Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
ab1f29d6
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ab1f29d6
编写于
7月 02, 2018
作者:
E
eclipsess
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update convaddbnrelu
上级
d8a336d2
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
114 addition
and
97 deletion
+114
-97
src/operators/kernel/central-arm-func/conv_add_bn_relu_func.h
...operators/kernel/central-arm-func/conv_add_bn_relu_func.h
+105
-90
src/operators/math/depthwise_conv_3x3.cpp
src/operators/math/depthwise_conv_3x3.cpp
+5
-4
src/operators/math/depthwise_conv_3x3.h
src/operators/math/depthwise_conv_3x3.h
+4
-3
未找到文件。
src/operators/kernel/central-arm-func/conv_add_bn_relu_func.h
浏览文件 @
ab1f29d6
...
...
@@ -17,11 +17,10 @@ limitations under the License. */
#pragma once
#include "operators/math/depthwise_conv_3x3.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
P
>
void
ConvAddBNReluCompute
(
const
FusionConvAddBNReluParam
&
param
)
{
void
ConvAddBNReluBasic
(
const
FusionConvAddBNReluParam
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
bias
=
*
param
.
Bias
();
...
...
@@ -30,105 +29,121 @@ void ConvAddBNReluCompute(const FusionConvAddBNReluParam ¶m) {
auto
new_bias_ptr
=
new_bias
.
data
<
float
>
();
auto
new_scale_ptr
=
new_scale
.
data
<
float
>
();
int
axis
=
param
.
Axis
();
Tensor
*
output
=
param
.
Output
();
math
::
expand_bias
(
bias
,
axis
,
output
->
dims
());
output
->
ShareDataWith
(
bias
);
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
std
::
vector
<
int
>
dilations
=
param
.
Dilations
();
Tensor
*
output
=
param
.
Output
();
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
if
(
filter_shape_vec
[
2
]
==
3
&&
strides
[
0
]
==
1
&&
groups
>
1
)
{
math
::
DepthwiseConvAddBNRelu3x3s1p1
(
input
,
filter
,
output
,
&
bias
,
1
,
&
new_scale
,
&
new_bias
,
1
,
1
);
}
else
{
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
math
::
expand_bias
(
bias
,
axis
,
output
->
dims
());
output
->
ShareDataWith
(
bias
);
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
math
::
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
mutable_data
<
float
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
math
::
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
mutable_data
<
float
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
framework
::
DDim
output_matrix_shape
=
{
output
->
dims
()[
1
],
output
->
numel
()
/
(
output
->
dims
()[
0
]
*
output
->
dims
()[
1
])};
// convolution operator: im2col(or vol2col) + gemm
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
output
->
dims
()[
1
])
/
groups
;
math
::
Vol2ColFunctor
<
CPU
,
float
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
float
>
im2col
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
in_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
),
false
);
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
framework
::
DDim
output_matrix_shape
=
{
output
->
dims
()[
1
],
output
->
numel
()
/
(
output
->
dims
()[
0
]
*
output
->
dims
()[
1
])};
// convolution operator: im2col(or vol2col) + gemm
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
output
->
dims
()[
1
])
/
groups
;
math
::
Vol2ColFunctor
<
CPU
,
float
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
float
>
im2col
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
in_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
));
}
auto
output_ptr
=
output
->
data
<
float
>
();
for
(
int
c
=
0
;
c
<
output_matrix_shape
[
0
];
c
++
)
{
int
start
=
c
*
output_matrix_shape
[
1
];
for
(
int
j
=
0
;
j
<
output_matrix_shape
[
1
];
j
++
)
{
output_ptr
[
start
+
j
]
=
output_ptr
[
start
+
j
]
*
new_scale_ptr
[
c
]
+
new_bias_ptr
[
c
];
output_ptr
[
start
+
j
]
=
output_ptr
[
start
+
j
]
<
0
?
0
:
output_ptr
[
start
+
j
];
}
}
/// todo : use neon in special case instead of 2for(300ms)
auto
output_ptr
=
output
->
data
<
float
>
();
for
(
int
c
=
0
;
c
<
output_matrix_shape
[
0
];
c
++
)
{
int
start
=
c
*
output_matrix_shape
[
1
];
for
(
int
j
=
0
;
j
<
output_matrix_shape
[
1
];
j
++
)
{
output_ptr
[
start
+
j
]
=
output_ptr
[
start
+
j
]
*
new_scale_ptr
[
c
]
+
new_bias_ptr
[
c
];
output_ptr
[
start
+
j
]
=
output_ptr
[
start
+
j
]
<
0
?
0
:
output_ptr
[
start
+
j
];
}
}
}
template
<
typename
P
>
void
ConvAddBNReluCompute
(
const
FusionConvAddBNReluParam
&
param
)
{
Tensor
Bias
;
Bias
.
mutable_data
<
float
>
({
param
.
Groups
()});
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
)
{
math
::
DepthwiseConvAddBNRelu3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
&
Bias
,
1
,
param
.
NewScale
(),
param
.
NewBias
(),
1
,
1
);
}
else
if
(
0
&&
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
math
::
DepthwiseConv3x3
(
param
.
Input
(),
param
.
Strides
(),
param
.
Paddings
(),
param
.
Filter
(),
&
Bias
,
param
.
Output
(),
false
);
}
else
{
ConvAddBNReluBasic
(
param
);
}
}
}
// namespace operators
}
// namespace paddle_mobile
...
...
src/operators/math/depthwise_conv_3x3.cpp
浏览文件 @
ab1f29d6
...
...
@@ -508,12 +508,13 @@ void DepthwiseConv3x3s1p1(const Tensor *input, const Tensor *filter,
}
}
void
DepthwiseConvAddBNRelu3x3s1p1
(
const
Tensor
*
input
,
Tensor
filter
,
void
DepthwiseConvAddBNRelu3x3s1p1
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
Tensor
*
bias
,
bool
if_bias
,
Tensor
*
new_scale
,
Tensor
*
new_bias
,
bool
if_bn
,
bool
if_relu
)
{
const
Tensor
*
new_scale
,
const
Tensor
*
new_bias
,
bool
if_bn
,
bool
if_relu
)
{
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
.
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
float
*
output_data
=
output
->
data
<
float
>
();
const
float
*
bias_data
=
bias
->
data
<
float
>
();
const
float
*
newscale_data
=
new_scale
->
data
<
float
>
();
...
...
src/operators/math/depthwise_conv_3x3.h
浏览文件 @
ab1f29d6
...
...
@@ -32,10 +32,11 @@ void DepthwiseConv3x3(const Tensor *input, vector<int> strides,
Tensor
*
output
,
bool
if_bias
);
void
DepthwiseConv3x3s1p1
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
Tensor
*
bias
,
bool
if_bias
);
void
DepthwiseConvAddBNRelu3x3s1p1
(
const
Tensor
*
input
,
Tensor
filter
,
void
DepthwiseConvAddBNRelu3x3s1p1
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
Tensor
*
bias
,
bool
if_bias
,
Tensor
*
new_scale
,
Tensor
*
new_bias
,
bool
if_bn
,
bool
if_relu
);
const
Tensor
*
new_scale
,
const
Tensor
*
new_bias
,
bool
if_bn
,
bool
if_relu
);
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录