Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
a66ee2d5
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a66ee2d5
编写于
8月 09, 2019
作者:
N
NazgulLee
提交者:
Jiaying Zhao
8月 09, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
1. reverse commit
2402029d
; 2. only adjust memory when dims size equal to 4 (#1787)
上级
a7646bb6
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
44 addition
and
64 deletion
+44
-64
src/framework/executor.cpp
src/framework/executor.cpp
+26
-33
src/framework/executor.h
src/framework/executor.h
+0
-4
src/framework/tensor.h
src/framework/tensor.h
+18
-5
src/pass/memory_optimize.cpp
src/pass/memory_optimize.cpp
+0
-19
src/pass/memory_optimize.h
src/pass/memory_optimize.h
+0
-3
未找到文件。
src/framework/executor.cpp
浏览文件 @
a66ee2d5
...
@@ -29,6 +29,7 @@ limitations under the License. */
...
@@ -29,6 +29,7 @@ limitations under the License. */
#include "framework/scope.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/tensor.h"
#include "memory/t_malloc.h"
#include "memory/t_malloc.h"
#include "pass/memory_optimize.h"
#include "pass/model_obfuscate.h"
#include "pass/model_obfuscate.h"
#ifdef PADDLE_MOBILE_CL
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#include "framework/cl/cl_image.h"
...
@@ -66,9 +67,8 @@ Executor<Device, T>::Executor(const Program<Device> &program,
...
@@ -66,9 +67,8 @@ Executor<Device, T>::Executor(const Program<Device> &program,
#if !defined(PADDLE_MOBILE_FPGA) && !defined(PADDLE_MOBILE_FPGA_KD) && \
#if !defined(PADDLE_MOBILE_FPGA) && !defined(PADDLE_MOBILE_FPGA_KD) && \
!defined(PADDLE_MOBILE_CL)
!defined(PADDLE_MOBILE_CL)
if
(
config_
.
memory_optimization_level
!=
NoMemoryOptimization
)
{
if
(
config_
.
memory_optimization_level
!=
NoMemoryOptimization
)
{
memoryOpt_
=
std
::
make_shared
<
pass
::
MemoryOptPass
>
();
pass
::
MemoryOptPass
()(
program_desc_
.
get
(),
program_
.
scope
.
get
(),
(
*
memoryOpt_
)(
program_desc_
.
get
(),
program_
.
scope
.
get
(),
config_
.
memory_optimization_level
);
config_
.
memory_optimization_level
);
}
}
#endif
#endif
// resize feed and fetch list
// resize feed and fetch list
...
@@ -296,34 +296,32 @@ static void ClearNoPersistableTensorArray(const framework::ProgramDesc *program,
...
@@ -296,34 +296,32 @@ static void ClearNoPersistableTensorArray(const framework::ProgramDesc *program,
template
<
typename
Device
,
typename
T
>
template
<
typename
Device
,
typename
T
>
void
Executor
<
Device
,
T
>::
InitNoPersistableMemory
(
const
Tensor
&
input_tensor
)
{
void
Executor
<
Device
,
T
>::
InitNoPersistableMemory
(
const
Tensor
&
input_tensor
)
{
if
(
input_tensor
.
dims
().
size
()
!=
4
)
{
return
;
}
for
(
const
auto
&
block
:
program_desc_
->
Blocks
())
{
for
(
const
auto
&
block
:
program_desc_
->
Blocks
())
{
for
(
const
auto
&
var_desc
:
block
->
Vars
())
{
for
(
const
auto
&
var_desc
:
block
->
Vars
())
{
auto
var
=
program_
.
scope
->
Var
(
var_desc
->
Name
());
auto
var
=
program_
.
scope
->
Var
(
var_desc
->
Name
());
auto
tensor
=
var
->
template
GetMutable
<
LoDTensor
>();
if
(
!
var_desc
->
Persistable
()
&&
if
(
var_desc
->
Persistable
())
{
var_desc
->
Type
()
==
VARTYPE_TYPE_LOD_TENSOR
)
{
if
(
var_desc
->
Name
()
==
"feed"
||
var_desc
->
Name
()
==
"fetch"
)
{
DLOG
<<
"InitNoPersistableMemory var "
<<
var_desc
->
Name
();
var
->
template
GetMutable
<
framework
::
LoDTensorArray
>();
auto
tensor
=
var
->
template
GetMutable
<
LoDTensor
>();
continue
;
if
(
tensor
->
IsInitialized
()
&&
tensor
->
dims
().
size
()
==
4
)
{
}
DLOG
<<
"var's tensor is Initialized or dims size != 4"
;
}
else
{
if
(
var_desc
->
Type
()
==
VARTYPE_TYPE_LOD_TENSOR
)
{
DDim
tensor_dim
=
tensor
->
dims
();
DDim
tensor_dim
=
tensor
->
dims
();
DDim
new_dim
=
DDim
new_dim
=
make_ddim
({
tensor_dim
[
0
],
tensor_dim
[
1
],
input_tensor
.
dims
()[
2
],
make_ddim
({
tensor_dim
[
0
],
tensor_dim
[
1
],
input_tensor
.
dims
()[
2
],
input_tensor
.
dims
()[
3
]});
input_tensor
.
dims
()[
3
]});
tensor
->
Resize
(
new_dim
);
tensor
->
Resize
(
new_dim
);
tensor
->
template
mutable_data
<
T
>();
tensor
->
template
mutable_data_new
<
T
>();
DLOG
<<
"var's tensor dims "
<<
tensor_dim
;
DLOG
<<
"var's tensor new dims "
<<
new_dim
;
}
else
{
}
else
{
PADDLE_MOBILE_THROW_EXCEPTION
(
"Unsupported var type `%d`"
,
DLOG
<<
"var's tensor is not Initialized ???"
;
var_desc
->
Type
());
}
}
}
}
}
}
}
}
std
::
shared_ptr
<
LoDTensor
>
output
=
GetOutput
(
"fetch"
);
output
->
Resize
(
input_tensor
.
dims
());
output
->
mutable_data
<
T
>
();
}
}
template
<
typename
Device
,
typename
T
>
template
<
typename
Device
,
typename
T
>
...
@@ -411,7 +409,9 @@ void Executor<Device, T>::SetInput(const Tensor &input,
...
@@ -411,7 +409,9 @@ void Executor<Device, T>::SetInput(const Tensor &input,
target
.
ShareDataWith
(
input
);
target
.
ShareDataWith
(
input
);
if
(
feed_indices_
.
size
()
==
1
)
{
if
(
feed_indices_
.
size
()
==
1
)
{
auto
&
dim
=
input
.
dims
();
auto
&
dim
=
input
.
dims
();
shouldAdjustMemory_
=
(
product
(
dim
)
<
0.9
*
product
(
input_dim_last_
));
if
(
lod_mode_
&&
product
(
dim
)
<
0.9
*
product
(
input_dim_last_
))
{
InitNoPersistableMemory
(
target
);
}
input_dim_has_changed_
=
input_dim_last_
!=
dim
;
input_dim_has_changed_
=
input_dim_last_
!=
dim
;
input_dim_last_
=
static_cast
<
DDim
>
(
dim
);
input_dim_last_
=
static_cast
<
DDim
>
(
dim
);
}
}
...
@@ -433,7 +433,9 @@ void Executor<Device, T>::SetInput(const LoDTensor &input,
...
@@ -433,7 +433,9 @@ void Executor<Device, T>::SetInput(const LoDTensor &input,
target
.
set_lod
(
input
.
lod
());
target
.
set_lod
(
input
.
lod
());
if
(
feed_indices_
.
size
()
==
1
)
{
if
(
feed_indices_
.
size
()
==
1
)
{
auto
&
dim
=
input
.
dims
();
auto
&
dim
=
input
.
dims
();
shouldAdjustMemory_
=
(
product
(
dim
)
<
0.9
*
product
(
input_dim_last_
));
if
(
lod_mode_
&&
product
(
dim
)
<
0.9
*
product
(
input_dim_last_
))
{
InitNoPersistableMemory
(
target
);
}
input_dim_has_changed_
=
input_dim_last_
!=
dim
;
input_dim_has_changed_
=
input_dim_last_
!=
dim
;
input_dim_last_
=
static_cast
<
DDim
>
(
dim
);
input_dim_last_
=
static_cast
<
DDim
>
(
dim
);
}
}
...
@@ -483,16 +485,7 @@ PMStatus Executor<Device, T>::Predict() {
...
@@ -483,16 +485,7 @@ PMStatus Executor<Device, T>::Predict() {
// clear all no persistable tensor array since write_to_array
// clear all no persistable tensor array since write_to_array
// is always push back a new tensor in the array
// is always push back a new tensor in the array
ClearNoPersistableTensorArray
(
program_desc_
.
get
(),
program_
.
scope
.
get
());
ClearNoPersistableTensorArray
(
program_desc_
.
get
(),
program_
.
scope
.
get
());
if
(
lod_mode_
&&
input_dim_has_changed_
)
{
for
(
int
i
=
0
;
i
<
ops_of_block0_
.
size
();
++
i
)
{
auto
&
op_handler
=
ops_of_block0_
[
i
];
op_handler
->
InferShape
();
}
if
(
memoryOpt_
!=
nullptr
&&
shouldAdjustMemory_
)
{
shouldAdjustMemory_
=
false
;
memoryOpt_
->
AdjustMemory
();
}
}
#ifdef PADDLE_MOBILE_PROFILE
#ifdef PADDLE_MOBILE_PROFILE
std
::
vector
<
ProfInfo
>
profile
(
ops_of_block0_
.
size
());
std
::
vector
<
ProfInfo
>
profile
(
ops_of_block0_
.
size
());
struct
timespec
ts
;
struct
timespec
ts
;
...
@@ -503,12 +496,12 @@ PMStatus Executor<Device, T>::Predict() {
...
@@ -503,12 +496,12 @@ PMStatus Executor<Device, T>::Predict() {
#ifdef PADDLE_MOBILE_PROFILE
#ifdef PADDLE_MOBILE_PROFILE
clock_gettime
(
CLOCK_MONOTONIC
,
&
ts
);
clock_gettime
(
CLOCK_MONOTONIC
,
&
ts
);
profile
[
op_index
].
runBegin
=
(
uint64_t
)
ts
.
tv_sec
*
1e9
+
ts
.
tv_nsec
;
profile
[
op_index
].
runBegin
=
(
uint64_t
)
ts
.
tv_sec
*
1e9
+
ts
.
tv_nsec
;
// if (lod_mode_ && input_dim_has_changed_) {
// op_handler->InferShape();
// }
#endif
#endif
DLOG
<<
i
<<
"th, "
DLOG
<<
i
<<
"th, "
<<
"run op: "
<<
op_handler
->
Type
();
<<
"run op: "
<<
op_handler
->
Type
();
if
(
lod_mode_
&&
input_dim_has_changed_
)
{
op_handler
->
InferShape
();
}
op_handler
->
Run
();
op_handler
->
Run
();
#ifdef PADDLE_MOBILE_PROFILE
#ifdef PADDLE_MOBILE_PROFILE
clock_gettime
(
CLOCK_MONOTONIC
,
&
ts
);
clock_gettime
(
CLOCK_MONOTONIC
,
&
ts
);
...
...
src/framework/executor.h
浏览文件 @
a66ee2d5
...
@@ -27,7 +27,6 @@ limitations under the License. */
...
@@ -27,7 +27,6 @@ limitations under the License. */
#include "framework/program/program.h"
#include "framework/program/program.h"
#include "framework/tensor.h"
#include "framework/tensor.h"
#include "framework/type_trait.h"
#include "framework/type_trait.h"
#include "pass/memory_optimize.h"
namespace
paddle_mobile
{
namespace
paddle_mobile
{
namespace
framework
{
namespace
framework
{
...
@@ -105,9 +104,6 @@ class Executor {
...
@@ -105,9 +104,6 @@ class Executor {
DDim
input_dim_last_
;
DDim
input_dim_last_
;
bool
input_dim_has_changed_
=
true
;
bool
input_dim_has_changed_
=
true
;
bool
shouldAdjustMemory_
=
false
;
std
::
shared_ptr
<
pass
::
MemoryOptPass
>
memoryOpt_
;
#ifdef PADDLE_MOBILE_PROFILE
#ifdef PADDLE_MOBILE_PROFILE
typedef
typename
DtypeTensorTrait
<
Device
>::
gtype
ProfileTensorType
;
typedef
typename
DtypeTensorTrait
<
Device
>::
gtype
ProfileTensorType
;
...
...
src/framework/tensor.h
浏览文件 @
a66ee2d5
...
@@ -104,14 +104,27 @@ class Tensor : public TensorBase {
...
@@ -104,14 +104,27 @@ class Tensor : public TensorBase {
return
*
this
;
return
*
this
;
}
}
inline
void
mutable_data_new
()
{
template
<
typename
T
>
inline
T
*
mutable_data_new
()
{
static_assert
(
std
::
is_pod
<
T
>::
value
,
"T must be POD"
);
const
kTypeId_t
type
=
type_id
<
T
>
().
hash_code
();
if
(
holder_
!=
nullptr
)
{
if
(
holder_
!=
nullptr
)
{
PADDLE_MOBILE_ENFORCE
(
numel
()
>=
0
,
"the Tensor's numel must >=0."
)
holder_
->
set_type
(
type
);
int64_t
size
=
numel
()
*
SizeOfType
(
holder_
->
type
());
}
if
(
holder_
->
size
()
!=
size
+
offset_
)
{
holder_
->
realloc
(
size
+
offset_
);
PADDLE_MOBILE_ENFORCE
(
numel
()
>=
0
,
"the Tensor's numel must >=0."
)
int64_t
size
=
numel
()
*
SizeOfType
(
type
);
if
(
holder_
==
nullptr
||
holder_
->
size
()
!=
size
+
offset_
)
{
if
(
holder_
==
nullptr
)
{
holder_
.
reset
(
new
PlaceholderImpl
(
size
,
type
));
}
else
{
holder_
->
realloc
(
size
);
}
}
offset_
=
0
;
}
}
return
reinterpret_cast
<
T
*>
(
reinterpret_cast
<
uintptr_t
>
(
holder_
->
ptr
())
+
offset_
);
}
}
inline
void
*
mutable_data
(
const
kTypeId_t
type
)
{
inline
void
*
mutable_data
(
const
kTypeId_t
type
)
{
...
...
src/pass/memory_optimize.cpp
浏览文件 @
a66ee2d5
...
@@ -57,7 +57,6 @@ void MemoryOptPass::operator()(
...
@@ -57,7 +57,6 @@ void MemoryOptPass::operator()(
AppendBlockVars
(
block
.
get
());
AppendBlockVars
(
block
.
get
());
reused_nodes_
.
clear
();
reused_nodes_
.
clear
();
memoryDeputies_
.
clear
();
// collect all not persistable variables, and accumulate
// collect all not persistable variables, and accumulate
// it's reference count
// it's reference count
std
::
stack
<
VarNode
*>
empty_var_nodes
;
std
::
stack
<
VarNode
*>
empty_var_nodes
;
...
@@ -157,33 +156,15 @@ void MemoryOptPass::operator()(
...
@@ -157,33 +156,15 @@ void MemoryOptPass::operator()(
auto
*
reuse_tensor
=
auto
*
reuse_tensor
=
reused_var
->
template
GetMutable
<
framework
::
LoDTensor
>();
reused_var
->
template
GetMutable
<
framework
::
LoDTensor
>();
reuse_tensor
->
mutable_data
<
float
>
();
reuse_tensor
->
mutable_data
<
float
>
();
framework
::
Variable
*
deputyVar
;
int64_t
varSize
=
0
;
for
(
const
auto
&
node
:
list
)
{
for
(
const
auto
&
node
:
list
)
{
DLOG
<<
node
->
name
;
DLOG
<<
node
->
name
;
auto
*
var
=
scope
->
Var
(
node
->
name
);
auto
*
var
=
scope
->
Var
(
node
->
name
);
auto
*
tensor
=
var
->
template
GetMutable
<
framework
::
LoDTensor
>();
auto
*
tensor
=
var
->
template
GetMutable
<
framework
::
LoDTensor
>();
tensor
->
ShareHolderWith
(
*
reuse_tensor
);
tensor
->
ShareHolderWith
(
*
reuse_tensor
);
if
(
tensor
->
numel
()
>
varSize
)
{
varSize
=
tensor
->
numel
();
deputyVar
=
var
;
}
}
if
(
deputyVar
)
{
memoryDeputies_
.
push_back
(
deputyVar
);
}
}
}
}
}
}
}
}
void
MemoryOptPass
::
AdjustMemory
()
{
for
(
auto
&
deputy
:
memoryDeputies_
)
{
if
(
deputy
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
*
tensor
=
deputy
->
template
GetMutable
<
framework
::
LoDTensor
>();
tensor
->
mutable_data_new
();
}
}
}
}
// namespace pass
}
// namespace pass
}
// namespace paddle_mobile
}
// namespace paddle_mobile
src/pass/memory_optimize.h
浏览文件 @
a66ee2d5
...
@@ -51,14 +51,11 @@ class MemoryOptPass : public PassBase {
...
@@ -51,14 +51,11 @@ class MemoryOptPass : public PassBase {
VarNode
*
CreateNode
(
const
std
::
string
name
);
VarNode
*
CreateNode
(
const
std
::
string
name
);
void
AdjustMemory
();
private:
private:
std
::
stack
<
VarNode
*>
analysis_nodes_
;
std
::
stack
<
VarNode
*>
analysis_nodes_
;
std
::
vector
<
std
::
vector
<
VarNode
*>>
reused_nodes_
;
std
::
vector
<
std
::
vector
<
VarNode
*>>
reused_nodes_
;
std
::
unordered_map
<
std
::
string
,
VarNode
*>
created_nodes_
;
std
::
unordered_map
<
std
::
string
,
VarNode
*>
created_nodes_
;
std
::
unordered_map
<
std
::
string
,
framework
::
VarDesc
*>
block_vars_
;
std
::
unordered_map
<
std
::
string
,
framework
::
VarDesc
*>
block_vars_
;
std
::
vector
<
framework
::
Variable
*>
memoryDeputies_
;
};
};
}
// namespace pass
}
// namespace pass
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录