Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
a2547758
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
337
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a2547758
编写于
6月 16, 2020
作者:
M
MaxwellDing
提交者:
GitHub
6月 16, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
feat: Mlu cast kernel (
#111
)
上级
0e1f6cb0
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
631 addition
and
70 deletion
+631
-70
lite/core/mir/mlu_postprocess_pass.cc
lite/core/mir/mlu_postprocess_pass.cc
+137
-54
lite/core/mir/mlu_postprocess_pass.h
lite/core/mir/mlu_postprocess_pass.h
+3
-4
lite/kernels/mlu/CMakeLists.txt
lite/kernels/mlu/CMakeLists.txt
+2
-1
lite/kernels/mlu/bridges/utility.h
lite/kernels/mlu/bridges/utility.h
+5
-0
lite/kernels/mlu/cast_compute.cc
lite/kernels/mlu/cast_compute.cc
+52
-0
lite/kernels/mlu/cast_compute.h
lite/kernels/mlu/cast_compute.h
+153
-0
lite/kernels/mlu/layout_compute.cc
lite/kernels/mlu/layout_compute.cc
+87
-8
lite/kernels/mlu/layout_compute.h
lite/kernels/mlu/layout_compute.h
+123
-0
lite/kernels/mlu/mlu_operator.h
lite/kernels/mlu/mlu_operator.h
+54
-0
lite/kernels/mlu/subgraph_compute.h
lite/kernels/mlu/subgraph_compute.h
+15
-3
未找到文件。
lite/core/mir/mlu_postprocess_pass.cc
浏览文件 @
a2547758
...
...
@@ -30,6 +30,8 @@ namespace mir {
static
thread_local
int
g_stream_id
=
0
;
#define ENABLE_HOST_CAST false
Node
*
MLUPostprocessPass
::
InsertCastBefore
(
const
std
::
string
&
op_type
,
const
std
::
string
&
cast_arg_name
,
SSAGraph
*
graph
,
...
...
@@ -77,8 +79,17 @@ Node* MLUPostprocessPass::InsertCastBefore(const std::string& op_type,
for
(
auto
&
kernel
:
kernels
)
{
if
(
op_type
==
"cast"
)
{
const
Type
*
in_arg_ty
=
kernel
->
GetInputDeclType
(
"X"
);
#if !ENABLE_HOST_CAST
const
Type
*
out_arg_ty
=
kernel
->
GetOutputDeclType
(
"Out"
);
#endif
if
(
PrecisionCompatibleTo
(
*
in_arg_ty
,
*
cur_node
->
AsArg
().
type
)
&&
DataLayoutCompatible
(
*
in_arg_ty
,
*
cur_node
->
AsArg
().
type
))
{
#if !ENABLE_HOST_CAST
PrecisionCompatibleTo
(
*
out_arg_ty
,
*
cast_type
)
&&
TargetCompatibleTo
(
*
out_arg_ty
,
*
cast_type
)
#else
DataLayoutCompatible
(
*
in_arg_ty
,
*
cur_node
->
AsArg
().
type
)
#endif
)
{
is_found
=
true
;
}
}
else
if
(
op_type
==
"layout"
)
{
...
...
@@ -86,6 +97,11 @@ Node* MLUPostprocessPass::InsertCastBefore(const std::string& op_type,
const
Type
*
out_arg_ty
=
kernel
->
GetOutputDeclType
(
"Out"
);
if
(
DataLayoutCompatible
(
*
in_arg_ty
,
*
cur_node
->
AsArg
().
type
)
&&
DataLayoutCompatible
(
*
out_arg_ty
,
*
cast_type
)
&&
#if !ENABLE_HOST_CAST
TargetCompatibleTo
(
*
out_arg_ty
,
*
cast_type
)
&&
#else
TargetCompatibleTo
(
*
in_arg_ty
,
*
cur_node
->
AsArg
().
type
)
&&
#endif
// for first conv
PrecisionCompatibleTo
(
*
in_arg_ty
,
*
cur_node
->
AsArg
().
type
))
{
is_found
=
true
;
...
...
@@ -95,8 +111,10 @@ Node* MLUPostprocessPass::InsertCastBefore(const std::string& op_type,
const
Type
*
out_arg_ty
=
kernel
->
GetOutputDeclType
(
"Out"
);
if
(
TargetCompatibleTo
(
*
in_arg_ty
,
*
cur_node
->
AsArg
().
type
)
&&
TargetCompatibleTo
(
*
out_arg_ty
,
*
cast_type
)
&&
PrecisionCompatible
(
*
in_arg_ty
,
*
cur_node
->
AsArg
().
type
)
&&
PrecisionCompatible
(
*
out_arg_ty
,
*
cast_type
))
{
#if ENABLE_HOST_CAST
PrecisionCompatible
(
*
out_arg_ty
,
*
cast_type
)
&&
#endif
PrecisionCompatible
(
*
in_arg_ty
,
*
cur_node
->
AsArg
().
type
))
{
is_found
=
true
;
}
}
else
{
...
...
@@ -170,7 +188,15 @@ Node* MLUPostprocessPass::InsertCastAfter(const std::string& op_type,
for
(
auto
&
kernel
:
kernels
)
{
if
(
op_type
==
"cast"
)
{
const
Type
*
in_arg_ty
=
kernel
->
GetInputDeclType
(
"X"
);
if
(
PrecisionCompatibleTo
(
*
in_arg_ty
,
*
cast_type
))
{
#if !ENABLE_HOST_CAST
const
Type
*
out_arg_ty
=
kernel
->
GetOutputDeclType
(
"Out"
);
#endif
if
(
#if !ENABLE_HOST_CAST
PrecisionCompatibleTo
(
*
out_arg_ty
,
*
cur_node
->
AsArg
().
type
)
&&
TargetCompatibleTo
(
*
in_arg_ty
,
*
cast_type
)
&&
#endif
PrecisionCompatibleTo
(
*
in_arg_ty
,
*
cast_type
))
{
is_found
=
true
;
}
}
else
if
(
op_type
==
"layout"
)
{
...
...
@@ -178,6 +204,11 @@ Node* MLUPostprocessPass::InsertCastAfter(const std::string& op_type,
const
Type
*
out_arg_ty
=
kernel
->
GetOutputDeclType
(
"Out"
);
if
(
DataLayoutCompatible
(
*
in_arg_ty
,
*
cast_type
)
&&
DataLayoutCompatible
(
*
out_arg_ty
,
*
cur_node
->
AsArg
().
type
)
&&
#if !ENABLE_HOST_CAST
TargetCompatibleTo
(
*
in_arg_ty
,
*
cast_type
)
&&
#else
TargetCompatibleTo
(
*
out_arg_ty
,
*
cur_node
->
AsArg
().
type
)
&&
#endif
PrecisionCompatibleTo
(
*
in_arg_ty
,
*
cast_type
))
{
is_found
=
true
;
}
...
...
@@ -186,8 +217,13 @@ Node* MLUPostprocessPass::InsertCastAfter(const std::string& op_type,
const
Type
*
out_arg_ty
=
kernel
->
GetOutputDeclType
(
"Out"
);
if
(
TargetCompatibleTo
(
*
in_arg_ty
,
*
cast_type
)
&&
TargetCompatibleTo
(
*
out_arg_ty
,
*
cur_node
->
AsArg
().
type
)
&&
#if !ENABLE_HOST_CAST
PrecisionCompatible
(
*
out_arg_ty
,
*
cur_node
->
AsArg
().
type
)
#else
PrecisionCompatible
(
*
in_arg_ty
,
*
cur_node
->
AsArg
().
type
)
&&
PrecisionCompatible
(
*
out_arg_ty
,
*
cast_type
))
{
PrecisionCompatible
(
*
out_arg_ty
,
*
cast_type
)
#endif
)
{
is_found
=
true
;
}
}
else
{
...
...
@@ -214,8 +250,7 @@ Node* MLUPostprocessPass::InsertCastAfter(const std::string& op_type,
void
MLUPostprocessPass
::
InsertBefore
(
SSAGraph
*
graph
,
Node
*
head_node
,
Node
*
inst_node
,
const
Type
*
inst_type
,
bool
use_mlu_cast
)
{
const
Type
*
inst_type
)
{
const
auto
*
head_type
=
head_node
->
AsArg
().
type
;
// break original link
...
...
@@ -230,31 +265,46 @@ void MLUPostprocessPass::InsertBefore(SSAGraph* graph,
head_node
->
AsArg
().
name
)
!=
first_conv_nodes_
.
end
();
// precision cast node
if
(
!
use_mlu_cast
)
{
if
(
!
fuse_cast_
)
{
#if !ENABLE_HOST_CAST
// io copy
cur_node
=
InsertCastBefore
(
"io_copy"
,
name_prefix
+
"io_copy"
,
graph
,
cur_node
,
inst_node
,
LiteType
::
GetTensorTy
(
inst_type
->
target
(),
head_type
->
precision
(),
head_type
->
layout
()));
#endif
if
(
head_type
->
precision
()
!=
inst_type
->
precision
()
&&
!
is_first_conv_head
)
{
cur_node
=
InsertCastBefore
(
"cast"
,
name_prefix
+
"cast"
,
graph
,
cur_node
,
inst_node
,
LiteType
::
GetTensorTy
(
head_type
->
target
(),
inst_type
->
precision
(),
head_type
->
layout
()));
#if ENABLE_HOST_CAST
auto
type
=
LiteType
::
GetTensorTy
(
head_type
->
target
(),
inst_type
->
precision
(),
head_type
->
layout
());
#else
auto
type
=
LiteType
::
GetTensorTy
(
inst_type
->
target
(),
inst_type
->
precision
(),
head_type
->
layout
());
#endif
cur_node
=
InsertCastBefore
(
"cast"
,
name_prefix
+
"cast"
,
graph
,
cur_node
,
inst_node
,
type
);
}
// layout cast node
if
(
head_type
->
layout
()
!=
inst_type
->
layout
())
{
cur_node
=
InsertCastBefore
(
"layout"
,
name_prefix
+
"layout"
,
graph
,
cur_node
,
inst_node
,
LiteType
::
GetTensorTy
(
head_type
->
target
(),
inst_type
->
precision
(),
inst_type
->
layout
()));
#if ENABLE_HOST_CAST
auto
type
=
LiteType
::
GetTensorTy
(
head_type
->
target
(),
inst_type
->
precision
(),
inst_type
->
layout
());
#else
auto
type
=
LiteType
::
GetTensorTy
(
inst_type
->
target
(),
inst_type
->
precision
(),
inst_type
->
layout
());
#endif
cur_node
=
InsertCastBefore
(
"layout"
,
name_prefix
+
"layout"
,
graph
,
cur_node
,
inst_node
,
type
);
}
#if ENABLE_HOST_CAST
// io copy
cur_node
=
InsertCastBefore
(
"io_copy"
,
...
...
@@ -264,6 +314,7 @@ void MLUPostprocessPass::InsertBefore(SSAGraph* graph,
inst_node
,
LiteType
::
GetTensorTy
(
inst_type
->
target
(),
inst_type
->
precision
(),
inst_type
->
layout
()));
#endif
}
else
{
// io copy
cur_node
=
InsertCastBefore
(
...
...
@@ -380,8 +431,7 @@ bool MLUPostprocessPass::NeedInsert(Node* node, const Type* inst_type) {
void
MLUPostprocessPass
::
InsertAfter
(
SSAGraph
*
graph
,
Node
*
tail_node
,
Node
*
inst_node
,
const
Type
*
inst_type
,
bool
use_mlu_cast
)
{
const
Type
*
inst_type
)
{
const
auto
*
tail_type
=
tail_node
->
AsArg
().
type
;
// break original link
...
...
@@ -392,30 +442,45 @@ void MLUPostprocessPass::InsertAfter(SSAGraph* graph,
tail_node
->
AsArg
().
name
+
string_format
(
"_%p"
,
inst_node
)
+
"/trans_"
;
// precision cast node
if
(
!
use_mlu_cast
)
{
if
(
!
fuse_cast_
)
{
#if !ENABLE_HOST_CAST
// io copy
cur_node
=
InsertCastAfter
(
"io_copy"
,
name_prefix
+
"io_copy"
,
graph
,
cur_node
,
inst_node
,
LiteType
::
GetTensorTy
(
inst_type
->
target
(),
tail_type
->
precision
(),
tail_type
->
layout
()));
#endif
if
(
tail_type
->
precision
()
!=
inst_type
->
precision
())
{
cur_node
=
InsertCastAfter
(
"cast"
,
name_prefix
+
"cast"
,
graph
,
cur_node
,
inst_node
,
LiteType
::
GetTensorTy
(
tail_type
->
target
(),
inst_type
->
precision
(),
tail_type
->
layout
()));
#if ENABLE_HOST_CAST
auto
type
=
LiteType
::
GetTensorTy
(
tail_type
->
target
(),
inst_type
->
precision
(),
tail_type
->
layout
());
#else
auto
type
=
LiteType
::
GetTensorTy
(
inst_type
->
target
(),
inst_type
->
precision
(),
tail_type
->
layout
());
#endif
cur_node
=
InsertCastAfter
(
"cast"
,
name_prefix
+
"cast"
,
graph
,
cur_node
,
inst_node
,
type
);
}
// layout cast node
if
(
tail_type
->
layout
()
!=
inst_type
->
layout
())
{
cur_node
=
InsertCastAfter
(
"layout"
,
name_prefix
+
"layout"
,
graph
,
cur_node
,
inst_node
,
LiteType
::
GetTensorTy
(
tail_type
->
target
(),
inst_type
->
precision
(),
inst_type
->
layout
()));
#if ENABLE_HOST_CAST
auto
type
=
LiteType
::
GetTensorTy
(
tail_type
->
target
(),
inst_type
->
precision
(),
inst_type
->
layout
());
#else
auto
type
=
LiteType
::
GetTensorTy
(
inst_type
->
target
(),
inst_type
->
precision
(),
inst_type
->
layout
());
#endif
cur_node
=
InsertCastAfter
(
"layout"
,
name_prefix
+
"layout"
,
graph
,
cur_node
,
inst_node
,
type
);
}
#if ENABLE_HOST_CAST
// io copy
cur_node
=
InsertCastAfter
(
"io_copy"
,
...
...
@@ -425,6 +490,7 @@ void MLUPostprocessPass::InsertAfter(SSAGraph* graph,
inst_node
,
LiteType
::
GetTensorTy
(
inst_type
->
target
(),
inst_type
->
precision
(),
inst_type
->
layout
()));
#endif
}
else
{
cur_node
=
InsertCastAfter
(
"io_copy"
,
...
...
@@ -549,6 +615,14 @@ void MLUPostprocessPass::ModifyInputOutputDataType(SSAGraph* graph) {
in_node
->
AsArg
().
type
=
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
PRECISION
(
kAny
),
DATALAYOUT
(
kNHWC
));
}
else
{
if
(
!
in_node
->
inlinks
.
empty
())
{
auto
&
upkernel
=
in_node
->
inlinks
.
front
()
->
AsStmt
().
picked_kernel
();
if
(
upkernel
.
target
()
==
TARGET
(
kMLU
))
{
in_node
->
AsArg
().
type
=
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
upkernel
.
precision
(),
upkernel
.
layout
());
continue
;
}
}
CHECK
((
in_node_type
->
target
()
==
TARGET
(
kHost
)
||
in_node_type
->
target
()
==
TARGET
(
kX86
))
&&
(
in_node_type
->
precision
()
==
PRECISION
(
kFloat
)
||
...
...
@@ -585,6 +659,13 @@ void MLUPostprocessPass::ModifyInputOutputDataType(SSAGraph* graph) {
VLOG
(
4
)
<<
"unused output node type: "
<<
out_arg
.
name
<<
out_node_type
->
name
();
}
else
{
auto
&
downkernel
=
out_node
->
outlinks
.
front
()
->
AsStmt
().
picked_kernel
();
if
(
downkernel
.
target
()
==
TARGET
(
kMLU
))
{
out_arg
.
type
=
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
downkernel
.
precision
(),
downkernel
.
layout
());
continue
;
}
out_arg
.
type
=
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
out_node_type
->
precision
(),
DATALAYOUT
(
kNCHW
));
VLOG
(
4
)
<<
"output node type: "
<<
out_arg
.
name
...
...
@@ -840,7 +921,7 @@ void MLUPostprocessPass::AdjustSubgraph(Node* subgraph_node,
op
->
SetSubBlock
(
new_block_desc
);
}
void
ModifyValidPlaces
(
SSAGraph
*
graph
,
bool
use_mlu
_cast
)
{
void
ModifyValidPlaces
(
SSAGraph
*
graph
,
bool
fuse
_cast
)
{
// remove invalid places, since only support X86, host, MLU
auto
v_places
=
graph
->
valid_places
();
for
(
auto
it
=
v_places
.
begin
();
it
!=
v_places
.
end
();)
{
...
...
@@ -852,23 +933,27 @@ void ModifyValidPlaces(SSAGraph* graph, bool use_mlu_cast) {
}
}
if
(
use_mlu
_cast
)
{
if
(
fuse
_cast
)
{
// insert mlu float place for float io copy, no effect to subgraph type
v_places
.
emplace_back
(
TARGET
(
kMLU
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNHWC
));
}
else
{
// add x86 NHWC place for cpu cast
#if !USE_HOST_CAST
// add MLU NCHW place for cast kernel
std
::
set
<
paddle
::
lite_api
::
PrecisionType
>
prec_set
{};
for
(
auto
&
place
:
v_places
)
{
prec_set
.
insert
(
place
.
precision
);
}
prec_set
.
insert
(
PRECISION
(
kFloat
));
#ifdef LITE_WITH_MLU
if
(
lite
::
TargetWrapperMlu
::
UseFirstConv
())
{
prec_set
.
insert
(
PRECISION
(
kInt8
));
}
#endif
for
(
auto
&
prec
:
prec_set
)
{
v_places
.
emplace_back
(
TARGET
(
k
X86
),
prec
,
DATALAYOUT
(
kNHWC
));
v_places
.
emplace_back
(
TARGET
(
k
MLU
),
prec
,
DATALAYOUT
(
kNCHW
));
}
v_places
.
emplace_back
(
TARGET
(
kMLU
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNHWC
));
#endif
}
graph
->
SetValidPlaces
(
v_places
);
...
...
@@ -899,29 +984,27 @@ void MLUPostprocessPass::Apply(const std::unique_ptr<SSAGraph>& graph) {
#endif
g_stream_id
=
static_cast
<
int
>
(
reinterpret_cast
<
int64_t
>
(
graph
.
get
()));
bool
disable_mlu_cast
=
GetBoolFromEnv
(
"LITE_DISABLE_MLU
_CAST"
);
ModifyValidPlaces
(
graph
.
get
(),
!
disable_mlu_cast
);
fuse_cast_
=
GetBoolFromEnv
(
"LITE_MLU_FUSE
_CAST"
);
ModifyValidPlaces
(
graph
.
get
(),
fuse_cast_
);
// insert io_copy, layout and precision cast of subgraph's inputs and outputs
for
(
auto
&
node
:
graph
->
mutable_nodes
())
{
if
(
node
.
IsStmt
()
&&
node
.
AsStmt
().
op_type
()
==
"subgraph"
)
{
const
Type
*
subgraph_arg_type
=
nullptr
;
GetSubgraphOpArgType
(
&
node
,
&
subgraph_arg_type
,
graph
.
get
());
if
(
!
disable_mlu_cast
)
{
if
(
fuse_cast_
)
{
AdjustSubgraph
(
&
node
,
subgraph_arg_type
);
}
auto
links_tmp
=
node
.
inlinks
;
for
(
auto
p_in
:
links_tmp
)
{
if
(
NeedInsert
(
p_in
,
subgraph_arg_type
))
{
InsertBefore
(
graph
.
get
(),
p_in
,
&
node
,
subgraph_arg_type
,
!
disable_mlu_cast
);
InsertBefore
(
graph
.
get
(),
p_in
,
&
node
,
subgraph_arg_type
);
}
}
links_tmp
.
assign
(
node
.
outlinks
.
begin
(),
node
.
outlinks
.
end
());
for
(
auto
p_out
:
links_tmp
)
{
if
(
NeedInsert
(
p_out
,
subgraph_arg_type
))
{
InsertAfter
(
graph
.
get
(),
p_out
,
&
node
,
subgraph_arg_type
,
!
disable_mlu_cast
);
InsertAfter
(
graph
.
get
(),
p_out
,
&
node
,
subgraph_arg_type
);
}
}
}
...
...
lite/core/mir/mlu_postprocess_pass.h
浏览文件 @
a2547758
...
...
@@ -88,14 +88,12 @@ class MLUPostprocessPass : public ProgramPass {
void
InsertBefore
(
SSAGraph
*
graph
,
Node
*
head_node
,
Node
*
inst_node
,
const
Type
*
type
,
bool
use_mlu_cast
);
const
Type
*
type
);
void
InsertAfter
(
SSAGraph
*
graph
,
Node
*
tail_node
,
Node
*
inst_node
,
const
Type
*
type
,
bool
use_mlu_cast
);
const
Type
*
type
);
Node
*
InsertCastBefore
(
const
std
::
string
&
op_type
,
const
std
::
string
&
cast_arg_name
,
...
...
@@ -123,6 +121,7 @@ class MLUPostprocessPass : public ProgramPass {
private:
std
::
set
<
std
::
string
>
first_conv_nodes_
;
bool
fuse_cast_
{
false
};
};
}
// namespace mir
...
...
lite/kernels/mlu/CMakeLists.txt
浏览文件 @
a2547758
...
...
@@ -7,4 +7,5 @@ add_kernel(subgraph_compute_mlu MLU basic SRCS subgraph_compute.cc DEPS ${lite_k
add_kernel
(
io_copy_compute_mlu MLU basic SRCS io_copy_compute.cc DEPS
${
lite_kernel_deps
}
${
target_wrapper_mlu
}
)
add_kernel
(
calib_compute_mlu MLU basic SRCS calib_compute.cc DEPS
${
lite_kernel_deps
}
)
# depend on transpose function in backend/x86/math/math_function
add_kernel
(
layout_compute_mlu MLU basic SRCS layout_compute.cc DEPS
${
lite_kernel_deps
}
${
math_function
}
)
add_kernel
(
layout_compute_mlu MLU basic SRCS layout_compute.cc DEPS
${
lite_kernel_deps
}
${
math_function
}
${
target_wrapper_mlu
}
)
add_kernel
(
cast_compute_mlu MLU basic SRCS cast_compute.cc DEPS
${
lite_kernel_deps
}
${
target_wrapper_mlu
}
)
lite/kernels/mlu/bridges/utility.h
浏览文件 @
a2547758
...
...
@@ -180,30 +180,35 @@ template <paddle::lite_api::PrecisionType>
struct
MLUTypeTraits
{
/* using type = void; */
/* static constexpr cnmlDataType_t cnml_type = CNML_DATA_INVALID; */
/* static constexpr int proto_type = 17; */
};
template
<
>
struct
MLUTypeTraits
<
paddle
::
lite_api
::
PrecisionType
::
kFloat
>
{
using
type
=
float
;
static
constexpr
cnmlDataType_t
cnml_type
=
CNML_DATA_FLOAT32
;
static
constexpr
int
proto_type
=
5
;
};
template
<
>
struct
MLUTypeTraits
<
paddle
::
lite_api
::
PrecisionType
::
kFP16
>
{
using
type
=
paddle
::
lite
::
fluid
::
float16
;
static
constexpr
cnmlDataType_t
cnml_type
=
CNML_DATA_FLOAT16
;
static
constexpr
int
proto_type
=
4
;
};
template
<
>
struct
MLUTypeTraits
<
paddle
::
lite_api
::
PrecisionType
::
kInt8
>
{
using
type
=
int8_t
;
static
constexpr
cnmlDataType_t
cnml_type
=
CNML_DATA_INT8
;
static
constexpr
int
proto_type
=
21
;
};
template
<
>
struct
MLUTypeTraits
<
paddle
::
lite_api
::
PrecisionType
::
kInt32
>
{
using
type
=
int32_t
;
static
constexpr
cnmlDataType_t
cnml_type
=
CNML_DATA_INT32
;
static
constexpr
int
proto_type
=
2
;
};
}
// namespace mlu
...
...
lite/kernels/mlu/cast_compute.cc
0 → 100644
浏览文件 @
a2547758
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/mlu/cast_compute.h"
#include <vector>
#include "lite/core/kernel.h"
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
REGISTER_LITE_KERNEL
(
cast
,
kMLU
,
kFloat
,
kNHWC
,
paddle
::
lite
::
kernels
::
mlu
::
CastFp32toFp16
,
fp32_to_fp16
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kAny
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kAny
))})
.
Finalize
();
REGISTER_LITE_KERNEL
(
cast
,
kMLU
,
kFloat
,
kNHWC
,
paddle
::
lite
::
kernels
::
mlu
::
CastFp16toFp32
,
fp16_to_fp32
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kAny
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kAny
))})
.
Finalize
();
lite/kernels/mlu/cast_compute.h
0 → 100644
浏览文件 @
a2547758
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <map>
#include <memory>
#include <vector>
#include "lite/backends/mlu/mlu_utils.h"
#include "lite/core/kernel.h"
#include "lite/kernels/mlu/bridges/tensor.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/mlu/mlu_operator.h"
#include "lite/operators/cast_op.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
mlu
{
template
<
lite_api
::
PrecisionType
in_dtype
,
lite_api
::
PrecisionType
out_dtype
>
class
CastCompute
:
public
KernelLite
<
TARGET
(
kMLU
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNHWC
)
>
{
public:
using
param_t
=
operators
::
CastParam
;
void
Run
()
override
{
auto
param
=
param_
.
get_mutable
<
param_t
>
();
auto
&
mlu_context
=
this
->
ctx_
->
template
As
<
MLUContext
>();
auto
in_dims
=
param
->
X
->
dims
().
Vectorize
();
// key to map op
std
::
vector
<
int
>
ishape
;
std
::
transform
(
in_dims
.
cbegin
(),
in_dims
.
cend
(),
std
::
back_inserter
(
ishape
),
[](
DDim
::
value_type
in
)
{
return
static_cast
<
int
>
(
in
);
});
// find compiled instruction at ishape
auto
op_iter
=
inst_map_
.
find
(
ishape
);
if
(
op_iter
==
inst_map_
.
end
())
{
auto
res
=
inst_map_
.
insert
(
{
ishape
,
CompileOperator
(
param
,
&
mlu_context
,
ishape
)});
CHECK
(
res
.
second
);
op_iter
=
res
.
first
;
}
// prepare param
auto
exec_queue
=
mlu_context
.
exec_queue
();
cnrtInvokeFuncParam_t
forward_param
=
mlu_context
.
forward_param
();
int
data_param
=
1
;
forward_param
.
data_parallelism
=
&
data_param
;
u32_t
affinity
=
mlu_context
.
affinity
();
forward_param
.
affinity
=
&
affinity
;
forward_param
.
end
=
CNRT_PARAM_END
;
// get input and output
param
->
Out
->
set_precision
(
out_dtype
);
const
void
*
input
=
param
->
X
->
template
data
<
typename
subgraph
::
mlu
::
MLUTypeTraits
<
in_dtype
>
::
type
>
();
/* void* output = param->Out->mutable_data(TARGET(kMLU), out_size); */
void
*
output
=
param
->
Out
->
template
mutable_data
<
typename
subgraph
::
mlu
::
MLUTypeTraits
<
out_dtype
>
::
type
>
(
TARGET
(
kMLU
));
// compute op
CNML_CALL
(
cnmlComputeCastOpForward_V3
(
op_iter
->
second
->
cnml_op
,
const_cast
<
void
*>
(
input
),
output
,
&
forward_param
,
exec_queue
));
}
~
CastCompute
()
override
{};
private:
inline
cnmlCastType_t
GetCastType
(
param_t
*
param
)
{
CHECK_EQ
(
subgraph
::
mlu
::
MLUTypeTraits
<
in_dtype
>::
proto_type
,
param
->
in_dtype
);
CHECK_EQ
(
subgraph
::
mlu
::
MLUTypeTraits
<
out_dtype
>::
proto_type
,
param
->
out_dtype
);
if
(
in_dtype
==
PRECISION
(
kFP16
)
&&
out_dtype
==
PRECISION
(
kFloat
))
{
VLOG
(
4
)
<<
"choose float16 to float32"
;
return
CNML_CAST_FLOAT16_TO_FLOAT32
;
}
else
if
(
in_dtype
==
PRECISION
(
kFloat
)
&&
out_dtype
==
PRECISION
(
kFP16
))
{
VLOG
(
4
)
<<
"choose float32 to float16"
;
return
CNML_CAST_FLOAT32_TO_FLOAT16
;
}
else
{
CHECK
(
0
)
<<
"Unsupported cast type"
;
}
return
CNML_CAST_FLOAT32_TO_FLOAT16
;
}
std
::
shared_ptr
<
MLUOperator
>
CompileOperator
(
param_t
*
param
,
MLUContext
*
ctx
,
std
::
vector
<
int
>
dims
)
{
VLOG
(
4
)
<<
"compile cast operator"
;
// get cast type
auto
cast_type
=
GetCastType
(
param
);
// prepare op and io tensor
auto
op
=
std
::
make_shared
<
MLUOperator
>
();
op
->
input_tensors
.
emplace_back
();
op
->
output_tensors
.
emplace_back
();
int
*
dim_strides
=
nullptr
;
CNML_CALL
(
cnmlCreateTensor_V2
(
&
op
->
input_tensors
[
0
],
CNML_TENSOR
));
CNML_CALL
(
cnmlSetTensorShape_V2
(
op
->
input_tensors
[
0
],
dims
.
size
(),
dims
.
data
(),
dim_strides
));
CNML_CALL
(
cnmlSetTensorDataType
(
op
->
input_tensors
[
0
],
subgraph
::
mlu
::
MLUTypeTraits
<
in_dtype
>::
cnml_type
));
CNML_CALL
(
cnmlCreateTensor_V2
(
&
op
->
output_tensors
[
0
],
CNML_TENSOR
));
CNML_CALL
(
cnmlSetTensorShape_V2
(
op
->
output_tensors
[
0
],
dims
.
size
(),
dims
.
data
(),
dim_strides
));
CNML_CALL
(
cnmlSetTensorDataType
(
op
->
output_tensors
[
0
],
subgraph
::
mlu
::
MLUTypeTraits
<
out_dtype
>::
cnml_type
));
CNML_CALL
(
cnmlCreateCastOp
(
&
op
->
cnml_op
,
cast_type
,
op
->
input_tensors
[
0
],
op
->
output_tensors
[
0
]));
CNML_CALL
(
cnmlSetBaseOpCorenum
(
op
->
cnml_op
,
ctx
->
MLUCoreNumber
()));
CNML_CALL
(
cnmlSetBaseOpCoreVersion
(
op
->
cnml_op
,
ctx
->
MLUCoreVersion
()));
CNML_CALL
(
cnmlCompileBaseOp_V2
(
op
->
cnml_op
));
return
op
;
}
private:
std
::
map
<
std
::
vector
<
int
>
,
std
::
shared_ptr
<
MLUOperator
>>
inst_map_
;
};
using
CastFp32toFp16
=
paddle
::
lite
::
kernels
::
mlu
::
CastCompute
<
PRECISION
(
kFloat
),
PRECISION
(
kFP16
)
>
;
using
CastFp16toFp32
=
paddle
::
lite
::
kernels
::
mlu
::
CastCompute
<
PRECISION
(
kFP16
),
PRECISION
(
kFloat
)
>
;
}
// namespace mlu
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
lite/kernels/mlu/layout_compute.cc
浏览文件 @
a2547758
...
...
@@ -14,14 +14,7 @@
#include "lite/kernels/mlu/layout_compute.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
mlu
{}
// namespace mlu
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
// X86 layout kernel
REGISTER_LITE_KERNEL
(
layout
,
kX86
,
...
...
@@ -106,3 +99,89 @@ REGISTER_LITE_KERNEL(
PRECISION
(
kInt8
),
DATALAYOUT
(
kNHWC
))})
.
Finalize
();
// MLU layout kernel
REGISTER_LITE_KERNEL
(
layout
,
kMLU
,
kFloat
,
kNHWC
,
paddle
::
lite
::
kernels
::
mlu
::
LayoutNHWC2NCHW
<
PRECISION
(
kFloat
)
>
,
def_layout_nhwc2nchw_fp32
)
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNHWC
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
))})
.
Finalize
();
REGISTER_LITE_KERNEL
(
layout
,
kMLU
,
kFP16
,
kNHWC
,
paddle
::
lite
::
kernels
::
mlu
::
LayoutNHWC2NCHW
<
PRECISION
(
kFP16
)
>
,
def_layout_nhwc2nchw_fp16
)
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kNHWC
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kNCHW
))})
.
Finalize
();
REGISTER_LITE_KERNEL
(
layout
,
kMLU
,
kFloat
,
kNHWC
,
paddle
::
lite
::
kernels
::
mlu
::
LayoutNCHW2NHWC
<
PRECISION
(
kFloat
)
>
,
def_layout_nchw2nhwc_fp32
)
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNHWC
))})
.
Finalize
();
REGISTER_LITE_KERNEL
(
layout
,
kMLU
,
kFP16
,
kNHWC
,
paddle
::
lite
::
kernels
::
mlu
::
LayoutNCHW2NHWC
<
PRECISION
(
kFP16
)
>
,
def_layout_nchw2nhwc_fp16
)
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kNCHW
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kNHWC
))})
.
Finalize
();
REGISTER_LITE_KERNEL
(
layout
,
kMLU
,
kInt8
,
kNHWC
,
paddle
::
lite
::
kernels
::
mlu
::
LayoutNCHW2NHWC
<
PRECISION
(
kInt8
)
>
,
def_layout_nchw2nhwc_int8
)
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
PRECISION
(
kInt8
),
DATALAYOUT
(
kNCHW
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
PRECISION
(
kInt8
),
DATALAYOUT
(
kNHWC
))})
.
Finalize
();
lite/kernels/mlu/layout_compute.h
浏览文件 @
a2547758
...
...
@@ -15,6 +15,9 @@
#pragma once
#include <Eigen/Core>
#include <algorithm>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "lite/backends/x86/math/math_function.h"
...
...
@@ -23,6 +26,7 @@
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/mlu/mlu_operator.h"
#include "lite/operators/layout_op.h"
namespace
paddle
{
...
...
@@ -151,6 +155,125 @@ class LayoutNhwcToNchwCompute
}
};
template
<
PrecisionType
Precision
,
DataLayoutType
in_layout
>
class
LayoutComputeMlu
:
public
KernelLite
<
TARGET
(
kMLU
),
Precision
,
DATALAYOUT
(
kNHWC
)
>
{
public:
using
param_t
=
operators
::
LayoutParam
;
void
Run
()
override
{
auto
&
param
=
this
->
template
Param
<
param_t
>();
auto
*
x
=
param
.
x
;
auto
*
y
=
param
.
y
;
auto
in_dims
=
x
->
dims
().
Vectorize
();
y
->
template
mutable_data
<
typename
subgraph
::
mlu
::
MLUTypeTraits
<
Precision
>
::
type
>
();
auto
&
context
=
this
->
ctx_
->
template
As
<
MLUContext
>();
// key to map op
std
::
vector
<
int
>
ishape
;
std
::
transform
(
in_dims
.
cbegin
(),
in_dims
.
cend
(),
std
::
back_inserter
(
ishape
),
[](
DDim
::
value_type
in
)
{
return
static_cast
<
int
>
(
in
);
});
// find compiled instruction at ishape
auto
op_iter
=
inst_map_
.
find
(
ishape
);
if
(
op_iter
==
inst_map_
.
end
())
{
auto
res
=
inst_map_
.
insert
({
ishape
,
CompileOperator
(
&
param
,
&
context
,
ishape
)});
CHECK
(
res
.
second
);
op_iter
=
res
.
first
;
}
// prepare param
auto
exec_queue
=
context
.
exec_queue
();
cnrtInvokeFuncParam_t
forward_param
=
context
.
forward_param
();
int
data_param
=
1
;
forward_param
.
data_parallelism
=
&
data_param
;
u32_t
affinity
=
context
.
affinity
();
forward_param
.
affinity
=
&
affinity
;
forward_param
.
end
=
CNRT_PARAM_END
;
// get input and output
auto
mem_size
=
x
->
memory_size
();
y
->
set_precision
(
Precision
);
const
void
*
input
=
x
->
template
data
<
typename
subgraph
::
mlu
::
MLUTypeTraits
<
Precision
>
::
type
>
();
void
*
output
=
y
->
mutable_data
(
TARGET
(
kMLU
),
mem_size
);
// compute op
CNML_CALL
(
cnmlComputeNdTransposeProOpForward
(
op_iter
->
second
->
cnml_op
,
const_cast
<
void
*>
(
input
),
output
,
&
forward_param
,
exec_queue
));
}
std
::
string
doc
()
const
override
{
return
"Mlu layout transform"
;
}
private:
std
::
shared_ptr
<
MLUOperator
>
CompileOperator
(
param_t
*
param
,
MLUContext
*
ctx
,
std
::
vector
<
int
>
dims
)
{
VLOG
(
4
)
<<
"compile layout operator"
;
// get transpose axis
std
::
vector
<
int
>
axis
;
std
::
vector
<
int
>
in_dims
,
out_dims
;
if
(
in_layout
==
DATALAYOUT
(
kNCHW
))
{
VLOG
(
4
)
<<
"trans layout from NCHW to NHWC"
;
axis
=
subgraph
::
mlu
::
GetAxisNCHW2NHWC
<
int
>
(
dims
.
size
());
in_dims
=
dims
;
out_dims
=
subgraph
::
mlu
::
DimNCHW2NHWC
(
dims
);
}
else
{
VLOG
(
4
)
<<
"trans layout from NHWC to NCHW"
;
axis
=
subgraph
::
mlu
::
GetAxisNHWC2NCHW
<
int
>
(
dims
.
size
());
in_dims
=
subgraph
::
mlu
::
DimNCHW2NHWC
(
dims
);
out_dims
=
dims
;
}
// prepare op and io tensor
auto
op
=
std
::
make_shared
<
MLUOperator
>
();
op
->
input_tensors
.
emplace_back
();
op
->
output_tensors
.
emplace_back
();
int
*
dim_strides
=
nullptr
;
CNML_CALL
(
cnmlCreateTensor_V2
(
&
op
->
input_tensors
[
0
],
CNML_TENSOR
));
CNML_CALL
(
cnmlSetTensorShape_V2
(
op
->
input_tensors
[
0
],
in_dims
.
size
(),
in_dims
.
data
(),
dim_strides
));
CNML_CALL
(
cnmlSetTensorDataType
(
op
->
input_tensors
[
0
],
subgraph
::
mlu
::
MLUTypeTraits
<
Precision
>::
cnml_type
));
CNML_CALL
(
cnmlCreateTensor_V2
(
&
op
->
output_tensors
[
0
],
CNML_TENSOR
));
CNML_CALL
(
cnmlSetTensorShape_V2
(
op
->
output_tensors
[
0
],
out_dims
.
size
(),
out_dims
.
data
(),
dim_strides
));
CNML_CALL
(
cnmlSetTensorDataType
(
op
->
output_tensors
[
0
],
subgraph
::
mlu
::
MLUTypeTraits
<
Precision
>::
cnml_type
));
cnmlNdTransposeOpParam_t
transpose_param
;
CNML_CALL
(
cnmlCreateNdTransposeOpParam
(
&
transpose_param
,
axis
.
data
(),
axis
.
size
()));
CNML_CALL
(
cnmlCreateNdTransposeProOp
(
&
op
->
cnml_op
,
op
->
input_tensors
[
0
],
op
->
output_tensors
[
0
],
transpose_param
));
CNML_CALL
(
cnmlDestroyNdTransposeOpParam
(
&
transpose_param
));
CNML_CALL
(
cnmlSetBaseOpCorenum
(
op
->
cnml_op
,
ctx
->
MLUCoreNumber
()));
CNML_CALL
(
cnmlSetBaseOpCoreVersion
(
op
->
cnml_op
,
ctx
->
MLUCoreVersion
()));
CNML_CALL
(
cnmlCompileBaseOp_V2
(
op
->
cnml_op
));
return
op
;
}
std
::
map
<
std
::
vector
<
int
>
,
std
::
shared_ptr
<
MLUOperator
>>
inst_map_
;
};
template
<
PrecisionType
precision
>
using
LayoutNHWC2NCHW
=
LayoutComputeMlu
<
precision
,
DATALAYOUT
(
kNHWC
)
>
;
template
<
PrecisionType
precision
>
using
LayoutNCHW2NHWC
=
LayoutComputeMlu
<
precision
,
DATALAYOUT
(
kNCHW
)
>
;
}
// namespace mlu
}
// namespace kernels
}
// namespace lite
...
...
lite/kernels/mlu/mlu_operator.h
0 → 100644
浏览文件 @
a2547758
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#include "lite/backends/mlu/mlu_utils.h"
#include "lite/kernels/mlu/bridges/utility.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
mlu
{
struct
MLUOperator
{
cnmlBaseOp_t
cnml_op
=
nullptr
;
// compile time tensor
std
::
vector
<
cnmlTensor_t
>
input_tensors
{};
std
::
vector
<
cnmlTensor_t
>
output_tensors
{};
~
MLUOperator
()
{
if
(
cnml_op
!=
nullptr
)
{
CNML_CALL
(
cnmlDestroyBaseOp
(
&
cnml_op
));
cnml_op
=
nullptr
;
}
if
(
!
input_tensors
.
empty
())
{
std
::
for_each
(
input_tensors
.
begin
(),
input_tensors
.
end
(),
[](
cnmlTensor_t
t
)
{
CNML_CALL
(
cnmlDestroyTensor
(
&
t
));
});
input_tensors
.
clear
();
}
if
(
!
output_tensors
.
empty
())
{
std
::
for_each
(
output_tensors
.
begin
(),
output_tensors
.
end
(),
[](
cnmlTensor_t
t
)
{
CNML_CALL
(
cnmlDestroyTensor
(
&
t
));
});
output_tensors
.
clear
();
}
}
};
}
// namespace mlu
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
lite/kernels/mlu/subgraph_compute.h
浏览文件 @
a2547758
...
...
@@ -142,6 +142,18 @@ class SubgraphEngine : public subgraph::Engine {
return
BuildDeviceProgramImpl
();
}
cpp
::
OpDesc
*
GetFirstNode
(
const
std
::
string
&
input_name
)
{
for
(
size_t
i
=
0
;
i
<
block_desc_
->
OpsSize
();
++
i
)
{
auto
desc
=
block_desc_
->
GetOp
<
cpp
::
OpDesc
>
(
i
);
auto
inputs
=
desc
->
input_vars
();
if
(
std
::
find
(
inputs
.
cbegin
(),
inputs
.
cend
(),
input_name
)
!=
inputs
.
cend
())
{
return
desc
;
}
}
return
nullptr
;
}
int
BuildDeviceProgramImpl
()
{
int
status
=
0
;
auto
graph
=
std
::
make_shared
<
paddle
::
lite
::
subgraph
::
mlu
::
Graph
>
();
...
...
@@ -150,12 +162,12 @@ class SubgraphEngine : public subgraph::Engine {
origin_itensors_
.
clear
();
origin_otensors_
.
clear
();
auto
data_order
=
block_desc_
->
GetOp
<
cpp
::
OpDesc
>
(
0
)
->
Type
()
==
"layout"
?
CNML_NCHW
:
CNML_NHWC
;
// Convert all of input data vars and added into the MLU IR graph
status
|=
subgraph
::
REBUILD_WHEN_SHAPE_CHANGED
;
for
(
auto
&
input_name
:
input_names_
)
{
auto
first_node
=
GetFirstNode
(
input_name
);
CHECK
(
first_node
);
auto
data_order
=
first_node
->
Type
()
==
"layout"
?
CNML_NCHW
:
CNML_NHWC
;
auto
input_tensor
=
scope_
->
FindMutableTensor
(
input_name
);
auto
data_type
=
input_tensor
->
precision
();
cnmlDataType_t
fp_type
=
PrecisionToDatatype
(
data_type
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录