Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
a94978bc
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a94978bc
编写于
6月 21, 2019
作者:
Y
Yanzhan Yang
提交者:
GitHub
6月 21, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add auto debug tools (#1692)
* add auto debug tools * fix style
上级
ac98700f
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
424 addition
and
0 deletion
+424
-0
test/CMakeLists.txt
test/CMakeLists.txt
+12
-0
test/net/test_net.cpp
test/net/test_net.cpp
+101
-0
tools/python/fluidtools/.gitignore
tools/python/fluidtools/.gitignore
+3
-0
tools/python/fluidtools/run.py
tools/python/fluidtools/run.py
+308
-0
未找到文件。
test/CMakeLists.txt
浏览文件 @
a94978bc
...
...
@@ -6,6 +6,14 @@ set(CON -1)
message
(
STATUS
"nets :
${
NET
}
"
)
list
(
FIND NET
"net"
CON
)
if
(
CON GREATER -1
)
# gen test
ADD_EXECUTABLE
(
test-net net/test_net.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-net paddle-mobile
)
set
(
FOUND_MATCH ON
)
endif
()
list
(
FIND NET
"googlenet"
CON
)
if
(
CON GREATER -1
)
# gen test
...
...
@@ -206,6 +214,10 @@ if (NOT FOUND_MATCH)
ADD_EXECUTABLE
(
test_yolo_combined net/test_yolo_combined.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test_yolo_combined paddle-mobile
)
# gen test
ADD_EXECUTABLE
(
test-net net/test_net.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-net paddle-mobile
)
# gen test
ADD_EXECUTABLE
(
test-googlenet net/test_googlenet.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-googlenet paddle-mobile
)
...
...
test/net/test_net.cpp
0 → 100644
浏览文件 @
a94978bc
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <iostream>
#include <string>
#include "../test_helper.h"
#include "../test_include.h"
void
test
(
int
argc
,
char
*
argv
[],
bool
fuse
);
int
main
(
int
argc
,
char
*
argv
[])
{
test
(
argc
,
argv
,
false
);
test
(
argc
,
argv
,
true
);
return
0
;
}
void
test
(
int
argc
,
char
*
argv
[],
bool
fuse
)
{
paddle_mobile
::
PaddleMobile
<
paddle_mobile
::
CPU
>
paddle_mobile
;
paddle_mobile
.
SetThreadNum
(
1
);
std
::
string
tag
=
fuse
?
"-fuse"
:
""
;
int
dim_count
=
std
::
stoi
(
argv
[
1
]);
int
size
=
1
;
std
::
vector
<
int64_t
>
dims
;
for
(
int
i
=
0
;
i
<
dim_count
;
i
++
)
{
int64_t
dim
=
std
::
stoi
(
argv
[
2
+
i
]);
size
*=
dim
;
dims
.
push_back
(
dim
);
}
int
var_count
=
std
::
stoi
(
argv
[
1
+
dim_count
]);
std
::
vector
<
std
::
string
>
var_names
;
for
(
int
i
=
0
;
i
<
var_count
;
i
++
)
{
std
::
string
var_name
=
argv
[
1
+
dim_count
+
1
+
1
+
i
];
var_names
.
push_back
(
var_name
);
}
auto
time1
=
time
();
if
(
paddle_mobile
.
Load
(
"./checked_model/model"
,
"./checked_model/params"
,
fuse
,
false
,
1
,
true
))
{
auto
time2
=
time
();
std
::
cout
<<
"auto-test"
<<
tag
<<
" load-time-cost :"
<<
time_diff
(
time1
,
time1
)
<<
"ms"
<<
std
::
endl
;
std
::
vector
<
float
>
input_data
;
std
::
ifstream
in
(
"input.txt"
,
std
::
ios
::
in
);
for
(
int
i
=
0
;
i
<
size
;
i
++
)
{
float
num
;
in
>>
num
;
input_data
.
push_back
(
num
);
}
in
.
close
();
// 预热10次
for
(
int
i
=
0
;
i
<
10
;
i
++
)
{
auto
out
=
paddle_mobile
.
Predict
(
input_data
,
dims
);
}
// 测速
auto
time3
=
time
();
for
(
int
i
=
0
;
i
<
50
;
i
++
)
{
auto
out
=
paddle_mobile
.
Predict
(
input_data
,
dims
);
}
auto
time4
=
time
();
std
::
cout
<<
"auto-test"
<<
tag
<<
" predict-time-cost "
<<
time_diff
(
time3
,
time4
)
/
50
<<
"ms"
<<
std
::
endl
;
// 测试正确性
auto
out
=
paddle_mobile
.
Predict
(
input_data
,
dims
);
for
(
auto
var_name
:
var_names
)
{
auto
out
=
paddle_mobile
.
Fetch
(
var_name
);
auto
len
=
out
->
numel
();
if
(
len
==
0
)
{
continue
;
}
if
(
out
->
memory_size
()
==
0
)
{
continue
;
}
auto
data
=
out
->
data
<
float
>
();
int
step
=
len
/
20
;
std
::
string
sample
=
""
;
for
(
int
i
=
0
;
i
<
len
;
i
+=
step
)
{
sample
+=
" "
+
std
::
to_string
(
data
[
i
]);
}
std
::
cout
<<
"auto-test"
<<
tag
<<
" var "
<<
var_name
<<
sample
<<
std
::
endl
;
}
std
::
cout
<<
std
::
endl
;
}
}
tools/python/fluidtools/.gitignore
0 → 100644
浏览文件 @
a94978bc
*
!run.py
!.gitignore
tools/python/fluidtools/run.py
0 → 100644
浏览文件 @
a94978bc
import
os
import
sys
import
math
import
subprocess
import
numpy
as
np
import
paddle.fluid
as
fluid
model_path
=
"model"
checked_model_path
=
"checked_model"
feed_path
=
"feeds"
output_path
=
"outputs"
mobile_exec_root
=
"/data/local/tmp/bin"
mobile_src_root
=
os
.
path
.
abspath
(
"../../../"
)
if
mobile_src_root
.
endswith
(
"/"
):
mobile_src_root
=
mobile_src_root
[:
-
1
]
dot
=
"•"
black
=
lambda
x
:
"
\033
[30m"
+
str
(
x
)
red
=
lambda
x
:
"
\033
[31m"
+
str
(
x
)
green
=
lambda
x
:
"
\033
[32m"
+
str
(
x
)
reset
=
lambda
x
:
"
\033
[0m"
+
str
(
x
)
yellow
=
lambda
x
:
"
\033
[33m"
+
str
(
x
)
def
pp_tab
(
x
,
level
=
0
):
header
=
""
for
i
in
range
(
0
,
level
):
header
+=
"
\t
"
print
(
header
+
str
(
x
))
def
pp_black
(
x
,
level
=
0
):
pp_tab
(
black
(
x
)
+
reset
(
""
),
level
)
def
pp_red
(
x
,
level
=
0
):
pp_tab
(
red
(
x
)
+
reset
(
""
),
level
)
def
pp_green
(
x
,
level
=
0
):
pp_tab
(
green
(
x
)
+
reset
(
""
),
level
)
def
pp_yellow
(
x
,
level
=
0
):
pp_tab
(
yellow
(
x
)
+
reset
(
""
),
level
)
def
sh
(
command
):
pipe
=
subprocess
.
Popen
(
command
,
shell
=
True
,
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
STDOUT
)
return
pipe
.
stdout
.
read
().
decode
(
"utf-8"
)
def
push
(
src
,
dest
=
""
):
sh
(
"adb push {} {}"
.
format
(
src
,
mobile_exec_root
+
"/"
+
dest
))
pp_yellow
(
dot
+
" start inspecting fluid model"
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
.
run
(
fluid
.
default_startup_program
())
# 加载模型
def
load_model
(
model_path
):
prog
,
feeds
,
fetches
=
fluid
.
io
.
load_inference_model
(
dirname
=
model_path
,
executor
=
exe
,
model_filename
=
"model"
,
params_filename
=
"params"
)
return
(
prog
,
feeds
,
fetches
)
prog
,
feeds
,
fetches
=
load_model
(
model_path
)
# 强制要求所有张量的形状,在model和params中一致,并重新保存模型
def
resave_model
():
ops
=
prog
.
current_block
().
ops
vars
=
prog
.
current_block
().
vars
# 强制所有var为可持久化
p_names
=
[]
for
name
in
vars
:
v
=
fluid
.
framework
.
_get_var
(
name
,
prog
)
if
not
v
.
persistable
:
v
.
persistable
=
True
p_names
.
append
(
name
)
outputs
=
run_model
()
has_found_wrong_shape
=
False
# 修正每个var的形状
for
name
in
vars
:
v
=
vars
[
name
]
if
v
.
persistable
:
v1
=
fluid
.
global_scope
().
find_var
(
name
)
try
:
t1
=
v1
.
get_tensor
()
shape
=
t1
.
shape
()
except
:
continue
if
v
.
desc
.
shape
()
!=
shape
:
has_found_wrong_shape
=
True
v
.
desc
.
set_shape
(
shape
)
# 恢复var的可持久化属性
for
name
in
p_names
:
v
=
fluid
.
framework
.
_get_var
(
name
,
prog
)
v
.
persistable
=
False
fluid
.
io
.
save_inference_model
(
dirname
=
checked_model_path
,
feeded_var_names
=
feeds
,
target_vars
=
fetches
,
executor
=
exe
,
main_program
=
prog
,
model_filename
=
"model"
,
params_filename
=
"params"
)
if
has_found_wrong_shape
:
pp_red
(
"has found wrong shape"
,
1
)
else
:
pp_green
(
"has not found wrong shape"
,
1
)
pp_green
(
"new model is saved into directory 【{}】"
.
format
(
checked_model_path
),
1
)
# 生成feed的key-value对
def
gen_feed_kv
():
feed_kv
=
{}
for
feed_name
in
feeds
:
feed_shape
=
get_var_shape
(
feed_name
)
data
=
np
.
random
.
random
(
feed_shape
).
astype
(
"float32"
)
feed_kv
[
feed_name
]
=
data
return
feed_kv
# 保存feed的key-value对
def
save_feed_kv
(
feed_kv
):
for
feed_name
in
feed_kv
:
feed_data
=
feed_kv
[
feed_name
]
feed_list
=
feed_data
.
flatten
().
tolist
()
if
not
os
.
path
.
exists
(
feed_path
):
os
.
mkdir
(
feed_path
)
file_name
=
feed_name
.
replace
(
"/"
,
"_"
)
out_file
=
open
(
feed_path
+
"/"
+
file_name
,
"w"
)
for
feed_item
in
feed_list
:
out_file
.
write
(
"{}
\n
"
.
format
(
feed_item
))
out_file
.
close
()
last_feed_var_name
=
None
last_feed_file_name
=
None
# 加载feed的key-value对
def
load_feed_kv
():
global
last_feed_var_name
global
last_feed_file_name
feed_kv
=
{}
pp_yellow
(
dot
+
dot
+
" checking feed info"
)
pp_green
(
"feed data is saved into directory 【{}】"
.
format
(
feed_path
),
1
)
for
feed_name
in
feeds
:
feed_shape
=
get_var_shape
(
feed_name
)
pp_tab
(
"feed var name : {}; feed var shape : {}"
.
format
(
feed_name
,
feed_shape
),
1
)
file_name
=
feed_name
.
replace
(
"/"
,
"_"
)
last_feed_var_name
=
feed_name
last_feed_file_name
=
file_name
data
=
np
.
loadtxt
(
feed_path
+
"/"
+
file_name
).
reshape
(
feed_shape
).
astype
(
"float32"
)
feed_kv
[
feed_name
]
=
data
return
feed_kv
# 运行模型
def
run_model
(
feed_kv
=
None
):
if
feed_kv
is
None
:
feed_kv
=
gen_feed_kv
()
outputs
=
exe
.
run
(
prog
,
feed
=
feed_kv
,
fetch_list
=
fetches
,
return_numpy
=
False
)
results
=
[]
for
output
in
outputs
:
results
.
append
(
np
.
array
(
output
))
return
results
# 获取变量形状
def
get_var_shape
(
var_name
):
vars
=
prog
.
current_block
().
vars
shape
=
vars
[
var_name
].
desc
.
shape
()
for
i
in
range
(
len
(
shape
)):
dim
=
shape
[
i
]
if
dim
==
-
1
:
shape
[
i
]
=
1
return
shape
# 获取var的数据
def
get_var_data
(
var_name
,
feed_kv
=
None
):
# 强制var为可持久化
v
=
fluid
.
framework
.
_get_var
(
var_name
,
prog
)
persistable
=
v
.
persistable
if
not
persistable
:
v
.
persistable
=
True
outputs
=
run_model
(
feed_kv
=
feed_kv
)
output
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
var_name
).
get_tensor
())
# 恢复var的可持久化属性
v
.
persistable
=
persistable
return
output
output_var_cache
=
{}
def
tensor_sample
(
tensor
):
step
=
math
.
floor
(
len
(
tensor
)
/
20
)
sample
=
[]
for
i
in
range
(
0
,
len
(
tensor
),
step
):
sample
.
append
(
tensor
[
i
])
return
sample
op_cache
=
{}
# 获取每层输出的数据
def
save_all_op_output
(
feed_kv
=
None
):
if
not
os
.
path
.
exists
(
output_path
):
os
.
mkdir
(
output_path
)
ops
=
prog
.
current_block
().
ops
for
i
in
range
(
len
(
ops
)):
op
=
ops
[
i
]
var_name
=
None
for
name
in
op
.
output_arg_names
:
var_name
=
name
if
"tmp"
in
name
:
break
try
:
data
=
get_var_data
(
var_name
,
feed_kv
=
feed_kv
).
flatten
().
tolist
()
sample
=
tensor_sample
(
data
)
output_var_cache
[
var_name
]
=
(
sample
)
op_cache
[
i
]
=
(
var_name
,
op
)
file_name
=
var_name
.
replace
(
"/"
,
"_"
)
out_file
=
open
(
output_path
+
"/"
+
file_name
,
"w"
)
for
item
in
data
:
out_file
.
write
(
"{}
\n
"
.
format
(
item
))
out_file
.
close
()
except
:
pass
pp_green
(
"all the op outputs are saved into directory 【{}】"
.
format
(
output_path
),
1
)
ops
=
prog
.
current_block
().
ops
vars
=
prog
.
current_block
().
vars
pp_yellow
(
dot
+
dot
+
" checking op list"
)
op_types
=
set
()
for
op
in
ops
:
op_types
.
add
(
op
.
type
)
pp_tab
(
"op types : {}"
.
format
(
op_types
),
1
)
def
check_mobile_results
(
lines
,
fuse
):
pp_yellow
(
dot
+
dot
+
" checking {} paddle mobile results"
.
format
(
"fusion"
if
fuse
else
"non fusion"
))
mobile_var_cache
=
{}
for
line
in
lines
:
parts
=
line
.
split
(
" "
)
if
len
(
parts
)
<=
0
:
continue
if
fuse
:
if
"auto-test-fuse"
!=
parts
[
0
]:
continue
else
:
if
"auto-test"
!=
parts
[
0
]:
continue
if
parts
[
1
]
==
"load-time-cost"
:
pp_green
(
"load time cost : {}"
.
format
(
parts
[
2
]),
1
)
elif
parts
[
1
]
==
"predict-time-cost"
:
pp_green
(
"predict time cost : {}"
.
format
(
parts
[
2
]),
1
)
elif
parts
[
1
]
==
"var"
:
var_name
=
parts
[
2
]
values
=
list
(
map
(
lambda
x
:
float
(
x
),
parts
[
3
:]))
mobile_var_cache
[
var_name
]
=
values
error_index
=
None
error_values1
=
None
error_values2
=
None
for
index
in
op_cache
:
op_output_var_name
,
op
=
op_cache
[
index
]
if
not
op_output_var_name
in
output_var_cache
:
continue
if
not
op_output_var_name
in
mobile_var_cache
:
continue
values1
=
output_var_cache
[
op_output_var_name
]
values2
=
mobile_var_cache
[
op_output_var_name
]
if
len
(
values1
)
!=
len
(
values2
):
error_index
=
index
if
error_index
==
None
:
for
i
in
range
(
len
(
values1
)):
v1
=
values1
[
i
]
v2
=
values2
[
i
]
if
abs
(
v1
-
v2
)
>
0.01
:
error_index
=
index
break
if
error_index
!=
None
:
error_values1
=
values1
error_values2
=
values2
break
if
error_index
==
None
:
pp_green
(
"outputs are all correct"
,
1
)
else
:
pp_red
(
"{} op's output is not correct, op's type is {}"
.
format
(
error_index
,
op_cache
[
error_index
][
1
].
type
),
1
)
pp_red
(
"fluid results are : {}"
.
format
(
error_values1
),
1
)
pp_red
(
"paddle mobile results are : {}"
.
format
(
error_values2
),
1
)
# print(output_var_cache)
# print(mobile_var_cache)
def
main
():
# 如果feed_path不存在,则需要生成并保存feed的键值对
if
not
os
.
path
.
exists
(
feed_path
):
feed_kv
=
gen_feed_kv
()
save_feed_kv
(
feed_kv
)
# 加载kv
feed_kv
=
load_feed_kv
()
pp_yellow
(
dot
+
dot
+
" checking fetch info"
)
for
fetch
in
fetches
:
pp_tab
(
"fetch var name : {}"
.
format
(
fetch
.
name
),
1
)
# 预测
pp_yellow
(
dot
+
dot
+
" checking inference"
)
outputs
=
run_model
(
feed_kv
=
feed_kv
)
pp_tab
(
"fluid output : {}"
.
format
(
outputs
),
1
)
# 重新保存模型
pp_yellow
(
dot
+
dot
+
" checking model correctness"
)
resave_model
()
# 输出所有中间结果
pp_yellow
(
dot
+
dot
+
" checking output result of every op"
)
save_all_op_output
(
feed_kv
=
feed_kv
)
# 开始检查mobile的正确性
print
(
""
)
print
(
"=================================================="
)
print
(
""
)
pp_yellow
(
dot
+
" start inspecting paddle mobile correctness & performance"
)
push
(
checked_model_path
)
push
(
feed_path
+
"/"
+
last_feed_file_name
,
"input.txt"
)
push
(
mobile_src_root
+
"/build/release/arm-v7a/build/libpaddle-mobile.so"
)
push
(
mobile_src_root
+
"/test/build/test-net"
)
last_feed_var_shape
=
get_var_shape
(
last_feed_var_name
)
args
=
str
(
len
(
last_feed_var_shape
))
for
dim
in
last_feed_var_shape
:
args
+=
" "
+
str
(
dim
)
args
+=
" "
+
str
(
len
(
output_var_cache
))
for
var_name
in
output_var_cache
.
keys
():
args
+=
" "
+
var_name
res
=
sh
(
"adb shell
\"
cd {} && export LD_LIBRARY_PATH=. && ./test-net {}
\"
"
.
format
(
mobile_exec_root
,
args
))
lines
=
res
.
split
(
"
\n
"
)
check_mobile_results
(
lines
,
False
)
check_mobile_results
(
lines
,
True
)
if
__name__
==
"__main__"
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录