Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
aa228ed2
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
aa228ed2
编写于
9月 17, 2020
作者:
Z
zhupengyang
提交者:
GitHub
9月 17, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[xpu] update resnet50 ut and add googlenet, vgg19 uts (#4277)
上级
50632848
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
381 addition
and
74 deletion
+381
-74
lite/CMakeLists.txt
lite/CMakeLists.txt
+10
-3
lite/tests/api/CMakeLists.txt
lite/tests/api/CMakeLists.txt
+30
-37
lite/tests/api/ILSVRC2012_utility.h
lite/tests/api/ILSVRC2012_utility.h
+85
-0
lite/tests/api/test_googlenet_fp32_xpu.cc
lite/tests/api/test_googlenet_fp32_xpu.cc
+103
-0
lite/tests/api/test_resnet50_fp32_xpu.cc
lite/tests/api/test_resnet50_fp32_xpu.cc
+50
-34
lite/tests/api/test_vgg19_fp32_xpu.cc
lite/tests/api/test_vgg19_fp32_xpu.cc
+103
-0
未找到文件。
lite/CMakeLists.txt
浏览文件 @
aa228ed2
...
...
@@ -51,11 +51,18 @@ if (WITH_TESTING)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"GoogleNet_inference.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"mobilenet_v1.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"mobilenet_v2_relu.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"resnet50.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"inception_v4_simple.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"step_rnn.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"bert.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"ernie.tar.gz"
)
set
(
LITE_URL_FOR_UNITTESTS
"http://paddle-inference-dist.bj.bcebos.com/PaddleLite/models_and_data_for_unittests"
)
# models
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"resnet50.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"bert.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"ernie.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"GoogLeNet.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"VGG19.tar.gz"
)
# data
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"ILSVRC2012_small.tar.gz"
)
endif
()
endif
()
...
...
lite/tests/api/CMakeLists.txt
浏览文件 @
aa228ed2
if
(
LITE_WITH_ARM
)
lite_cc_test
(
test_transformer_with_mask_fp32_arm SRCS test_transformer_with_mask_fp32_arm.cc
DEPS
${
lite_model_test_DEPS
}
paddle_api_full
ARM_DEPS
${
arm_kernels
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/transformer_with_mask_fp32 SERIAL
)
if
(
WITH_TESTING
)
add_dependencies
(
test_transformer_with_mask_fp32_arm extern_lite_download_transformer_with_mask_fp32_tar_gz
)
endif
()
DEPS
${
lite_model_test_DEPS
}
paddle_api_full
ARM_DEPS
${
arm_kernels
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/transformer_with_mask_fp32 SERIAL
)
if
(
WITH_TESTING
)
add_dependencies
(
test_transformer_with_mask_fp32_arm extern_lite_download_transformer_with_mask_fp32_tar_gz
)
endif
()
endif
()
if
(
LITE_WITH_XPU AND NOT LITE_WITH_XTCL
)
lite_cc_test
(
test_resnet50_fp32_xpu SRCS test_resnet50_fp32_xpu.cc
DEPS mir_passes lite_api_test_helper paddle_api_full paddle_api_light gflags utils
${
ops
}
${
host_kernels
}
${
x86_kernels
}
${
xpu_kernels
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/resnet50
)
lite_cc_test
(
test_ernie_fp32_xpu SRCS test_ernie_fp32_xpu.cc
DEPS mir_passes lite_api_test_helper paddle_api_full paddle_api_light gflags utils
${
ops
}
${
host_kernels
}
${
x86_kernels
}
${
xpu_kernels
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/ernie
)
lite_cc_test
(
test_bert_fp32_xpu SRCS test_bert_fp32_xpu.cc
DEPS mir_passes lite_api_test_helper paddle_api_full paddle_api_light gflags utils
${
ops
}
${
host_kernels
}
${
x86_kernels
}
${
xpu_kernels
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/bert
)
function
(
xpu_x86_without_xtcl_test TARGET MODEL DATA
)
lite_cc_test
(
${
TARGET
}
SRCS
${
TARGET
}
.cc
DEPS mir_passes lite_api_test_helper paddle_api_full paddle_api_light gflags utils
${
ops
}
${
host_kernels
}
${
x86_kernels
}
${
xpu_kernels
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/
${
MODEL
}
--data_dir=
${
LITE_MODEL_DIR
}
/
${
DATA
}
)
if
(
WITH_TESTING
)
add_dependencies
(
test_resnet50_fp32_xpu extern_lite_download_resnet50_tar_gz
)
add_dependencies
(
test_ernie_fp32_xpu extern_lite_download_ernie_tar_gz
)
add_dependencies
(
test_bert_fp32_xpu extern_lite_download_bert_tar_gz
)
add_dependencies
(
${
TARGET
}
extern_lite_download_
${
MODEL
}
_tar_gz
)
if
(
NOT
${
DATA
}
STREQUAL
""
)
add_dependencies
(
${
TARGET
}
extern_lite_download_
${
DATA
}
_tar_gz
)
endif
()
endif
()
# TODO(miaotianxiang): enable later
#lite_cc_test(test_fpr_fp32_xpu SRCS test_fpr_fp32_xpu.cc
#DEPS mir_passes lite_api_test_helper paddle_api_full paddle_api_light gflags utils
#${ops} ${host_kernels} ${x86_kernels} ${xpu_kernels}
#ARGS --model_dir=${LITE_MODEL_DIR}/resnet50)
#lite_cc_test(test_mmdnn_fp32_xpu SRCS test_mmdnn_fp32_xpu.cc
#DEPS mir_passes lite_api_test_helper paddle_api_full paddle_api_light gflags utils
#${ops} ${host_kernels} ${x86_kernels} ${xpu_kernels}
#ARGS --model_dir=${LITE_MODEL_DIR}/resnet50)
endfunction
()
if
(
LITE_WITH_XPU AND NOT LITE_WITH_XTCL
)
xpu_x86_without_xtcl_test
(
test_resnet50_fp32_xpu resnet50 ILSVRC2012_small
)
xpu_x86_without_xtcl_test
(
test_googlenet_fp32_xpu GoogLeNet ILSVRC2012_small
)
xpu_x86_without_xtcl_test
(
test_vgg19_fp32_xpu VGG19 ILSVRC2012_small
)
xpu_x86_without_xtcl_test
(
test_ernie_fp32_xpu ernie
""
)
xpu_x86_without_xtcl_test
(
test_bert_fp32_xpu bert
""
)
endif
()
if
(
LITE_WITH_RKNPU
)
lite_cc_test
(
test_mobilenetv1_int8_rknpu SRCS test_mobilenetv1_int8_rknpu.cc
DEPS
${
lite_model_test_DEPS
}
paddle_api_full
RKNPU_DEPS
${
rknpu_kernels
}
${
rknpu_bridges
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/MobilenetV1_full_quant SERIAL
)
DEPS
${
lite_model_test_DEPS
}
paddle_api_full
RKNPU_DEPS
${
rknpu_kernels
}
${
rknpu_bridges
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/MobilenetV1_full_quant SERIAL
)
endif
()
if
(
LITE_WITH_APU
)
lite_cc_test
(
test_mobilenetv1_int8_apu SRCS test_mobilenetv1_int8_apu.cc
DEPS
${
lite_model_test_DEPS
}
paddle_api_full
APU_DEPS
${
apu_kernels
}
${
apu_bridges
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/MobilenetV1_full_quant SERIAL
)
DEPS
${
lite_model_test_DEPS
}
paddle_api_full
APU_DEPS
${
apu_kernels
}
${
apu_bridges
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/MobilenetV1_full_quant SERIAL
)
endif
()
lite/tests/api/ILSVRC2012_utility.h
0 → 100644
浏览文件 @
aa228ed2
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <iostream>
#include <string>
#include <vector>
#include "lite/utils/cp_logging.h"
#include "lite/utils/io.h"
#include "lite/utils/string.h"
namespace
paddle
{
namespace
lite
{
template
<
class
T
=
float
>
std
::
vector
<
std
::
vector
<
T
>>
ReadRawData
(
const
std
::
string
&
raw_data_dir
,
const
std
::
vector
<
int
>&
input_shape
=
{
1
,
3
,
224
,
224
},
int
iteration
=
100
)
{
std
::
vector
<
std
::
vector
<
T
>>
raw_data
;
int
image_size
=
1
;
for
(
size_t
i
=
1
;
i
<
input_shape
.
size
();
i
++
)
{
image_size
*=
input_shape
[
i
];
}
int
input_size
=
image_size
*
input_shape
[
0
];
for
(
int
i
=
0
;
i
<
iteration
;
i
++
)
{
std
::
vector
<
T
>
one_iter_raw_data
;
one_iter_raw_data
.
resize
(
input_size
);
T
*
data
=
&
(
one_iter_raw_data
.
at
(
0
));
for
(
int
j
=
0
;
j
<
input_shape
[
0
];
j
++
)
{
std
::
string
raw_data_file_dir
=
raw_data_dir
+
std
::
string
(
"/"
)
+
std
::
to_string
(
i
*
input_shape
[
0
]
+
j
+
1
);
std
::
ifstream
fin
(
raw_data_file_dir
,
std
::
ios
::
in
|
std
::
ios
::
binary
);
CHECK
(
fin
.
is_open
())
<<
"failed to open file "
<<
raw_data_file_dir
;
fin
.
seekg
(
0
,
std
::
ios
::
end
);
int
file_size
=
fin
.
tellg
();
fin
.
seekg
(
0
,
std
::
ios
::
beg
);
CHECK_EQ
(
file_size
,
image_size
*
sizeof
(
T
)
/
sizeof
(
char
));
fin
.
read
(
reinterpret_cast
<
char
*>
(
data
),
file_size
);
fin
.
close
();
data
+=
image_size
;
}
raw_data
.
emplace_back
(
one_iter_raw_data
);
}
return
raw_data
;
}
float
CalOutAccuracy
(
const
std
::
vector
<
std
::
vector
<
float
>>&
out_rets
,
const
std
::
string
&
labels_dir
)
{
std
::
vector
<
int
>
labels
;
std
::
vector
<
int
>
out_top1
;
int
right_num
=
0
;
auto
label_lines
=
ReadLines
(
labels_dir
);
for
(
size_t
i
=
0
;
i
<
out_rets
.
size
();
i
++
)
{
int
label
=
std
::
stoi
(
Split
(
label_lines
[
i
],
" "
)[
1
]);
auto
out
=
out_rets
[
i
];
auto
largest
=
std
::
max_element
(
out
.
begin
(),
out
.
end
());
int
out_top1
=
std
::
distance
(
out
.
begin
(),
largest
);
right_num
+=
(
out_top1
==
label
);
}
return
static_cast
<
float
>
(
right_num
)
/
static_cast
<
float
>
(
out_rets
.
size
());
}
}
// namespace lite
}
// namespace paddle
lite/tests/api/test_googlenet_fp32_xpu.cc
0 → 100644
浏览文件 @
aa228ed2
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "lite/api/lite_api_test_helper.h"
#include "lite/api/paddle_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/tests/api/ILSVRC2012_utility.h"
#include "lite/utils/cp_logging.h"
DEFINE_string
(
data_dir
,
""
,
"data dir"
);
DEFINE_int32
(
iteration
,
100
,
"iteration times to run"
);
DEFINE_int32
(
batch
,
1
,
"batch of image"
);
DEFINE_int32
(
channel
,
3
,
"image channel"
);
namespace
paddle
{
namespace
lite
{
TEST
(
GoogLeNet
,
test_googlenet_fp32_xpu
)
{
lite_api
::
CxxConfig
config
;
config
.
set_model_dir
(
FLAGS_model_dir
);
config
.
set_valid_places
({
lite_api
::
Place
{
TARGET
(
kXPU
),
PRECISION
(
kFloat
)},
lite_api
::
Place
{
TARGET
(
kX86
),
PRECISION
(
kFloat
)},
lite_api
::
Place
{
TARGET
(
kHost
),
PRECISION
(
kFloat
)}});
config
.
set_xpu_workspace_l3_size_per_thread
();
auto
predictor
=
lite_api
::
CreatePaddlePredictor
(
config
);
std
::
string
raw_data_dir
=
FLAGS_data_dir
+
std
::
string
(
"/raw_data"
);
std
::
vector
<
int
>
input_shape
{
FLAGS_batch
,
FLAGS_channel
,
FLAGS_im_width
,
FLAGS_im_height
};
auto
raw_data
=
ReadRawData
(
raw_data_dir
,
input_shape
,
FLAGS_iteration
);
int
input_size
=
1
;
for
(
auto
i
:
input_shape
)
{
input_size
*=
i
;
}
for
(
int
i
=
0
;
i
<
FLAGS_warmup
;
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
for
(
int
j
=
0
;
j
<
input_size
;
j
++
)
{
data
[
j
]
=
0.
f
;
}
predictor
->
Run
();
}
std
::
vector
<
std
::
vector
<
float
>>
out_rets
;
out_rets
.
resize
(
FLAGS_iteration
);
double
cost_time
=
0
;
for
(
size_t
i
=
0
;
i
<
raw_data
.
size
();
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
memcpy
(
data
,
raw_data
[
i
].
data
(),
sizeof
(
float
)
*
input_size
);
double
start
=
GetCurrentUS
();
predictor
->
Run
();
cost_time
+=
GetCurrentUS
()
-
start
;
auto
output_tensor
=
predictor
->
GetOutput
(
0
);
auto
output_shape
=
output_tensor
->
shape
();
auto
output_data
=
output_tensor
->
data
<
float
>
();
ASSERT_EQ
(
output_shape
.
size
(),
2UL
);
ASSERT_EQ
(
output_shape
[
0
],
1
);
ASSERT_EQ
(
output_shape
[
1
],
1000
);
int
output_size
=
output_shape
[
0
]
*
output_shape
[
1
];
out_rets
[
i
].
resize
(
output_size
);
memcpy
(
&
(
out_rets
[
i
].
at
(
0
)),
output_data
,
sizeof
(
float
)
*
output_size
);
}
LOG
(
INFO
)
<<
"================== Speed Report ==================="
;
LOG
(
INFO
)
<<
"Model: "
<<
FLAGS_model_dir
<<
", threads num "
<<
FLAGS_threads
<<
", warmup: "
<<
FLAGS_warmup
<<
", batch: "
<<
FLAGS_batch
<<
", iteration: "
<<
FLAGS_iteration
<<
", spend "
<<
cost_time
/
FLAGS_iteration
/
1000.0
<<
" ms in average."
;
std
::
string
labels_dir
=
FLAGS_data_dir
+
std
::
string
(
"/labels.txt"
);
float
out_accuracy
=
CalOutAccuracy
(
out_rets
,
labels_dir
);
ASSERT_GT
(
out_accuracy
,
0.57
f
);
}
}
// namespace lite
}
// namespace paddle
lite/tests/api/test_resnet50_fp32_xpu.cc
浏览文件 @
aa228ed2
...
...
@@ -21,8 +21,14 @@
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/tests/api/ILSVRC2012_utility.h"
#include "lite/utils/cp_logging.h"
DEFINE_string
(
data_dir
,
""
,
"data dir"
);
DEFINE_int32
(
iteration
,
100
,
"iteration times to run"
);
DEFINE_int32
(
batch
,
1
,
"batch of image"
);
DEFINE_int32
(
channel
,
3
,
"image channel"
);
namespace
paddle
{
namespace
lite
{
...
...
@@ -35,52 +41,62 @@ TEST(Resnet50, test_resnet50_fp32_xpu) {
config
.
set_xpu_workspace_l3_size_per_thread
();
auto
predictor
=
lite_api
::
CreatePaddlePredictor
(
config
);
auto
input_tensor
=
predictor
->
GetInput
(
0
);
std
::
vector
<
int64_t
>
input_shape
{
1
,
3
,
224
,
224
};
input_tensor
->
Resize
(
input_shape
);
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
int
input_num
=
1
;
for
(
size_t
i
=
0
;
i
<
input_shape
.
size
();
++
i
)
{
input_num
*=
input_shape
[
i
];
}
for
(
int
i
=
0
;
i
<
input_num
;
i
++
)
{
data
[
i
]
=
1
;
std
::
string
raw_data_dir
=
FLAGS_data_dir
+
std
::
string
(
"/raw_data"
);
std
::
vector
<
int
>
input_shape
{
FLAGS_batch
,
FLAGS_channel
,
FLAGS_im_width
,
FLAGS_im_height
};
auto
raw_data
=
ReadRawData
(
raw_data_dir
,
input_shape
,
FLAGS_iteration
);
int
input_size
=
1
;
for
(
auto
i
:
input_shape
)
{
input_size
*=
i
;
}
for
(
int
i
=
0
;
i
<
FLAGS_warmup
;
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
for
(
int
j
=
0
;
j
<
input_size
;
j
++
)
{
data
[
j
]
=
0.
f
;
}
predictor
->
Run
();
}
auto
start
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
FLAGS_repeats
;
++
i
)
{
std
::
vector
<
std
::
vector
<
float
>>
out_rets
;
out_rets
.
resize
(
FLAGS_iteration
);
double
cost_time
=
0
;
for
(
size_t
i
=
0
;
i
<
raw_data
.
size
();
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
memcpy
(
data
,
raw_data
[
i
].
data
(),
sizeof
(
float
)
*
input_size
);
double
start
=
GetCurrentUS
();
predictor
->
Run
();
cost_time
+=
GetCurrentUS
()
-
start
;
auto
output_tensor
=
predictor
->
GetOutput
(
0
);
auto
output_shape
=
output_tensor
->
shape
();
auto
output_data
=
output_tensor
->
data
<
float
>
();
ASSERT_EQ
(
output_shape
.
size
(),
2UL
);
ASSERT_EQ
(
output_shape
[
0
],
1
);
ASSERT_EQ
(
output_shape
[
1
],
1000
);
int
output_size
=
output_shape
[
0
]
*
output_shape
[
1
];
out_rets
[
i
].
resize
(
output_size
);
memcpy
(
&
(
out_rets
[
i
].
at
(
0
)),
output_data
,
sizeof
(
float
)
*
output_size
);
}
LOG
(
INFO
)
<<
"================== Speed Report ==================="
;
LOG
(
INFO
)
<<
"Model: "
<<
FLAGS_model_dir
<<
", threads num "
<<
FLAGS_threads
<<
", warmup: "
<<
FLAGS_warmup
<<
", repeats: "
<<
FLAGS_repeats
<<
", spend "
<<
(
GetCurrentUS
()
-
start
)
/
FLAGS_repeats
/
1000.0
<<
" ms in average."
;
std
::
vector
<
std
::
vector
<
float
>>
results
;
results
.
emplace_back
(
std
::
vector
<
float
>
(
{
0.000268651
,
0.000174053
,
0.000213181
,
0.000396771
,
0.000591516
,
0.00018169
,
0.000289721
,
0.000855934
,
0.000732185
,
9.2055e-05
,
0.000220664
,
0.00235289
,
0.00571265
,
0.00357688
,
0.00129667
,
0.000465392
,
0.000143775
,
0.000211628
,
0.000617144
,
0.000265033
}));
auto
out
=
predictor
->
GetOutput
(
0
);
ASSERT_EQ
(
out
->
shape
().
size
(),
2
);
ASSERT_EQ
(
out
->
shape
()[
0
],
1
);
ASSERT_EQ
(
out
->
shape
()[
1
],
1000
);
<<
", warmup: "
<<
FLAGS_warmup
<<
", batch: "
<<
FLAGS_batch
<<
", iteration: "
<<
FLAGS_iteration
<<
", spend "
<<
cost_time
/
FLAGS_iteration
/
1000.0
<<
" ms in average."
;
int
step
=
50
;
for
(
size_t
i
=
0
;
i
<
results
.
size
();
++
i
)
{
for
(
size_t
j
=
0
;
j
<
results
[
i
].
size
();
++
j
)
{
EXPECT_NEAR
(
out
->
data
<
float
>
()[
j
*
step
+
(
out
->
shape
()[
1
]
*
i
)],
results
[
i
][
j
],
1e-5
);
}
}
std
::
string
labels_dir
=
FLAGS_data_dir
+
std
::
string
(
"/labels.txt"
);
float
out_accuracy
=
CalOutAccuracy
(
out_rets
,
labels_dir
);
ASSERT_GT
(
out_accuracy
,
0.6
f
);
}
}
// namespace lite
...
...
lite/tests/api/test_vgg19_fp32_xpu.cc
0 → 100644
浏览文件 @
aa228ed2
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "lite/api/lite_api_test_helper.h"
#include "lite/api/paddle_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/tests/api/ILSVRC2012_utility.h"
#include "lite/utils/cp_logging.h"
DEFINE_string
(
data_dir
,
""
,
"data dir"
);
DEFINE_int32
(
iteration
,
100
,
"iteration times to run"
);
DEFINE_int32
(
batch
,
1
,
"batch of image"
);
DEFINE_int32
(
channel
,
3
,
"image channel"
);
namespace
paddle
{
namespace
lite
{
TEST
(
VGG19
,
test_vgg19_fp32_xpu
)
{
lite_api
::
CxxConfig
config
;
config
.
set_model_dir
(
FLAGS_model_dir
);
config
.
set_valid_places
({
lite_api
::
Place
{
TARGET
(
kXPU
),
PRECISION
(
kFloat
)},
lite_api
::
Place
{
TARGET
(
kX86
),
PRECISION
(
kFloat
)},
lite_api
::
Place
{
TARGET
(
kHost
),
PRECISION
(
kFloat
)}});
config
.
set_xpu_workspace_l3_size_per_thread
();
auto
predictor
=
lite_api
::
CreatePaddlePredictor
(
config
);
std
::
string
raw_data_dir
=
FLAGS_data_dir
+
std
::
string
(
"/raw_data"
);
std
::
vector
<
int
>
input_shape
{
FLAGS_batch
,
FLAGS_channel
,
FLAGS_im_width
,
FLAGS_im_height
};
auto
raw_data
=
ReadRawData
(
raw_data_dir
,
input_shape
,
FLAGS_iteration
);
int
input_size
=
1
;
for
(
auto
i
:
input_shape
)
{
input_size
*=
i
;
}
for
(
int
i
=
0
;
i
<
FLAGS_warmup
;
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
for
(
int
j
=
0
;
j
<
input_size
;
j
++
)
{
data
[
j
]
=
0.
f
;
}
predictor
->
Run
();
}
std
::
vector
<
std
::
vector
<
float
>>
out_rets
;
out_rets
.
resize
(
FLAGS_iteration
);
double
cost_time
=
0
;
for
(
size_t
i
=
0
;
i
<
raw_data
.
size
();
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
memcpy
(
data
,
raw_data
[
i
].
data
(),
sizeof
(
float
)
*
input_size
);
double
start
=
GetCurrentUS
();
predictor
->
Run
();
cost_time
+=
GetCurrentUS
()
-
start
;
auto
output_tensor
=
predictor
->
GetOutput
(
0
);
auto
output_shape
=
output_tensor
->
shape
();
auto
output_data
=
output_tensor
->
data
<
float
>
();
ASSERT_EQ
(
output_shape
.
size
(),
2UL
);
ASSERT_EQ
(
output_shape
[
0
],
1
);
ASSERT_EQ
(
output_shape
[
1
],
1000
);
int
output_size
=
output_shape
[
0
]
*
output_shape
[
1
];
out_rets
[
i
].
resize
(
output_size
);
memcpy
(
&
(
out_rets
[
i
].
at
(
0
)),
output_data
,
sizeof
(
float
)
*
output_size
);
}
LOG
(
INFO
)
<<
"================== Speed Report ==================="
;
LOG
(
INFO
)
<<
"Model: "
<<
FLAGS_model_dir
<<
", threads num "
<<
FLAGS_threads
<<
", warmup: "
<<
FLAGS_warmup
<<
", batch: "
<<
FLAGS_batch
<<
", iteration: "
<<
FLAGS_iteration
<<
", spend "
<<
cost_time
/
FLAGS_iteration
/
1000.0
<<
" ms in average."
;
std
::
string
labels_dir
=
FLAGS_data_dir
+
std
::
string
(
"/labels.txt"
);
float
out_accuracy
=
CalOutAccuracy
(
out_rets
,
labels_dir
);
ASSERT_GT
(
out_accuracy
,
0.56
f
);
}
}
// namespace lite
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录