Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
a2097f1b
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a2097f1b
编写于
6月 30, 2020
作者:
L
LDOUBLEV
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add ocr demo code and makefile
上级
c67b92b1
变更
6
展开全部
隐藏空白更改
内联
并排
Showing
6 changed file
with
12500 addition
and
0 deletion
+12500
-0
lite/demo/cxx/ocr/crnn/ppocr_keys_v1.txt
lite/demo/cxx/ocr/crnn/ppocr_keys_v1.txt
+6623
-0
lite/demo/cxx/ocr/ocr_db_crnn.cc
lite/demo/cxx/ocr/ocr_db_crnn.cc
+325
-0
lite/demo/cxx/ocr/utils/clipper.cpp
lite/demo/cxx/ocr/utils/clipper.cpp
+4629
-0
lite/demo/cxx/ocr/utils/clipper.hpp
lite/demo/cxx/ocr/utils/clipper.hpp
+406
-0
lite/demo/cxx/ocr/utils/crnn_process.cpp
lite/demo/cxx/ocr/utils/crnn_process.cpp
+158
-0
lite/demo/cxx/ocr/utils/db_post_process.cpp
lite/demo/cxx/ocr/utils/db_post_process.cpp
+359
-0
未找到文件。
lite/demo/cxx/ocr/crnn/ppocr_keys_v1.txt
0 → 100644
浏览文件 @
a2097f1b
此差异已折叠。
点击以展开。
lite/demo/cxx/ocr/ocr_db_crnn.cc
0 → 100644
浏览文件 @
a2097f1b
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <vector>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h" // NOLINT
#include "utils/db_post_process.cpp"
#include "utils/crnn_process.cpp"
#include <cstring>
#include <fstream>
using
namespace
paddle
::
lite_api
;
// NOLINT
struct
Object
{
cv
::
Rect
rec
;
int
class_id
;
float
prob
;
};
int64_t
ShapeProduction
(
const
shape_t
&
shape
)
{
int64_t
res
=
1
;
for
(
auto
i
:
shape
)
res
*=
i
;
return
res
;
}
// fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up
void
neon_mean_scale
(
const
float
*
din
,
float
*
dout
,
int
size
,
const
std
::
vector
<
float
>
mean
,
const
std
::
vector
<
float
>
scale
)
{
if
(
mean
.
size
()
!=
3
||
scale
.
size
()
!=
3
)
{
std
::
cerr
<<
"[ERROR] mean or scale size must equal to 3
\n
"
;
exit
(
1
);
}
float32x4_t
vmean0
=
vdupq_n_f32
(
mean
[
0
]);
float32x4_t
vmean1
=
vdupq_n_f32
(
mean
[
1
]);
float32x4_t
vmean2
=
vdupq_n_f32
(
mean
[
2
]);
float32x4_t
vscale0
=
vdupq_n_f32
(
scale
[
0
]);
float32x4_t
vscale1
=
vdupq_n_f32
(
scale
[
1
]);
float32x4_t
vscale2
=
vdupq_n_f32
(
scale
[
2
]);
float
*
dout_c0
=
dout
;
float
*
dout_c1
=
dout
+
size
;
float
*
dout_c2
=
dout
+
size
*
2
;
int
i
=
0
;
for
(;
i
<
size
-
3
;
i
+=
4
)
{
float32x4x3_t
vin3
=
vld3q_f32
(
din
);
float32x4_t
vsub0
=
vsubq_f32
(
vin3
.
val
[
0
],
vmean0
);
float32x4_t
vsub1
=
vsubq_f32
(
vin3
.
val
[
1
],
vmean1
);
float32x4_t
vsub2
=
vsubq_f32
(
vin3
.
val
[
2
],
vmean2
);
float32x4_t
vs0
=
vmulq_f32
(
vsub0
,
vscale0
);
float32x4_t
vs1
=
vmulq_f32
(
vsub1
,
vscale1
);
float32x4_t
vs2
=
vmulq_f32
(
vsub2
,
vscale2
);
vst1q_f32
(
dout_c0
,
vs0
);
vst1q_f32
(
dout_c1
,
vs1
);
vst1q_f32
(
dout_c2
,
vs2
);
din
+=
12
;
dout_c0
+=
4
;
dout_c1
+=
4
;
dout_c2
+=
4
;
}
for
(;
i
<
size
;
i
++
)
{
*
(
dout_c0
++
)
=
(
*
(
din
++
)
-
mean
[
0
])
*
scale
[
0
];
*
(
dout_c1
++
)
=
(
*
(
din
++
)
-
mean
[
1
])
*
scale
[
1
];
*
(
dout_c2
++
)
=
(
*
(
din
++
)
-
mean
[
2
])
*
scale
[
2
];
}
}
// resize image to a size multiple of 32 which is required by the network
cv
::
Mat
resize_img_type0
(
const
cv
::
Mat
img
,
int
max_size_len
,
float
*
ratio_h
,
float
*
ratio_w
){
int
w
=
img
.
cols
;
int
h
=
img
.
rows
;
float
ratio
=
1.
f
;
int
max_wh
=
w
>=
h
?
w
:
h
;
if
(
max_wh
>
max_size_len
){
if
(
h
>
w
){
ratio
=
float
(
max_size_len
)
/
float
(
h
);
}
else
{
ratio
=
float
(
max_size_len
)
/
float
(
w
);
}
}
int
resize_h
=
int
(
float
(
h
)
*
ratio
);
int
resize_w
=
int
(
float
(
w
)
*
ratio
);
if
(
resize_h
%
32
==
0
)
resize_h
=
resize_h
;
else
if
(
resize_h
/
32
<
1
)
resize_h
=
32
;
else
resize_h
=
(
resize_h
/
32
-
1
)
*
32
;
if
(
resize_w
%
32
==
0
)
resize_w
=
resize_w
;
else
if
(
resize_w
/
32
<
1
)
resize_w
=
32
;
else
resize_w
=
(
resize_w
/
32
-
1
)
*
32
;
cv
::
Mat
resize_img
;
cv
::
resize
(
img
,
resize_img
,
cv
::
Size
(
resize_w
,
resize_h
));
*
ratio_h
=
float
(
resize_h
)
/
float
(
h
);
*
ratio_w
=
float
(
resize_w
)
/
float
(
w
);
return
resize_img
;
}
using
namespace
std
;
void
RunRecModel
(
cv
::
Mat
image
,
std
::
string
rec_model_file
){
MobileConfig
config
;
config
.
set_model_from_file
(
rec_model_file
);
std
::
shared_ptr
<
PaddlePredictor
>
predictor_crnn
=
CreatePaddlePredictor
<
MobileConfig
>
(
config
);
std
::
vector
<
float
>
mean
=
{
0.5
f
,
0.5
f
,
0.5
f
};
std
::
vector
<
float
>
scale
=
{
1
/
0.5
f
,
1
/
0.5
f
,
1
/
0.5
f
};
cv
::
Mat
crop_img
;
image
.
copyTo
(
crop_img
);
cv
::
Mat
resize_img
;
std
::
string
dict_path
=
"./crnn/ppocr_keys_v1.txt"
;
auto
charactor_dict
=
read_dict
(
dict_path
);
float
wh_ratio
=
float
(
crop_img
.
cols
)
/
float
(
crop_img
.
rows
);
resize_img
=
crnn_resize_img
(
crop_img
,
wh_ratio
);
resize_img
.
convertTo
(
resize_img
,
CV_32FC3
,
1
/
255.
f
);
const
float
*
dimg
=
reinterpret_cast
<
const
float
*>
(
resize_img
.
data
);
std
::
unique_ptr
<
Tensor
>
input_tensor0
(
std
::
move
(
predictor_crnn
->
GetInput
(
0
)));
input_tensor0
->
Resize
({
1
,
3
,
resize_img
.
rows
,
resize_img
.
cols
});
auto
*
data0
=
input_tensor0
->
mutable_data
<
float
>
();
neon_mean_scale
(
dimg
,
data0
,
resize_img
.
rows
*
resize_img
.
cols
,
mean
,
scale
);
//// Run CRNN predictor
predictor_crnn
->
Run
();
// Get output and run postprocess
std
::
unique_ptr
<
const
Tensor
>
output_tensor0
(
std
::
move
(
predictor_crnn
->
GetOutput
(
0
)));
auto
*
rec_idx
=
output_tensor0
->
data
<
int
>
();
auto
rec_idx_lod
=
output_tensor0
->
lod
();
auto
shape_out
=
output_tensor0
->
shape
();
std
::
vector
<
int
>
pred_idx
;
std
::
cout
<<
"The predict text index is : "
<<
std
::
endl
;
for
(
int
n
=
int
(
rec_idx_lod
[
0
][
0
]);
n
<
int
(
rec_idx_lod
[
0
][
1
]
*
2
);
n
+=
2
){
pred_idx
.
push_back
(
int
(
rec_idx
[
n
]));
std
::
cout
<<
int
(
rec_idx
[
n
])
<<
" "
;
}
std
::
cout
<<
std
::
endl
;
std
::
cout
<<
"The predicted text is :"
<<
std
::
endl
;
for
(
int
n
=
0
;
n
<
pred_idx
.
size
();
n
++
){
std
::
cout
<<
charactor_dict
[
pred_idx
[
n
]];
}
////get score
std
::
unique_ptr
<
const
Tensor
>
output_tensor1
(
std
::
move
(
predictor_crnn
->
GetOutput
(
1
)));
auto
*
predict_batch
=
output_tensor1
->
data
<
float
>
();
auto
predict_shape
=
output_tensor1
->
shape
();
auto
predict_lod
=
output_tensor1
->
lod
();
int
argmax_idx
;
int
blank
=
predict_shape
[
1
];
float
score
=
0.
f
;
int
count
=
0
;
float
max_value
=
0.0
f
;
for
(
int
n
=
predict_lod
[
0
][
0
];
n
<
predict_lod
[
0
][
1
]
-
1
;
n
++
){
argmax_idx
=
int
(
argmax
(
&
predict_batch
[
n
*
predict_shape
[
1
]],
&
predict_batch
[(
n
+
1
)
*
predict_shape
[
1
]]));
max_value
=
float
(
*
std
::
max_element
(
&
predict_batch
[
n
*
predict_shape
[
1
]],
&
predict_batch
[(
n
+
1
)
*
predict_shape
[
1
]]));
if
(
blank
-
1
-
argmax_idx
>
1e-5
){
score
+=
max_value
;
count
+=
1
;
}
}
score
/=
count
;
std
::
cout
<<
"
\t
score: "
<<
score
<<
std
::
endl
;
}
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
RunDetModel
(
std
::
string
model_file
,
std
::
string
img_path
)
{
auto
start
=
img_path
.
find_last_of
(
"/"
);
auto
end
=
img_path
.
find_last_of
(
"."
);
std
::
string
img_name
=
img_path
.
substr
(
start
+
1
,
end
-
start
-
1
);
// Set MobileConfig
MobileConfig
config
;
config
.
set_model_from_file
(
model_file
);
std
::
shared_ptr
<
PaddlePredictor
>
predictor
=
CreatePaddlePredictor
<
MobileConfig
>
(
config
);
// Read img
int
max_side_len
=
960
;
float
ratio_h
{};
float
ratio_w
{};
cv
::
Mat
img
=
imread
(
img_path
,
cv
::
IMREAD_COLOR
);
cv
::
Mat
srcimg
;
img
.
copyTo
(
srcimg
);
img
=
resize_img_type0
(
img
,
max_side_len
,
&
ratio_h
,
&
ratio_w
);
cv
::
Mat
img_fp
;
img
.
convertTo
(
img_fp
,
CV_32FC3
,
1.0
/
255.
f
);
// Prepare input data from image
std
::
unique_ptr
<
Tensor
>
input_tensor0
(
std
::
move
(
predictor
->
GetInput
(
0
)));
input_tensor0
->
Resize
({
1
,
3
,
img_fp
.
rows
,
img_fp
.
cols
});
auto
*
data0
=
input_tensor0
->
mutable_data
<
float
>
();
std
::
vector
<
float
>
mean
=
{
0.485
f
,
0.456
f
,
0.406
f
};
std
::
vector
<
float
>
scale
=
{
1
/
0.229
f
,
1
/
0.224
f
,
1
/
0.225
f
};
const
float
*
dimg
=
reinterpret_cast
<
const
float
*>
(
img_fp
.
data
);
neon_mean_scale
(
dimg
,
data0
,
img_fp
.
rows
*
img_fp
.
cols
,
mean
,
scale
);
// Run predictor
predictor
->
Run
();
// Get output and post process
std
::
unique_ptr
<
const
Tensor
>
output_tensor
(
std
::
move
(
predictor
->
GetOutput
(
0
)));
auto
*
outptr
=
output_tensor
->
data
<
float
>
();
auto
shape_out
=
output_tensor
->
shape
();
int64_t
out_numl
=
1
;
double
sum
=
0
;
for
(
auto
i
:
shape_out
)
{
out_numl
*=
i
;
}
// Save output
float
pred
[
shape_out
[
2
]][
shape_out
[
3
]];
unsigned
char
cbuf
[
shape_out
[
2
]][
shape_out
[
3
]];
for
(
int
i
=
0
;
i
<
int
(
shape_out
[
2
]
*
shape_out
[
3
]);
i
++
){
pred
[
int
(
i
/
int
(
shape_out
[
3
]))][
int
(
i
%
shape_out
[
3
])]
=
float
(
outptr
[
i
]);
cbuf
[
int
(
i
/
int
(
shape_out
[
3
]))][
int
(
i
%
shape_out
[
3
])]
=
(
unsigned
char
)
((
outptr
[
i
])
*
255
);
}
cv
::
Mat
cbuf_map
(
shape_out
[
2
],
shape_out
[
3
],
CV_8UC1
,
(
unsigned
char
*
)
cbuf
);
cv
::
Mat
pred_map
(
shape_out
[
2
],
shape_out
[
3
],
CV_32F
,
(
float
*
)
pred
);
const
double
threshold
=
0.3
*
255
;
const
double
maxvalue
=
255
;
cv
::
Mat
bit_map
;
cv
::
threshold
(
cbuf_map
,
bit_map
,
threshold
,
maxvalue
,
cv
::
THRESH_BINARY
);
auto
boxes
=
boxes_from_bitmap
(
pred_map
,
bit_map
);
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
filter_boxes
=
filter_tag_det_res
(
boxes
,
ratio_h
,
ratio_w
,
srcimg
);
//// visualization
cv
::
Point
rook_points
[
filter_boxes
.
size
()][
4
];
for
(
int
n
=
0
;
n
<
filter_boxes
.
size
();
n
++
){
for
(
int
m
=
0
;
m
<
filter_boxes
[
0
].
size
();
m
++
){
rook_points
[
n
][
m
]
=
cv
::
Point
(
int
(
filter_boxes
[
n
][
m
][
0
]),
int
(
filter_boxes
[
n
][
m
][
1
]));
}
}
cv
::
Mat
img_vis
;
srcimg
.
copyTo
(
img_vis
);
for
(
int
n
=
0
;
n
<
boxes
.
size
();
n
++
){
const
cv
::
Point
*
ppt
[
1
]
=
{
rook_points
[
n
]
};
int
npt
[]
=
{
4
};
cv
::
polylines
(
img_vis
,
ppt
,
npt
,
1
,
1
,
CV_RGB
(
0
,
255
,
0
),
2
,
8
,
0
);
}
cv
::
imwrite
(
"./imgs_vis/"
+
img_name
+
"_vis.jpg"
,
img_vis
);
std
::
cout
<<
"The detection visualized image saved in ./imgs_vis/"
<<
std
::
endl
;
return
filter_boxes
;
}
int
main
(
int
argc
,
char
**
argv
)
{
if
(
argc
<
4
)
{
std
::
cerr
<<
"[ERROR] usage: "
<<
argv
[
0
]
<<
" det_model_file rec_model_file image_path
\n
"
;
exit
(
1
);
}
std
::
string
det_model_file
=
argv
[
1
];
std
::
string
rec_model_file
=
argv
[
2
];
std
::
string
img_path
=
argv
[
3
];
auto
boxes
=
RunDetModel
(
det_model_file
,
img_path
);
for
(
int
i
=
0
;
i
<
boxes
.
size
();
i
++
){
cv
::
Mat
srcimg
;
cv
::
Mat
crop_img
;
srcimg
=
cv
::
imread
(
img_path
);
crop_img
=
get_rotate_crop_image
(
srcimg
,
boxes
[
i
]);
RunRecModel
(
crop_img
,
rec_model_file
);
}
return
0
;
}
lite/demo/cxx/ocr/utils/clipper.cpp
0 → 100755
浏览文件 @
a2097f1b
此差异已折叠。
点击以展开。
lite/demo/cxx/ocr/utils/clipper.hpp
0 → 100755
浏览文件 @
a2097f1b
此差异已折叠。
点击以展开。
lite/demo/cxx/ocr/utils/crnn_process.cpp
0 → 100644
浏览文件 @
a2097f1b
此差异已折叠。
点击以展开。
lite/demo/cxx/ocr/utils/db_post_process.cpp
0 → 100644
浏览文件 @
a2097f1b
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录