提交 9be67444 编写于 作者: H huzhiqiang 提交者: GitHub

[x86 doc] add demo for x86 API (#3090)

上级 0e794fe3
......@@ -9,8 +9,8 @@ Paddle-Lite 支持在Docker或Linux环境编译x86预测库。环境搭建参考
1、 下载代码
```bash
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
#需要切换到 release/v2.0.0之后版本
git checkout <release_tag>
# 切换到release分支
git checkout release/v2.3
```
2、 源码编译
......@@ -42,43 +42,56 @@ x86编译结果位于 `build.lite.x86/inference_lite_lib`
## x86预测API使用示例
1、我们提供Linux环境下x86 API运行mobilenet_v1的示例:[mobilenet_full_x86demo](https://paddlelite-data.bj.bcebos.com/x86/mobilenet_full_x86demo.zip)。下载解压后内容如下:
![](https://paddlelite-data.bj.bcebos.com/x86/x86-doc/demo.png)
`mobilenet_v1`为模型文件、`lib``include`分别是Paddle-Lite的预测库和头文件、`third_party`下是编译时依赖的第三方库`mklml``mobilenet_full_api.cc`是x86示例的源代码、`build.sh`为编译的脚本。
2、demo内容与使用方法
``` bash
# 1、编译
sh build.sh
```
编译结果为当前目录下的 `mobilenet_full_api `
``` bash
# 2、执行预测
mobilenet_full_api mobilenet_v1
```
`mobilenet_v1`为当前目录下的模型路径,`mobilenet_full_api`为第一步编译出的可执行文件。
3、示例源码`mobilenet_full_api.cc`
```c++
#include <gflags/gflags.h>
#include <iostream>
#include <vector>
#include "paddle_api.h" // NOLINT
#include "paddle_use_kernels.h" // NOLINT
#include "paddle_use_ops.h" // NOLINT
#include "paddle_use_passes.h" // NOLINT
#include "paddle_api.h"
using namespace paddle::lite_api; // NOLINT
DEFINE_string(model_dir, "", "Model dir path.");
DEFINE_string(optimized_model_dir, "", "Optimized model dir.");
DEFINE_bool(prefer_int8_kernel, false, "Prefer to run model with int8 kernels");
using namespace paddle::lite_api; // NOLINT
int64_t ShapeProduction(const shape_t& shape) {
int64_t res = 1;
for (auto i : shape) res *= i;
return res;
}
void RunModel() {
// 1. Set CxxConfig
CxxConfig config;
config.set_model_file(FLAGS_model_dir + "model");
config.set_param_file(FLAGS_model_dir + "params");
config.set_valid_places({
lite_api::Place{TARGET(kX86), PRECISION(kFloat)}
});
void RunModel(std::string model_dir) {
// 1. Create CxxConfig
CxxConfig config;
config.set_model_dir(model_dir);
config.set_valid_places({
Place{TARGET(kX86), PRECISION(kFloat)},
Place{TARGET(kHost), PRECISION(kFloat)}
});
// 2. Create PaddlePredictor by CxxConfig
std::shared_ptr<PaddlePredictor> predictor =
CreatePaddlePredictor<CxxConfig>(config);
// 3. Prepare input data
std::unique_ptr<Tensor> input_tensor(std::move(predictor->GetInput(0)));
input_tensor->Resize(shape_t({1, 3, 224, 224}));
input_tensor->Resize({1, 3, 224, 224});
auto* data = input_tensor->mutable_data<float>();
for (int i = 0; i < ShapeProduction(input_tensor->shape()); ++i) {
data[i] = 1;
......@@ -90,15 +103,21 @@ void RunModel() {
// 5. Get output
std::unique_ptr<const Tensor> output_tensor(
std::move(predictor->GetOutput(0)));
std::cout << "Output dim: " << output_tensor->shape()[1] << std::endl;
std::cout << "Output shape " << output_tensor->shape()[1] << std::endl;
for (int i = 0; i < ShapeProduction(output_tensor->shape()); i += 100) {
std::cout << "Output[" << i << "]:" << output_tensor->data<float>()[i] << std::endl;
std::cout << "Output[" << i << "]: " << output_tensor->data<float>()[i]
<< std::endl;
}
}
int main(int argc, char** argv) {
google::ParseCommandLineFlags(&argc, &argv, true);
RunModel();
if (argc < 2) {
std::cerr << "[ERROR] usage: ./" << argv[0] << " naive_buffer_model_dir\n";
exit(1);
}
std::string model_dir = argv[1];
RunModel(model_dir);
return 0;
}
```
......@@ -277,13 +277,13 @@ config.set_power_mode(LITE_POWER_HIGH);
std::shared_ptr<PaddlePredictor> predictor = CreatePaddlePredictor<MobileConfig>(config);
```
### `set_model_from_file(model_dir)`
### `set_model_from_file(model_file)`
设置模型文件,当需要从磁盘加载模型时使用。
参数:
- `model_dir(std::string)` - 模型文件路径
- `model_file(std::string)` - 模型文件路径
返回:`None`
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册