提交 9dbae717 编写于 作者: qnqinan's avatar qnqinan

Merge remote-tracking branch 'upstream/develop' into develop

......@@ -85,18 +85,18 @@ struct Print {
private:
void print(LogLevel level) {
buffer_ << std::endl;
// buffer_ << std::endl;
if (level == kLOG_ERROR) {
std::cerr << buffer_.str();
std::cerr << buffer_.str() << std::endl;
} else {
std::cout << buffer_.str();
std::cout << buffer_.str() << std::endl;
}
}
std::ostringstream buffer_;
};
struct ToLog {
ToLog(LogLevel level = kLOG_DEBUG, const std::string &info = "")
explicit ToLog(LogLevel level = kLOG_DEBUG, const std::string &info = "")
: level_(level) {
unsigned blanks =
(unsigned)(level > kLOG_DEBUG ? (level - kLOG_DEBUG) * 4 : 1);
......@@ -175,11 +175,8 @@ struct Print {
friend struct ToLog;
template <typename T>
Print &operator<<(T const &value) {
Print p = Print();
return p;
return *this;
}
private:
};
struct ToLog {
......
......@@ -77,6 +77,12 @@ const char *G_OP_TYPE_CAST = "cast";
const char *G_OP_TYPE_LOG = "log";
const char *G_OP_TYPE_LOD_RESET = "lod_reset";
const char *G_OP_TYPE_LESS_THAN = "less_than";
const char *G_OP_TYPE_LOGICAL_AND = "logical_and";
const char *G_OP_TYPE_LOGICAL_OR = "logical_or";
const char *G_OP_TYPE_LOGICAL_NOT = "logical_not";
const char *G_OP_TYPE_LOGICAL_XOR = "logical_xor";
const char *G_OP_TYPE_WRITE_TO_ARRAY = "write_to_array";
const char *G_OP_TYPE_READ_FROM_ARRAY = "read_from_array";
const char *G_OP_TYPE_QUANTIZE = "quantize";
const char *G_OP_TYPE_DEQUANTIZE = "dequantize";
......@@ -181,5 +187,11 @@ std::unordered_map<
{G_OP_TYPE_NORM, {{"X"}, {"Out", "Norm"}}},
{G_OP_TYPE_LOG, {{"X"}, {"Out"}}},
{G_OP_TYPE_LOD_RESET, {{"X", "Y"}, {"Out"}}},
{G_OP_TYPE_LESS_THAN, {{"X", "Y"}, {"Out"}}}};
{G_OP_TYPE_LESS_THAN, {{"X", "Y"}, {"Out"}}},
{G_OP_TYPE_LOGICAL_AND, {{"X", "Y"}, {"Out"}}},
{G_OP_TYPE_LOGICAL_OR, {{"X", "Y"}, {"Out"}}},
{G_OP_TYPE_LOGICAL_XOR, {{"X", "Y"}, {"Out"}}},
{G_OP_TYPE_LOGICAL_NOT, {{"X"}, {"Out"}}},
{G_OP_TYPE_WRITE_TO_ARRAY, {{"X", "I"}, {"Out"}}},
{G_OP_TYPE_READ_FROM_ARRAY, {{"X", "I"}, {"Out"}}}};
} // namespace paddle_mobile
......@@ -131,9 +131,12 @@ extern const char *G_OP_TYPE_FUSION_CONV_BN_ADD_RELU;
extern const char *G_OP_TYPE_FUSION_DWCONV_BN_RELU;
extern const char *G_OP_TYPE_FUSION_CONV_BN_RELU;
extern const char *G_OP_TYPE_GRU;
extern const char *G_OP_TYPE_GRU_UNIT;
extern const char *G_OP_TYPE_LRN;
extern const char *G_OP_TYPE_MUL;
extern const char *G_OP_TYPE_MULTICLASS_NMS;
extern const char *G_OP_TYPE_NORM;
extern const char *G_OP_TYPE_POOL2D;
extern const char *G_OP_TYPE_PRIOR_BOX;
extern const char *G_OP_TYPE_RELU;
......@@ -163,6 +166,12 @@ extern const char *G_OP_TYPE_CAST;
extern const char *G_OP_TYPE_LOG;
extern const char *G_OP_TYPE_LOD_RESET;
extern const char *G_OP_TYPE_LESS_THAN;
extern const char *G_OP_TYPE_LOGICAL_AND;
extern const char *G_OP_TYPE_LOGICAL_OR;
extern const char *G_OP_TYPE_LOGICAL_NOT;
extern const char *G_OP_TYPE_LOGICAL_XOR;
extern const char *G_OP_TYPE_WRITE_TO_ARRAY;
extern const char *G_OP_TYPE_READ_FROM_ARRAY;
extern const char *G_OP_TYPE_QUANTIZE;
extern const char *G_OP_TYPE_DEQUANTIZE;
......
......@@ -90,6 +90,10 @@ class Attribute {
attr.Set<int64_t>(attr_desc->l);
break;
}
case PADDLE_MOBILE__FRAMEWORK__PROTO__ATTR_TYPE__BLOCK: {
attr.Set<int>(attr_desc->block_idx);
break;
}
default:
PADDLE_MOBILE_THROW_EXCEPTION("attr type not support");
}
......
......@@ -65,6 +65,7 @@ Executor<Device, T>::Executor(const Program<Device> &program,
for (int j = 0; j < ops.size(); ++j) {
std::shared_ptr<OpDesc> op_desc = ops[j];
DLOG << "create op: " << op_desc->Type();
auto op_handler = OpRegistry<Device>::CreateOp(
op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
op_desc->GetAttrMap(), program_.scope);
......
......@@ -168,6 +168,9 @@ LOAD_FUSION_MATCHER(fusion_conv_bn_relu);
#ifdef GRU_OP
LOAD_OP1(gru, CPU);
#endif
#ifdef GRU_UNIT_OP
LOAD_OP1(gru_unit, CPU);
#endif
#ifdef FUSION_CONVADDBN_OP
LOAD_OP2(fusion_conv_add_bn, CPU, FPGA);
LOAD_FUSION_MATCHER(fusion_conv_add_bn);
......@@ -189,6 +192,9 @@ LOAD_OP1(crf_decoding, CPU);
#ifdef MUL_OP
LOAD_OP2(mul, CPU, MALI_GPU);
#endif
#ifdef NORM_OP
LOAD_OP1(norm, CPU);
#endif
#ifdef RELU_OP
LOAD_OP2(relu, CPU, MALI_GPU);
LOAD_OP1(relu6, CPU);
......@@ -279,3 +285,24 @@ LOAD_OP1(lod_reset, CPU);
#ifdef LESS_THAN_OP
LOAD_OP1(less_than, CPU);
#endif
#ifdef LOGICAL_AND_OP
LOAD_OP1(logical_and, CPU);
#endif
#ifdef LOGICAL_OR_OP
LOAD_OP1(logical_or, CPU);
#endif
#ifdef LOGICAL_NOT_OP
LOAD_OP1(logical_not, CPU);
#endif
#ifdef LOGICAL_XOR_OP
LOAD_OP1(logical_xor, CPU);
#endif
#ifdef WHILE_OP
LOAD_OP1(while, CPU);
#endif
#ifdef WRITE_TO_ARRAY_OP
LOAD_OP1(write_to_array, CPU);
#endif
#ifdef READ_FROM_ARRAY_OP
LOAD_OP1(read_from_array, CPU);
#endif
......@@ -176,6 +176,8 @@ LoDTensor LodExpand(const LoDTensor &source, const LoD &lod, size_t level) {
return tensor;
}
using LoDTensorArray = std::vector<LoDTensor>;
// Get the absolute offset of a lod[start_level][start_idx:end_idx] and
// relative length of details for every levels(i.e., [start_level: ]).
//
......
......@@ -41,9 +41,7 @@ OpDesc::OpDesc(PaddleMobile__Framework__Proto__OpDesc *desc) {
for (int k = 0; k < desc->n_attrs; ++k) {
PaddleMobile__Framework__Proto__OpDesc__Attr *attr = desc->attrs[k];
std::string attr_name(attr->name);
if (attr->type != PADDLE_MOBILE__FRAMEWORK__PROTO__ATTR_TYPE__BLOCK) {
attrs_[attr_name] = Attribute::GetAttrValue(attr);
}
attrs_[attr_name] = Attribute::GetAttrValue(attr);
}
}
......
......@@ -44,6 +44,11 @@
*/
@property (assign, nonatomic) BOOL optimize;
/**
@b 是否预测时初始化内存,用于处理可变输入
*/
@property (assign, nonatomic) BOOL loadWhenPredict;
@end
@interface PaddleMobileCPU : NSObject
......
......@@ -73,6 +73,8 @@ static std::mutex shared_mutex;
- (instancetype)initWithConfig:(PaddleMobileCPUConfig *)config {
if (self = [super init]) {
paddle_mobile::PaddleMobileConfigInternal configInternal;
configInternal.load_when_predict = config.loadWhenPredict;
pam_ = new paddle_mobile::PaddleMobile<paddle_mobile::CPU, float>();
_config = config;
}
......
......@@ -7,15 +7,7 @@ public class PML {
* @param modelDir model dir
* @return isloadsuccess
*/
public static native boolean load(String modelDir);
/**
* load seperated model
*
* @param modelDir model dir
* @return isloadsuccess
*/
public static native boolean loadnlp(String modelDir);
public static native boolean load(String modelDir, Boolean lodMode);
/**
* load combined model
......@@ -24,7 +16,7 @@ public class PML {
* @param paramPath param file path
* @return isloadsuccess
*/
public static native boolean loadCombined(String modelPath, String paramPath);
public static native boolean loadCombined(String modelPath, String paramPath, Boolean lodMode);
/**
* load model and qualified params
......@@ -32,7 +24,7 @@ public class PML {
* @param modelDir qualified model dir
* @return isloadsuccess
*/
public static native boolean loadQualified(String modelDir);
public static native boolean loadQualified(String modelDir, Boolean lodMode);
/**
* load model and qualified combined params
......@@ -41,7 +33,7 @@ public class PML {
* @param paramPath qualified param path
* @return isloadsuccess
*/
public static native boolean loadCombinedQualified(String modelPath, String paramPath);
public static native boolean loadCombinedQualified(String modelPath, String paramPath, Boolean lodMode);
/**
* predict image
......@@ -52,9 +44,12 @@ public class PML {
*/
public static native float[] predictImage(float[] buf, int[] ddims);
public static native float[] predictYuv(byte[] buf, int imgWidth, int imgHeight, int[] ddims, float[] meanValues);
// predict with variable length input
// support only one input and one output currently
public static native float[] predictLod(float[] buf);
/**
* clear model data
*/
......@@ -66,6 +61,4 @@ public class PML {
* @param threadCount threadCount
*/
public static native void setThread(int threadCount);
}
......@@ -39,7 +39,7 @@ using framework::Tensor;
using paddle_mobile::CPU;
using std::string;
extern const char *ANDROID_LOG_TAG =
const char *ANDROID_LOG_TAG =
"paddle_mobile LOG built on " __DATE__ " " __TIME__;
paddle_mobile::PaddleMobile<paddle_mobile::CPU> paddle_mobile;
static std::mutex shared_mutex;
......@@ -55,51 +55,31 @@ string jstring2cppstring(JNIEnv *env, jstring jstr) {
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_load(JNIEnv *env,
jclass thiz,
jstring modelPath) {
jstring modelPath,
jboolean lodMode) {
std::lock_guard<std::mutex> lock(shared_mutex);
ANDROIDLOGI("load invoked");
bool optimize = true;
bool isLoadOk = false;
#ifdef ENABLE_EXCEPTION
try {
isLoadOk = getPaddleMobileInstance()->Load(
jstring2cppstring(env, modelPath), optimize);
jstring2cppstring(env, modelPath), optimize, false, 1,
static_cast<bool>(lodMode));
} catch (paddle_mobile::PaddleMobileException &e) {
ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
isLoadOk = false;
}
#else
isLoadOk = getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
optimize);
#endif
return static_cast<jboolean>(isLoadOk);
}
JNIEXPORT jboolean JNICALL
Java_com_baidu_paddle_PML_loadnlp(JNIEnv *env, jclass thiz, jstring modelPath) {
std::lock_guard<std::mutex> lock(shared_mutex);
ANDROIDLOGI("load invoked");
bool optimize = true;
bool isLoadOk = false;
#ifdef ENABLE_EXCEPTION
try {
isLoadOk = getPaddleMobileInstance()->Load(
jstring2cppstring(env, modelPath), optimize, false, 1, true);
} catch (paddle_mobile::PaddleMobileException &e) {
ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
isLoadOk = false;
}
#else
isLoadOk = getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
optimize, false, 1, true);
optimize, false, 1,
static_cast<bool>(lodMode));
#endif
return static_cast<jboolean>(isLoadOk);
}
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadQualified(
JNIEnv *env, jclass thiz, jstring modelPath) {
JNIEnv *env, jclass thiz, jstring modelPath, jboolean lodMode) {
std::lock_guard<std::mutex> lock(shared_mutex);
ANDROIDLOGI("loadQualified invoked");
......@@ -110,21 +90,24 @@ JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadQualified(
#ifdef ENABLE_EXCEPTION
try {
isLoadOk = getPaddleMobileInstance()->Load(
jstring2cppstring(env, modelPath), optimize, qualified);
jstring2cppstring(env, modelPath), optimize, qualified, 1,
static_cast<bool>(lodMode));
} catch (paddle_mobile::PaddleMobileException &e) {
ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
isLoadOk = false;
}
#else
isLoadOk = getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
optimize, qualified);
optimize, qualified, 1,
static_cast<bool>(lodMode));
#endif
return static_cast<jboolean>(isLoadOk);
}
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadCombined(
JNIEnv *env, jclass thiz, jstring modelPath, jstring paramPath) {
JNIEnv *env, jclass thiz, jstring modelPath, jstring paramPath,
jboolean lodMode) {
std::lock_guard<std::mutex> lock(shared_mutex);
ANDROIDLOGI("loadCombined invoked");
bool optimize = true;
......@@ -134,21 +117,22 @@ JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadCombined(
try {
isLoadOk = getPaddleMobileInstance()->Load(
jstring2cppstring(env, modelPath), jstring2cppstring(env, paramPath),
optimize);
optimize, false, 1, static_cast<bool>(lodMode));
} catch (paddle_mobile::PaddleMobileException &e) {
ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
isLoadOk = false;
}
#else
isLoadOk = getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
jstring2cppstring(env, paramPath),
optimize);
isLoadOk = getPaddleMobileInstance()->Load(
jstring2cppstring(env, modelPath), jstring2cppstring(env, paramPath),
optimize, false, 1, static_cast<bool>(lodMode));
#endif
return static_cast<jboolean>(isLoadOk);
}
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadCombinedQualified(
JNIEnv *env, jclass thiz, jstring modelPath, jstring paramPath) {
JNIEnv *env, jclass thiz, jstring modelPath, jstring paramPath,
jboolean lodMode) {
std::lock_guard<std::mutex> lock(shared_mutex);
ANDROIDLOGI("loadCombinedQualified invoked");
bool optimize = true;
......@@ -159,15 +143,15 @@ JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadCombinedQualified(
try {
isLoadOk = getPaddleMobileInstance()->Load(
jstring2cppstring(env, modelPath), jstring2cppstring(env, paramPath),
optimize, qualified);
optimize, qualified, 1, static_cast<bool>(lodMode));
} catch (paddle_mobile::PaddleMobileException &e) {
ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
isLoadOk = false;
}
#else
isLoadOk = getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
jstring2cppstring(env, paramPath),
optimize, qualified);
isLoadOk = getPaddleMobileInstance()->Load(
jstring2cppstring(env, modelPath), jstring2cppstring(env, paramPath),
optimize, qualified, 1, static_cast<bool>(lodMode));
#endif
return static_cast<jboolean>(isLoadOk);
}
......
......@@ -26,24 +26,27 @@ namespace jni {
*/
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_load(JNIEnv *env,
jclass thiz,
jstring modelPath);
jstring modelPath,
jboolean lodMode);
/**
* load separated qualified model for android
*/
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadQualified(
JNIEnv *env, jclass thiz, jstring modelPath);
JNIEnv *env, jclass thiz, jstring modelPath, jboolean lodMode);
/**
* load combined model for android
*/
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadCombined(
JNIEnv *env, jclass thiz, jstring modelPath, jstring paramPath);
JNIEnv *env, jclass thiz, jstring modelPath, jstring paramPath,
jboolean lodMode);
/**
* load combined qualified model for android
*/
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadCombinedQualified(
JNIEnv *env, jclass thiz, jstring modelPath, jstring paramPath);
JNIEnv *env, jclass thiz, jstring modelPath, jstring paramPath,
jboolean lodMode);
/**
* object detection for anroid
......@@ -61,8 +64,8 @@ JNIEXPORT jfloatArray JNICALL Java_com_baidu_paddle_PML_predictYuv(
/**
* object detection for anroid
*/
JNIEXPORT jfloatArray JNICALL
Java_com_baidu_paddle_PML_predict(JNIEnv *env, jclass thiz, jfloatArray buf);
JNIEXPORT jlongArray JNICALL
Java_com_baidu_paddle_PML_predictLod(JNIEnv *env, jclass thiz, jlongArray buf);
/**
* setThreadCount for multithread
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/controlflow/tensor_array_read_write_op.h"
namespace paddle_mobile {
namespace operators {
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype, typename T>
void WriteToArrayOp<Dtype, T>::InferShape() const {}
#endif // WRITE_TO_ARRAY_OP
#ifdef READ_FROM_ARRAY_OP
template <typename Dtype, typename T>
void ReadFromArrayOp<Dtype, T>::InferShape() const {}
#endif // READ_FROM_ARRAY_OP
} // namespace operators
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
#ifdef WRITE_TO_ARRAY_OP
REGISTER_OPERATOR_CPU(write_to_array, ops::WriteToArrayOp);
#endif // WRITE_TO_ARRAY_OP
#ifdef READ_FROM_ARRAY_OP
REGISTER_OPERATOR_CPU(read_from_array, ops::ReadFromArrayOp);
#endif // READ_FROM_ARRAY_OP
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/tensor_array_read_write_kernel.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
#ifdef WRITE_TO_ARRAY_OP
DECLARE_OPERATOR(WriteToArray, WriteToArrayParam, WriteToArrayKernel);
#endif // WRITE_TO_ARRAY_OP
#ifdef READ_FROM_ARRAY_OP
DECLARE_OPERATOR(ReadFromArray, ReadFromArrayParam, ReadFromArrayKernel);
#endif // WRITE_TO_ARRAY_OP
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/controlflow/while_op.h"
namespace paddle_mobile {
namespace operators {
#ifdef WHILE_OP
template <typename Dtype, typename T>
void WhileOp<Dtype, T>::InferShape() const {
// TODO(hjchen2)
}
#endif // WHILE_OP
} // namespace operators
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
#ifdef WHILE_OP
REGISTER_OPERATOR_CPU(while, ops::WhileOp);
#endif // WHILE_OP
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/while_kernel.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
#ifdef WHILE_OP
DECLARE_OPERATOR(While, WhileParam, WhileKernel);
#endif // WHILE_OP
} // namespace operators
} // namespace paddle_mobile
......@@ -15,7 +15,7 @@ limitations under the License. */
#ifdef FUSION_CONVADDBNRELU_OP
#include "operators/kernel/conv_add_bn_relu_kernel.h"
#include <math.h>
#include <cmath>
#include "operators/kernel/central-arm-func/conv_add_bn_relu_arm_func.h"
namespace paddle_mobile {
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef FUSION_CONVBNADDRELU_OP
#include "operators/kernel/conv_bn_add_relu_kernel.h"
#include <cmath>
#include "operators/kernel/central-arm-func/conv_bn_add_relu_arm_func.h"
namespace paddle_mobile {
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef FUSION_CONVBNRELU_OP
#include "operators/kernel/conv_bn_relu_kernel.h"
#include <cmath>
#include "operators/kernel/central-arm-func/conv_bn_relu_arm_func.h"
namespace paddle_mobile {
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef FUSION_DWCONVBNRELU_OP
#include "operators/kernel/dwconv_bn_relu_kernel.h"
#include <cmath>
#include "operators/kernel/central-arm-func/dwconv_bn_relu_arm_func.h"
namespace paddle_mobile {
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/kernel/logical_kernel.h"
namespace paddle_mobile {
namespace operators {
template <typename T>
struct LogicalAndFunctor {
bool operator()(const T& a, const T& b) const { return a && b; }
};
template <typename T>
struct LogicalOrFunctor {
bool operator()(const T& a, const T& b) const { return a || b; }
};
template <typename T>
struct LogicalNotFunctor {
bool operator()(const T& a) const { return !a; }
};
template <typename T>
struct LogicalXorFunctor {
bool operator()(const T& a, const T& b) const {
return (a || b) && !(a && b);
}
};
template <typename T, typename Functor>
void UnaryLogicalCompute(const Tensor* inputX, Tensor* output) {
Functor func;
std::transform(inputX->data<T>(), inputX->data<T>() + inputX->numel(),
output->data<T>(), func);
}
template <typename T, typename Functor>
void BinaryLogicalCompute(const Tensor* inputX, const Tensor* inputY,
Tensor* output) {
Functor func;
std::transform(inputX->data<T>(), inputX->data<T>() + inputX->numel(),
inputY->data<T>(), output->data<T>(), func);
}
#ifdef LOGICAL_AND_OP
template <>
bool LogicalAndKernel<CPU, float>::Init(LogicalBinaryParam<CPU>* param) {
return true;
}
template <>
void LogicalAndKernel<CPU, float>::Compute(
const LogicalBinaryParam<CPU>& param) {
auto* inputX = param.InputX();
auto* inputY = param.InputY();
auto* out = param.Out();
out->mutable_data<bool>();
BinaryLogicalCompute<bool, LogicalAndFunctor<bool>>(inputX, inputY, out);
}
#endif
#ifdef LOGICAL_OR_OP
template <>
bool LogicalOrKernel<CPU, float>::Init(LogicalBinaryParam<CPU>* param) {
return true;
}
template <>
void LogicalOrKernel<CPU, float>::Compute(
const LogicalBinaryParam<CPU>& param) {
auto* inputX = param.InputX();
auto* inputY = param.InputY();
auto* out = param.Out();
out->mutable_data<bool>();
BinaryLogicalCompute<bool, LogicalOrFunctor<bool>>(inputX, inputY, out);
}
#endif
#ifdef LOGICAL_NOT_OP
template <>
bool LogicalNotKernel<CPU, float>::Init(LogicalUnaryParam<CPU>* param) {
return true;
}
template <>
void LogicalNotKernel<CPU, float>::Compute(
const LogicalUnaryParam<CPU>& param) {
auto* inputX = param.InputX();
auto* out = param.Out();
out->mutable_data<bool>();
UnaryLogicalCompute<bool, LogicalNotFunctor<bool>>(inputX, out);
}
#endif
#ifdef LOGICAL_XOR_OP
template <>
bool LogicalXorKernel<CPU, float>::Init(LogicalBinaryParam<CPU>* param) {
return true;
}
template <>
void LogicalXorKernel<CPU, float>::Compute(
const LogicalBinaryParam<CPU>& param) {
auto* inputX = param.InputX();
auto* inputY = param.InputY();
auto* out = param.Out();
out->mutable_data<bool>();
BinaryLogicalCompute<bool, LogicalXorFunctor<bool>>(inputX, inputY, out);
}
#endif
} // namespace operators
} // namespace paddle_mobile
......@@ -167,7 +167,7 @@ float find_abs_max(const Tensor *input) {
max_abs = vmaxvq_f32(__max);
#endif
for (size_t i = 0; i < remain; ++i) {
max_abs = std::max(max_abs, std::abs(x[i]));
max_abs = std::max(max_abs, fabs(x[i]));
}
return max_abs;
}
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/kernel/tensor_array_read_write_kernel.h"
namespace paddle_mobile {
namespace operators {
#ifdef WRITE_TO_ARRAY_OP
template <>
bool WriteToArrayKernel<CPU, float>::Init(WriteToArrayParam<CPU> *param) {
return true;
}
template <>
void WriteToArrayKernel<CPU, float>::Compute(
const WriteToArrayParam<CPU> &param) {
int64_t offset = param.index_->data<int64_t>()[0];
if (offset >= param.output_->size()) {
param.output_->resize(offset);
}
framework::LoDTensor *out_tensor = &(param.output_->at(offset));
out_tensor->set_lod(param.input_->lod());
if (param.input_->memory_size() > 0) {
TensorCopy(*(param.input_), out_tensor);
}
}
#endif // WRITE_TO_ARRAY_OP
#ifdef READ_FROM_ARRAY_OP
template <>
bool ReadFromArrayKernel<CPU, float>::Init(ReadFromArrayParam<CPU> *param) {
return true;
}
template <>
void ReadFromArrayKernel<CPU, float>::Compute(
const ReadFromArrayParam<CPU> &param) {
int64_t offset = param.index_->data<int64_t>()[0];
if (offset < param.input_->size()) {
TensorCopy(param.input_->at(offset), param.output_);
}
}
#endif // READ_FROM_ARRAY_OP
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/kernel/while_kernel.h"
namespace paddle_mobile {
namespace operators {
#ifdef WHILE_OP
template <>
bool WhileKernel<CPU, float>::Init(WhileParam<CPU> *param) {
return true;
}
template <>
void WhileKernel<CPU, float>::Compute(const WhileParam<CPU> &param) {
// TODO(hjchen2)
}
#endif // WHILE_OP
} // namespace operators
} // namespace paddle_mobile
......@@ -21,6 +21,7 @@ limitations under the License. */
#include "operators/math/gemm.h"
#include "operators/math/math_function.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef BATCHNORM_OP
#include "operators/kernel/batchnorm_kernel.h"
#include <cmath>
namespace paddle_mobile {
namespace operators {
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef FUSION_CONVADDBNRELU_OP
#include "operators/kernel/conv_add_bn_relu_kernel.h"
#include <cmath>
#include "framework/cl/cl_image.h"
#include "framework/cl/cl_tool.h"
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef FUSION_CONVBNADDRELU_OP
#include "operators/kernel/conv_bn_add_relu_kernel.h"
#include <cmath>
namespace paddle_mobile {
namespace operators {
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef FUSION_CONVBNRELU_OP
#include "operators/kernel/conv_bn_relu_kernel.h"
#include <cmath>
namespace paddle_mobile {
namespace operators {
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef FUSION_DWCONVBNRELU_OP
#include "operators/kernel/dwconv_bn_relu_kernel.h"
#include <cmath>
namespace paddle_mobile {
namespace operators {
......
......@@ -13,7 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#ifdef RELU_OP
#include "operators/kernel/relu_kernel.h"
#include "operators/kernel/activation_kernel.h"
namespace paddle_mobile {
namespace operators {
......
......@@ -15,7 +15,8 @@ limitations under the License. */
#ifdef FUSION_CONVADDBN_OP
#include "operators/kernel/conv_add_bn_kernel.h"
#include <math.h>
#include <cmath>
namespace paddle_mobile {
namespace operators {
......
......@@ -15,7 +15,7 @@ limitations under the License. */
#ifdef FUSION_CONVADDBNRELU_OP
#include "operators/kernel/conv_add_bn_relu_kernel.h"
#include <math.h>
#include <cmath>
namespace paddle_mobile {
namespace operators {
......
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
......@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef FUSION_CONVADDBN_OP
#include "operators/kernel/conv_add_bn_kernel.h"
#include <cmath>
namespace paddle_mobile {
namespace operators {
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef FUSION_CONVADDBNRELU_OP
#include "operators/kernel/conv_add_bn_relu_kernel.h"
#include <cmath>
namespace paddle_mobile {
namespace operators {
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef FUSION_CONVBN_OP
#include "operators/kernel/conv_bn_kernel.h"
#include <cmath>
namespace paddle_mobile {
namespace operators {
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef FUSION_CONVBNRELU_OP
#include "operators/kernel/conv_bn_relu_kernel.h"
#include <cmath>
#include "fpga/V2/filter.h"
namespace paddle_mobile {
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
#ifdef LOGICAL_AND_OP
DECLARE_KERNEL(LogicalAnd, LogicalBinaryParam);
#endif
#ifdef LOGICAL_OR_OP
DECLARE_KERNEL(LogicalOr, LogicalBinaryParam);
#endif
#ifdef LOGICAL_NOT_OP
DECLARE_KERNEL(LogicalNot, LogicalUnaryParam);
#endif
#ifdef LOGICAL_XOR_OP
DECLARE_KERNEL(LogicalXor, LogicalBinaryParam);
#endif
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
#ifdef WRITE_TO_ARRAY_OP
DECLARE_KERNEL(WriteToArray, WriteToArrayParam);
#endif // WRITE_TO_ARRAY_OP
#ifdef READ_FROM_ARRAY_OP
DECLARE_KERNEL(ReadFromArray, ReadFromArrayParam);
#endif // READ_FROM_ARRAY_OP
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
#ifdef WHILE_OP
template <typename Dtype>
class WhileParam : public OpParam {
public:
WhileParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
const AttributeMap &attrs, const Scope &scope)
: inputs_(inputs), outputs_(outputs), scope_(scope) {
cond_ =
OpParam::GetVarValue<framework::LoDTensor>("Condition", inputs, scope);
sub_block_ = OpParam::GetAttr<int>("sub_block", attrs);
}
public:
framework::LoDTensor *cond_;
int sub_block_;
const VariableNameMap inputs_;
const VariableNameMap outputs_;
const Scope scope_;
};
DECLARE_KERNEL(While, WhileParam);
#endif // WHILE_OP
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/logical_op.h"
namespace paddle_mobile {
namespace operators {
#define DEFINE_LOGICAL_INFERSHAPE(OpName) \
template <typename Dtype, typename T> \
void OpName##Op<Dtype, T>::InferShape() const { \
const auto &input_dims = this->param_.InputX()->dims(); \
this->param_.Out()->Resize(input_dims); \
}
#ifdef LOGICAL_AND_OP
DEFINE_LOGICAL_INFERSHAPE(LogicalAnd);
#endif // TLOGICAL_AND_OP
#ifdef LOGICAL_OR_OP
DEFINE_LOGICAL_INFERSHAPE(LogicalOr);
#endif // TLOGICAL_OR_OP
#ifdef LOGICAL_NOT_OP
DEFINE_LOGICAL_INFERSHAPE(LogicalNot);
#endif // LOGICAL_NOT_OP
#ifdef LOGICAL_XOR_OP
DEFINE_LOGICAL_INFERSHAPE(LogicalXor);
#endif // TLOGICAL_XOR_OP
} // namespace operators
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
#ifdef LOGICAL_AND_OP
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(logical_and, ops::LogicalAndOp);
#endif
#endif // LOGICAL_AND_OP
#ifdef LOGICAL_OR_OP
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(logical_or, ops::LogicalOrOp);
#endif
#endif // LOGICAL_OR_OP
#ifdef LOGICAL_NOT_OP
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(logical_not, ops::LogicalNotOp);
#endif
#endif // LOGICAL_NOT_OP
#ifdef LOGICAL_XOR_OP
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(logical_xor, ops::LogicalXorOp);
#endif
#endif // LOGICAL_XOR_OP
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/logical_kernel.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
#ifdef LOGICAL_AND_OP
DECLARE_OPERATOR(LogicalAnd, LogicalBinaryParam, LogicalAndKernel);
#endif
#ifdef LOGICAL_OR_OP
DECLARE_OPERATOR(LogicalOr, LogicalBinaryParam, LogicalOrKernel);
#endif
#ifdef LOGICAL_NOT_OP
DECLARE_OPERATOR(LogicalNot, LogicalUnaryParam, LogicalNotKernel);
#endif
#ifdef LOGICAL_XOR_OP
DECLARE_OPERATOR(LogicalXor, LogicalBinaryParam, LogicalXorKernel);
#endif
} // namespace operators
} // namespace paddle_mobile
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cstring>
#include <string>
#include "common/log.h"
#include "memory/t_malloc.h"
......
......@@ -40,8 +40,8 @@ template <>
inline int8_t Round<ROUND_NEAREST_TO_EVEN>(const float &x) {
float v = std::round(x);
int32_t q = static_cast<int32_t>(v);
if (std::abs(std::abs(q - v) - 0.5) <= 0) {
if (std::abs(q) % 2 != 0) {
if (fabs(fabs(q - v) - 0.5) <= 0) {
if (abs(q) % 2 != 0) {
q = q + ((q > 0) ? -1 : 1);
}
}
......
......@@ -2949,5 +2949,112 @@ class CompareParam : public OpParam {
};
#endif // LESS_THAN_OP
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
template <typename Dtype>
class LogicalBinaryParam : public OpParam {
typedef typename DtypeTensorTrait<Dtype>::gtype GType;
typedef typename DtypeTensorTrait<Dtype>::rtype RType;
public:
LogicalBinaryParam(const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs,
const Scope &scope) {
input_x_ = InputXFrom<GType>(inputs, scope);
input_y_ = InputYFrom<GType>(inputs, scope);
output_ = OutFrom<GType>(outputs, scope);
}
const GType *InputX() const { return input_x_; }
const GType *InputY() const { return input_y_; }
GType *Out() const { return output_; }
public:
GType *input_x_;
GType *input_y_;
GType *output_;
};
#endif // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
#ifdef LOGICAL_NOT_OP
template <typename Dtype>
class LogicalUnaryParam : public OpParam {
typedef typename DtypeTensorTrait<Dtype>::gtype GType;
typedef typename DtypeTensorTrait<Dtype>::rtype RType;
public:
LogicalUnaryParam(const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs,
const Scope &scope) {
input_x_ = InputXFrom<GType>(inputs, scope);
output_ = OutFrom<GType>(outputs, scope);
}
const GType *InputX() const { return input_x_; }
GType *Out() const { return output_; }
public:
GType *input_x_;
GType *output_;
};
#endif // LOGICAL_NOT_OP
// #ifdef WHILE_OP
// template <typename Dtype>
// class WhileParam : public OpParam {
// public:
// WhileParam(const VariableNameMap &inputs,
// const VariableNameMap &outputs, const AttributeMap &attrs,
// const Scope &scope) {
// cond_ = OpParam::GetVarValue<framework::LoDTensor>("Condition", inputs,
// scope); block_desc_ = OpParam::GetAttr<framework::BlockDesc
// *>("sub_block", attrs);
// }
//
// public:
// framework::LoDTensor *cond_;
// const framework::BlockDesc *block_desc_;
// };
// #endif // WHILE_OP
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
public:
WriteToArrayParam(const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs,
const Scope &scope) {
input_ = OpParam::GetVarValue<framework::LoDTensor>("X", inputs, scope);
index_ = OpParam::GetVarValue<framework::LoDTensor>("I", inputs, scope);
output_ =
OpParam::GetVarValue<framework::LoDTensorArray>("Out", outputs, scope);
}
public:
framework::LoDTensor *input_;
framework::LoDTensor *index_;
framework::LoDTensorArray *output_;
};
#endif
#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
public:
ReadFromArrayParam(const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs,
const Scope &scope) {
input_ =
OpParam::GetVarValue<framework::LoDTensorArray>("X", inputs, scope);
index_ = OpParam::GetVarValue<framework::LoDTensor>("I", inputs, scope);
output_ = OpParam::GetVarValue<framework::LoDTensor>("Out", outputs, scope);
}
public:
framework::LoDTensorArray *input_;
framework::LoDTensor *index_;
framework::LoDTensor *output_;
};
#endif
} // namespace operators
} // namespace paddle_mobile
文件模式从 100755 更改为 100644
......@@ -30,6 +30,10 @@ if (CON GREATER -1)
target_link_libraries(test-mobilenet-combine paddle-mobile)
set(FOUND_MATCH ON)
# gen test
ADD_EXECUTABLE(test-mobilenetgpu net/test_mobilenet_GPU.cpp test_helper.h test_include.h)
target_link_libraries(test-mobilenetgpu paddle-mobile)
endif ()
list(FIND NET "yolo" CON)
......@@ -417,4 +421,20 @@ if (NOT FOUND_MATCH)
ADD_EXECUTABLE(test-vgg16ssd net/test_vgg16ssd.cpp test_helper.h test_include.h)
target_link_libraries(test-vgg16ssd paddle-mobile)
# gen test
ADD_EXECUTABLE(test-logical-and-op operators/test_logical_and_op.cpp test_helper.h test_include.h)
target_link_libraries(test-logical-and-op paddle-mobile)
# gen test
ADD_EXECUTABLE(test-logical-or-op operators/test_logical_or_op.cpp test_helper.h test_include.h)
target_link_libraries(test-logical-or-op paddle-mobile)
# gen test
ADD_EXECUTABLE(test-logical-not-op operators/test_logical_not_op.cpp test_helper.h test_include.h)
target_link_libraries(test-logical-not-op paddle-mobile)
# gen test
ADD_EXECUTABLE(test-logical-xor-op operators/test_logical_xor_op.cpp test_helper.h test_include.h)
target_link_libraries(test-logical-xor-op paddle-mobile)
endif ()
......@@ -25,11 +25,11 @@ int main() {
paddle_mobile.SetCLPath("/data/local/tmp/bin");
#endif
auto isok =
paddle_mobile.Load(std::string(g_mobilenet_mul) + "/model",
std::string(g_mobilenet_mul) + "/params", true);
// auto isok =
// paddle_mobile.Load(std::string(g_mobilenet_mul) + "/model",
// std::string(g_mobilenet_mul) + "/params", true);
// auto isok = paddle_mobile.Load(std::string(g_mobilenet_mul), true);
auto isok = paddle_mobile.Load(std::string(g_mobilenet), true);
if (isok) {
auto time2 = paddle_mobile::time();
std::cout << "load cost :" << paddle_mobile::time_diff(time1, time2) << "ms"
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "../test_include.h"
#include "operators/logical_op.h"
namespace paddle_mobile {
void LogicalAnd(const framework::Tensor *inputX,
const framework::Tensor *inputY, framework::Tensor *output) {
auto x_data = inputX->data<bool>();
auto y_data = inputY->data<bool>();
auto output_data = output->data<bool>();
for (int i = 0; i < inputX->numel(); ++i) {
*output_data = *x_data && *y_data;
x_data++;
y_data++;
output_data++;
}
}
int TestLogicalAndOp(const std::vector<int> input_shape) {
framework::DDim input_dims = framework::make_ddim(input_shape);
VariableNameMap inputs;
VariableNameMap outputs;
auto scope = std::make_shared<framework::Scope>();
inputs["X"] = std::vector<std::string>({"inputX"});
inputs["Y"] = std::vector<std::string>({"inputY"});
outputs["Out"] = std::vector<std::string>({"output"});
auto x_var = scope.get()->Var("inputX");
auto x = x_var->template GetMutable<framework::LoDTensor>();
SetupTensor<bool>(x, input_dims, 0, 1);
auto y_var = scope.get()->Var("inputY");
auto y = y_var->template GetMutable<framework::LoDTensor>();
SetupTensor<bool>(y, input_dims, 0, 1);
auto output_var = scope.get()->Var("output");
framework::AttributeMap attrs;
auto *op = new operators::LogicalAndOp<CPU, float>("logical_and", inputs,
outputs, attrs, scope);
op->InferShape();
op->Init();
op->Run();
auto output = output_var->template Get<framework::LoDTensor>();
framework::Tensor output_cmp;
bool *output_cmp_data = output_cmp.mutable_data<bool>(output->dims());
LogicalAnd(x, y, &output_cmp);
const bool *output_data = output->data<bool>();
for (int i = 0; i < output->numel(); ++i) {
if (output_data[i] != output_cmp_data[i]) {
LOG(kLOG_INFO) << "output_data[" << i << "] = " << output_data[i]
<< ", output_cmp_data[" << i
<< "] = " << output_cmp_data[i];
delete op;
exit(1);
}
}
}
} // namespace paddle_mobile
int main() {
paddle_mobile::TestLogicalAndOp({1, 1, 2, 3});
paddle_mobile::TestLogicalAndOp({1, 3, 11, 12});
paddle_mobile::TestLogicalAndOp({1, 16, 32, 32});
DLOG << "test logical_and op pass.";
return 0;
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "../test_include.h"
#include "operators/logical_op.h"
namespace paddle_mobile {
void LogicalNot(const framework::Tensor *inputX, framework::Tensor *output) {
auto x_data = inputX->data<bool>();
auto output_data = output->data<bool>();
for (int i = 0; i < inputX->numel(); ++i) {
*output_data = !*x_data;
x_data++;
output_data++;
}
}
int TestLogicalNotOp(const std::vector<int> input_shape) {
framework::DDim input_dims = framework::make_ddim(input_shape);
VariableNameMap inputs;
VariableNameMap outputs;
auto scope = std::make_shared<framework::Scope>();
inputs["X"] = std::vector<std::string>({"inputX"});
outputs["Out"] = std::vector<std::string>({"output"});
auto x_var = scope.get()->Var("inputX");
auto x = x_var->template GetMutable<framework::LoDTensor>();
SetupTensor<bool>(x, input_dims, 0, 1);
auto output_var = scope.get()->Var("output");
framework::AttributeMap attrs;
auto *op = new operators::LogicalNotOp<CPU, float>("logical_not", inputs,
outputs, attrs, scope);
op->InferShape();
op->Init();
op->Run();
auto output = output_var->template Get<framework::LoDTensor>();
framework::Tensor output_cmp;
bool *output_cmp_data = output_cmp.mutable_data<bool>(output->dims());
LogicalNot(x, &output_cmp);
const bool *output_data = output->data<bool>();
for (int i = 0; i < output->numel(); ++i) {
if (output_data[i] != output_cmp_data[i]) {
LOG(kLOG_INFO) << "output_data[" << i << "] = " << output_data[i]
<< ", output_cmp_data[" << i
<< "] = " << output_cmp_data[i];
delete op;
exit(1);
}
}
}
} // namespace paddle_mobile
int main() {
paddle_mobile::TestLogicalNotOp({1, 1, 2, 3});
paddle_mobile::TestLogicalNotOp({1, 3, 11, 12});
paddle_mobile::TestLogicalNotOp({1, 16, 32, 32});
DLOG << "test logical_not op pass.";
return 0;
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "../test_include.h"
#include "operators/logical_op.h"
namespace paddle_mobile {
void LogicalOr(const framework::Tensor *inputX, const framework::Tensor *inputY,
framework::Tensor *output) {
auto x_data = inputX->data<bool>();
auto y_data = inputY->data<bool>();
auto output_data = output->data<bool>();
for (int i = 0; i < inputX->numel(); ++i) {
*output_data = *x_data || *y_data;
x_data++;
y_data++;
output_data++;
}
}
int TestLogicalOrOp(const std::vector<int> input_shape) {
framework::DDim input_dims = framework::make_ddim(input_shape);
VariableNameMap inputs;
VariableNameMap outputs;
auto scope = std::make_shared<framework::Scope>();
inputs["X"] = std::vector<std::string>({"inputX"});
inputs["Y"] = std::vector<std::string>({"inputY"});
outputs["Out"] = std::vector<std::string>({"output"});
auto x_var = scope.get()->Var("inputX");
auto x = x_var->template GetMutable<framework::LoDTensor>();
SetupTensor<bool>(x, input_dims, 0, 1);
auto y_var = scope.get()->Var("inputY");
auto y = y_var->template GetMutable<framework::LoDTensor>();
SetupTensor<bool>(y, input_dims, 0, 1);
auto output_var = scope.get()->Var("output");
framework::AttributeMap attrs;
auto *op = new operators::LogicalOrOp<CPU, float>("logical_or", inputs,
outputs, attrs, scope);
op->InferShape();
op->Init();
op->Run();
auto output = output_var->template Get<framework::LoDTensor>();
framework::Tensor output_cmp;
bool *output_cmp_data = output_cmp.mutable_data<bool>(output->dims());
LogicalOr(x, y, &output_cmp);
const bool *output_data = output->data<bool>();
for (int i = 0; i < output->numel(); ++i) {
if (output_data[i] != output_cmp_data[i]) {
LOG(kLOG_INFO) << "output_data[" << i << "] = " << output_data[i]
<< ", output_cmp_data[" << i
<< "] = " << output_cmp_data[i];
delete op;
exit(1);
}
}
}
} // namespace paddle_mobile
int main() {
paddle_mobile::TestLogicalOrOp({1, 1, 2, 3});
paddle_mobile::TestLogicalOrOp({1, 3, 11, 12});
paddle_mobile::TestLogicalOrOp({1, 16, 32, 32});
DLOG << "test logical_or op pass.";
return 0;
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "../test_include.h"
#include "operators/logical_op.h"
namespace paddle_mobile {
void LogicalXor(const framework::Tensor *inputX,
const framework::Tensor *inputY, framework::Tensor *output) {
auto x_data = inputX->data<bool>();
auto y_data = inputY->data<bool>();
auto output_data = output->data<bool>();
for (int i = 0; i < inputX->numel(); ++i) {
bool x = *x_data;
bool y = *y_data;
*output_data = (x || y) && !(x && y);
x_data++;
y_data++;
output_data++;
}
}
int TestLogicalXorOp(const std::vector<int> input_shape) {
framework::DDim input_dims = framework::make_ddim(input_shape);
VariableNameMap inputs;
VariableNameMap outputs;
auto scope = std::make_shared<framework::Scope>();
inputs["X"] = std::vector<std::string>({"inputX"});
inputs["Y"] = std::vector<std::string>({"inputY"});
outputs["Out"] = std::vector<std::string>({"output"});
auto x_var = scope.get()->Var("inputX");
auto x = x_var->template GetMutable<framework::LoDTensor>();
SetupTensor<bool>(x, input_dims, 0, 1);
auto y_var = scope.get()->Var("inputY");
auto y = y_var->template GetMutable<framework::LoDTensor>();
SetupTensor<bool>(y, input_dims, 0, 1);
auto output_var = scope.get()->Var("output");
framework::AttributeMap attrs;
auto *op = new operators::LogicalXorOp<CPU, float>("logical_xor", inputs,
outputs, attrs, scope);
op->InferShape();
op->Init();
op->Run();
auto output = output_var->template Get<framework::LoDTensor>();
framework::Tensor output_cmp;
bool *output_cmp_data = output_cmp.mutable_data<bool>(output->dims());
LogicalXor(x, y, &output_cmp);
const bool *output_data = output->data<bool>();
for (int i = 0; i < output->numel(); ++i) {
if (output_data[i] != output_cmp_data[i]) {
LOG(kLOG_INFO) << "output_data[" << i << "] = " << output_data[i]
<< ", output_cmp_data[" << i
<< "] = " << output_cmp_data[i];
delete op;
exit(1);
}
}
}
} // namespace paddle_mobile
int main() {
paddle_mobile::TestLogicalXorOp({1, 1, 2, 3});
paddle_mobile::TestLogicalXorOp({1, 3, 11, 12});
paddle_mobile::TestLogicalXorOp({1, 16, 32, 32});
DLOG << "test logical_xor op pass.";
return 0;
}
......@@ -83,6 +83,26 @@ void SetupTensor(paddle_mobile::framework::Tensor *input,
}
}
template <>
void SetupTensor<bool>(paddle_mobile::framework::Tensor *input,
paddle_mobile::framework::DDim dims, bool lower,
bool upper) {
static unsigned int seed = 100;
std::mt19937 rng(seed++);
std::uniform_real_distribution<double> uniform_dist(0, 1);
bool *input_ptr = input->mutable_data<bool>(dims);
if (lower == upper) {
for (int i = 0; i < input->numel(); ++i) {
input_ptr[i] = lower;
}
} else {
for (int i = 0; i < input->numel(); ++i) {
input_ptr[i] = uniform_dist(rng) > 0.5;
}
}
}
template <typename T>
T *CreateInput(Tensor *input, DDim dims, T low, T up) {
SetupTensor<T>(input, dims, static_cast<float>(low), static_cast<float>(up));
......
......@@ -26,6 +26,7 @@ function print_usage() {
${BLUE}ios${NONE}: run build for apple ios platform
${BLUE}linux_armv7${NONE}: run build for linux armv7 platform
${BLUE}linux_armv8${NONE}: run build for linux armv8 platform
${BLUE}fpga${NONE}: run build for fpga platform
"
echo "\n${RED}Network${NONE}: optional, for deep compressing the framework size
${BLUE}googlenet${NONE}: build only googlenet support
......@@ -146,6 +147,7 @@ function build_ios_armv8_cpu_only() {
-DIOS_PLATFORM=OS \
-DIOS_ARCH="${IOS_ARCH}" \
-DIS_IOS=true \
-DUSE_OPENMP=OFF \
-DGPU_MALI=OFF \
-DGPU_CL=OFF \
-DFPGA=OFF
......@@ -163,6 +165,7 @@ function build_ios_armv8_gpu() {
-DIOS_PLATFORM=OS \
-DIOS_ARCH="${IOS_ARCH}" \
-DIS_IOS=true \
-DUSE_OPENMP=OFF \
-DGPU_MALI=OFF \
-DGPU_CL=ON \
-DFPGA=OFF
......@@ -217,11 +220,19 @@ function build_ios() {
}
function build_linux_armv7() {
check_ndk
build_linux_armv7_cpu_only
# build_linux_armv7_gpu
}
function build_linux_fpga() {
cd ..
image=`docker images paddle-mobile:dev | grep 'paddle-mobile'`
if [[ "x"$image == "x" ]]; then
docker build -t paddle-mobile:dev - < Dockerfile
fi
docker run --rm -v `pwd`:/workspace paddle-mobile:dev bash /workspace/tools/docker_build_fpga.sh
}
function main() {
local CMD=$1
init
......@@ -238,6 +249,9 @@ function main() {
linux_armv7)
build_linux_armv7
;;
fpga)
build_linux_fpga
;;
*)
print_usage
exit 0
......
apt-get update
apt-get install -y gcc g++ cmake
cd /workspace && mkdir build
cd build && cmake .. -DCPU=OFF -DFPGA=ON && make -j4
......@@ -281,6 +281,13 @@ if(NOT FOUND_MATCH)
set(TANH_OP ON)
set(LOD_RESET_OP ON)
set(LESS_THAN_OP ON)
set(LOGICAL_AND_OP ON)
set(LOGICAL_OR_OP ON)
set(LOGICAL_NOT_OP ON)
set(LOGICAL_XOR_OP ON)
set(WHILE_OP ON)
set(WRITE_TO_ARRAY_OP ON)
set(READ_FROM_ARRAY_OP ON)
endif()
# option(BATCHNORM_OP "" ON)
......@@ -530,6 +537,18 @@ endif()
if (LESS_THAN_OP)
add_definitions(-DLESS_THAN_OP)
endif()
if (LOGICAL_AND_OP)
add_definitions(-DLOGICAL_AND_OP)
endif()
if (LOGICAL_OR_OP)
add_definitions(-DLOGICAL_OR_OP)
endif()
if (LOGICAL_NOT_OP)
add_definitions(-DLOGICAL_NOT_OP)
endif()
if (LOGICAL_XOR_OP)
add_definitions(-DLOGICAL_XOR_OP)
endif()
if (TANH_OP)
add_definitions(-DTANH_OP)
......@@ -543,3 +562,13 @@ endif()
if (FUSION_DECONVADDRELU_OP)
add_definitions(-DFUSION_DECONVADDRELU_OP)
endif()
if (WHILE_OP)
add_definitions(-DWHILE_OP)
endif()
if (WRITE_TO_ARRAY_OP)
add_definitions(-DWRITE_TO_ARRAY_OP)
endif()
if (READ_FROM_ARRAY_OP)
add_definitions(-DREAD_FROM_ARRAY_OP)
endif()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册