitations under the License. */
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
template <typename Dtype> template <typename Itype, typename Otype>
inline void ConvBasic(const ConvParam<CPU> &param) { inline void ConvBasic(const ConvParam<CPU> &param) {
const Tensor *input = param.Input(); const Tensor *input = param.Input();
Tensor filter = *param.Filter(); Tensor filter = *param.Filter();
Tensor *output = param.Output(); Tensor *output = param.Output();
output->mutable_data<Otype>();
int groups = param.Groups(); int groups = param.Groups();
const std::vector<int> strides = param.Strides(); const std::vector<int> strides = param.Strides();
const std::vector<int> paddings = param.Paddings(); const std::vector<int> paddings = param.Paddings();
...@@ -60,7 +60,7 @@ inline void ConvBasic(const ConvParam<CPU> &param) { ...@@ -60,7 +60,7 @@ inline void ConvBasic(const ConvParam<CPU> &param) {
Tensor col; Tensor col;
Tensor col_matrix; Tensor col_matrix;
if (is_expand) { if (is_expand) {
col.mutable_data<Dtype>(col_shape); col.mutable_data<Itype>(col_shape);
col_matrix.ShareDataWith(col); col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape); col_matrix.Resize(col_matrix_shape);
} }
...@@ -79,8 +79,8 @@ inline void ConvBasic(const ConvParam<CPU> &param) { ...@@ -79,8 +79,8 @@ inline void ConvBasic(const ConvParam<CPU> &param) {
int in_step = static_cast<int>(input->dims()[1]) / groups; int in_step = static_cast<int>(input->dims()[1]) / groups;
int out_step = static_cast<int>(output->dims()[1]) / groups; int out_step = static_cast<int>(output->dims()[1]) / groups;
math::Vol2ColFunctor<CPU, Dtype> vol2col; math::Vol2ColFunctor<CPU, Itype> vol2col;
math::Im2ColFunctor<math::ColFormat::kCFO, CPU, Dtype> im2col; math::Im2ColFunctor<math::ColFormat::kCFO, CPU, Itype> im2col;
for (int i = 0; i < batch_size; i++) { for (int i = 0; i < batch_size; i++) {
Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
...@@ -109,74 +109,18 @@ inline void ConvBasic(const ConvParam<CPU> &param) { ...@@ -109,74 +109,18 @@ inline void ConvBasic(const ConvParam<CPU> &param) {
Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step); Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
math::matmul<Dtype>(filter_slice, false, col_matrix, false, math::matmul<Itype>(filter_slice, false, col_matrix, false,
static_cast<float>(1), &out_slice, static_cast<float>(1), &out_slice,
static_cast<float>(0)); static_cast<float>(0));
} }
} }
} }
inline void ConvCompute_int8(const ConvParam<CPU> &param) {
typedef void (*ConvFunc)(const Tensor &input, const Tensor &kernel,
Tensor *output);
static ConvFunc conv_funcs_table[7][5] = {
{0, 0, 0, 0, 0}, // k = 1
// {0, 0, 0, 0, 0}, {conv3x3s1_int8, 0, 0, 0, 0}, // k = 3
// {0, 0, 0, 0, 0}, {conv5x5s1_int8, 0, 0, 0, 0}, // k = 5
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0}, // k = 3
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0}, // k = 5
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0}, // k = 7
};
const Tensor *input = param.Input();
Tensor *filter = param.Filter();
Tensor *output = param.Output();
int groups = param.Groups();
const std::vector<int> &strides = param.Strides();
const std::vector<int> &paddings = param.Paddings();
const std::vector<int> &dilations = param.Dilations();
int kernel_h = filter->dims()[2];
int kernel_w = filter->dims()[3];
output->mutable_data<int32_t>();
ConvFunc conv_func = 0;
if (strides[1] == strides[0] && strides[1] < 6 && kernel_h == kernel_w &&
kernel_h < 8 && groups == 1 && dilations[0] == dilations[1] &&
dilations[1] == 1) {
conv_func = conv_funcs_table[kernel_h - 1][strides[0] - 1];
}
if (conv_func) {
int batch_size = input->dims()[0];
math::PadFunctor<CPU, int8_t> pad;
Tensor input_pad;
for (int i = 0; i < batch_size; ++i) {
Tensor in_batch = input->Slice(i, i + 1);
Tensor out_batch = output->Slice(i, i + 1);
if (paddings[0] == 0 && paddings[1] == 0) {
input_pad = in_batch;
} else {
framework::DDim pad_shape = in_batch.dims();
pad_shape[2] += 2 * paddings[0];
pad_shape[3] += 2 * paddings[1];
input_pad.mutable_data<int8_t>(pad_shape);
pad(in_batch, paddings[0], paddings[1], &input_pad);
}
conv_func(input_pad, *filter, &out_batch);
}
} else {
ConvBasic<int8_t>(param);
}
}
template <typename P> template <typename P>
void ConvCompute(const ConvParam<CPU> &param) { void ConvCompute(const ConvParam<CPU> &param) {
if (param.Input()->type() == typeid(int8_t)) { if (param.Input()->type() == typeid(int8_t)) {
ConvCompute_int8(param); ConvBasic<int8_t, int32_t>(param);
} else { } else {
param.Output()->mutable_data<float>();
if (param.Groups() == param.Input()->dims()[1] && if (param.Groups() == param.Input()->dims()[1] &&
param.Input()->dims()[1] == param.Output()->dims()[1] && param.Input()->dims()[1] == param.Output()->dims()[1] &&
param.Filter()->dims()[2] == param.Filter()->dims()[3] && param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
...@@ -190,7 +134,7 @@ void ConvCompute(const ConvParam<CPU> &param) { ...@@ -190,7 +134,7 @@ void ConvCompute(const ConvParam<CPU> &param) {
math::DepthwiseConv3x3(param.Input(), param.Strides(), param.Paddings(), math::DepthwiseConv3x3(param.Input(), param.Strides(), param.Paddings(),
param.Filter(), nullptr, param.Output(), false); param.Filter(), nullptr, param.Output(), false);
} else { } else {
ConvBasic<float>(param); ConvBasic<float, float>(param);
} }
} }
} }
......
...@@ -44,7 +44,7 @@ void DepthwiseConvCompute(const ConvParam<CPU> &param) { ...@@ -44,7 +44,7 @@ void DepthwiseConvCompute(const ConvParam<CPU> &param) {
Bias, false); Bias, false);
} else { } else {
ConvBasic<float>(param); ConvBasic<float, float>(param);
} }
} }
......
此差异已折叠。
此差异已折叠。
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONV_OP
#pragma once
#include "framework/tensor.h"
namespace paddle_mobile {
namespace operators {
void conv3x3s1_int8(const framework::Tensor& input,
const framework::Tensor& weight, framework::Tensor* output);
void conv5x5s1_int8(const framework::Tensor& input,
const framework::Tensor& weight, framework::Tensor* output);
} // namespace operators
} // namespace paddle_mobile
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册