提交 aaca6bb9 编写于 作者: R Ray Liu 提交者: GitHub

Merge pull request #1058 from codeWorm2015/opencl

 add depth wise conv kernel
...@@ -41,8 +41,11 @@ __kernel void conv_1x1(__private const int global_size_dim0, ...@@ -41,8 +41,11 @@ __kernel void conv_1x1(__private const int global_size_dim0,
__private const int stride, __private const int stride,
__private const int offset, __private const int offset,
__private const int input_c, __private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */ __private const int input_width,/* of one block */
__private const int input_height/* of one block */) { __private const int input_height,/* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0); const int out_c = get_global_id(0);
const int out_w = get_global_id(1); const int out_w = get_global_id(1);
const int out_nh = get_global_id(2); const int out_nh = get_global_id(2);
...@@ -112,7 +115,9 @@ __kernel void conv_3x3(__private const int global_size_dim0, ...@@ -112,7 +115,9 @@ __kernel void conv_3x3(__private const int global_size_dim0,
__private const int input_c, __private const int input_c,
__private const int dilation, __private const int dilation,
__private const int input_width,/* of one block */ __private const int input_width,/* of one block */
__private const int input_height/* of one block */) { __private const int input_height,/* of one block */
__private const int output_width,
__private const int output_height) {
int2 stride_xy = int2(stride, stride); int2 stride_xy = int2(stride, stride);
int2 ouput_pos_in_one_block = int2(out_w, out_nh); int2 ouput_pos_in_one_block = int2(out_w, out_nh);
int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + int2(offset, offset); int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + int2(offset, offset);
......
...@@ -109,8 +109,11 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute( ...@@ -109,8 +109,11 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
int stride = param.Strides()[0]; int stride = param.Strides()[0];
int offset = param.Offset(); int offset = param.Offset();
int input_c = param.Input()->CBlock(); int input_c = param.Input()->CBlock();
int dilation = param.Dilations()[0];
int input_width = param.Input()->WidthOfOneBlock(); int input_width = param.Input()->WidthOfOneBlock();
int input_height = param.Input()->HeightOfOneBlock(); int input_height = param.Input()->HeightOfOneBlock();
int output_width = param.Output()->WidthOfOneBlock();
int output_height = param.Output()->HeightOfOneBlock();
clSetKernelArg(kernel, 0, sizeof(int), &c_block); clSetKernelArg(kernel, 0, sizeof(int), &c_block);
clSetKernelArg(kernel, 1, sizeof(int), &w); clSetKernelArg(kernel, 1, sizeof(int), &w);
...@@ -124,8 +127,11 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute( ...@@ -124,8 +127,11 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
clSetKernelArg(kernel, 9, sizeof(int), &stride); clSetKernelArg(kernel, 9, sizeof(int), &stride);
clSetKernelArg(kernel, 10, sizeof(int), &offset); clSetKernelArg(kernel, 10, sizeof(int), &offset);
clSetKernelArg(kernel, 11, sizeof(int), &input_c); clSetKernelArg(kernel, 11, sizeof(int), &input_c);
clSetKernelArg(kernel, 12, sizeof(int), &input_width); clSetKernelArg(kernel, 12, sizeof(int), &dilation);
clSetKernelArg(kernel, 13, sizeof(int), &input_height); clSetKernelArg(kernel, 13, sizeof(int), &input_width);
clSetKernelArg(kernel, 14, sizeof(int), &input_height);
clSetKernelArg(kernel, 15, sizeof(int), &output_width);
clSetKernelArg(kernel, 16, sizeof(int), &output_height);
clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL, clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL,
default_work_size.data(), NULL, 0, NULL, NULL); default_work_size.data(), NULL, 0, NULL, NULL);
......
...@@ -59,8 +59,11 @@ void ConvAddKernel<GPU_CL, float>::Compute( ...@@ -59,8 +59,11 @@ void ConvAddKernel<GPU_CL, float>::Compute(
int stride = param.Strides()[0]; int stride = param.Strides()[0];
int offset = param.Offset(); int offset = param.Offset();
int input_c = param.Input()->CBlock(); int input_c = param.Input()->CBlock();
int dilation = param.Dilations()[0];
int input_width = param.Input()->WidthOfOneBlock(); int input_width = param.Input()->WidthOfOneBlock();
int input_height = param.Input()->HeightOfOneBlock(); int input_height = param.Input()->HeightOfOneBlock();
int output_width = param.Output()->WidthOfOneBlock();
int output_height = param.Output()->HeightOfOneBlock();
clSetKernelArg(kernel, 0, sizeof(int), &c_block); clSetKernelArg(kernel, 0, sizeof(int), &c_block);
clSetKernelArg(kernel, 1, sizeof(int), &w); clSetKernelArg(kernel, 1, sizeof(int), &w);
...@@ -68,12 +71,15 @@ void ConvAddKernel<GPU_CL, float>::Compute( ...@@ -68,12 +71,15 @@ void ConvAddKernel<GPU_CL, float>::Compute(
clSetKernelArg(kernel, 3, sizeof(cl_mem), &input); clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter); clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
clSetKernelArg(kernel, 5, sizeof(cl_mem), &biase); clSetKernelArg(kernel, 5, sizeof(cl_mem), &biase);
clSetKernelArg(kernel, 8, sizeof(cl_mem), &output); clSetKernelArg(kernel, 6, sizeof(cl_mem), &output);
clSetKernelArg(kernel, 9, sizeof(int), &stride); clSetKernelArg(kernel, 7, sizeof(int), &stride);
clSetKernelArg(kernel, 10, sizeof(int), &offset); clSetKernelArg(kernel, 8, sizeof(int), &offset);
clSetKernelArg(kernel, 11, sizeof(int), &input_c); clSetKernelArg(kernel, 9, sizeof(int), &input_c);
clSetKernelArg(kernel, 12, sizeof(int), &input_width); clSetKernelArg(kernel, 10, sizeof(int), &dilation);
clSetKernelArg(kernel, 13, sizeof(int), &input_height); clSetKernelArg(kernel, 11, sizeof(int), &input_width);
clSetKernelArg(kernel, 12, sizeof(int), &input_height);
clSetKernelArg(kernel, 13, sizeof(int), &output_width);
clSetKernelArg(kernel, 14, sizeof(int), &output_height);
clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL, clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL,
default_work_size.data(), NULL, 0, NULL, NULL); default_work_size.data(), NULL, 0, NULL, NULL);
......
...@@ -60,6 +60,8 @@ void ConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> &param) { ...@@ -60,6 +60,8 @@ void ConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> &param) {
int dilation = param.Dilations()[0]; int dilation = param.Dilations()[0];
int input_width = param.Input()->WidthOfOneBlock(); int input_width = param.Input()->WidthOfOneBlock();
int input_height = param.Input()->HeightOfOneBlock(); int input_height = param.Input()->HeightOfOneBlock();
int output_width = param.Output()->WidthOfOneBlock();
int output_height = param.Output()->HeightOfOneBlock();
clSetKernelArg(kernel, 0, sizeof(int), &c_block); clSetKernelArg(kernel, 0, sizeof(int), &c_block);
clSetKernelArg(kernel, 1, sizeof(int), &w); clSetKernelArg(kernel, 1, sizeof(int), &w);
...@@ -73,14 +75,11 @@ void ConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> &param) { ...@@ -73,14 +75,11 @@ void ConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> &param) {
clSetKernelArg(kernel, 9, sizeof(int), &dilation); clSetKernelArg(kernel, 9, sizeof(int), &dilation);
clSetKernelArg(kernel, 10, sizeof(int), &input_width); clSetKernelArg(kernel, 10, sizeof(int), &input_width);
clSetKernelArg(kernel, 11, sizeof(int), &input_height); clSetKernelArg(kernel, 11, sizeof(int), &input_height);
clSetKernelArg(kernel, 12, sizeof(int), &output_width);
clSetKernelArg(kernel, 13, sizeof(int), &output_height);
clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL, clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL,
default_work_size.data(), NULL, 0, NULL, NULL); default_work_size.data(), NULL, 0, NULL, NULL);
// auto kernel = this->cl_helper_.KernelAt(0);
// size_t global_work_size[3] = {1, 2, 3};
// clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL,
// global_work_size, NULL, 0, NULL, NULL);
} }
template class ConvKernel<GPU_CL, float>; template class ConvKernel<GPU_CL, float>;
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef DEPTHWISECONV_OP
#include "operators/kernel/depthwise_conv_kernel.h"
#include "operators/kernel/central-arm-func/depthwise_conv_arm_func.h"
namespace paddle_mobile {
namespace operators {
template <>
bool DepthwiseConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
DLOG << " depthwise conv kernel init begin ";
PADDLE_MOBILE_ENFORCE(
param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
param->Paddings()[0] == param->Paddings()[1],
"need equal");
int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
static_cast<int>(param->Paddings()[1]);
param->SetOffset(offset);
this->cl_helper_.AddKernel("depth_conv_3x3", "conv_add_bn_relu_kernel.cl");
DLOG << " depthwise conv kernel init end ";
return true;
}
template <>
void DepthwiseConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> &param) {
auto kernel = this->cl_helper_.KernelAt(0);
auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
int c_block = default_work_size[0];
int w = default_work_size[1];
int nh = default_work_size[2];
auto input = param.Input()->GetCLImage();
auto filter = param.Filter()->GetCLImage();
auto output = param.Output();
int stride = param.Strides()[0];
int offset = param.Offset();
int input_c = param.Input()->CBlock();
int dilation = param.Dilations()[0];
int input_width = param.Input()->WidthOfOneBlock();
int input_height = param.Input()->HeightOfOneBlock();
int output_width = param.Output()->WidthOfOneBlock();
int output_height = param.Output()->HeightOfOneBlock();
clSetKernelArg(kernel, 0, sizeof(int), &c_block);
clSetKernelArg(kernel, 1, sizeof(int), &w);
clSetKernelArg(kernel, 2, sizeof(int), &nh);
clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
clSetKernelArg(kernel, 5, sizeof(cl_mem), &output);
clSetKernelArg(kernel, 6, sizeof(int), &stride);
clSetKernelArg(kernel, 7, sizeof(int), &offset);
clSetKernelArg(kernel, 8, sizeof(int), &input_c);
clSetKernelArg(kernel, 9, sizeof(int), &dilation);
clSetKernelArg(kernel, 10, sizeof(int), &input_width);
clSetKernelArg(kernel, 11, sizeof(int), &input_height);
clSetKernelArg(kernel, 12, sizeof(int), &output_width);
clSetKernelArg(kernel, 13, sizeof(int), &output_height);
clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL,
default_work_size.data(), NULL, 0, NULL, NULL);
}
template class DepthwiseConvKernel<GPU_CL, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册