提交 9be21954 编写于 作者: H hjchen2

Merge branch 'develop' of https://github.com/PaddlePaddle/paddle-mobile into dev-latest

......@@ -26,61 +26,10 @@ Paddle-Mobile是PaddlePaddle组织下的项目,是一个致力于嵌入式平
- **ARM CPU**
|mobilenet arm v7|1线程|2线程|4线程|
|------------|----|-----|-----|
|麒麟970(ms)|108.180|63.935|37.545|
|麒麟960(ms)|108.588|63.073|36.822|
|高通845(ms)|85.952|48.890|28.641|
|高通835(ms)|105.434|62.752|37.131|
|||||
|mobilenetssd arm v7|1线程|2线程|4线程|
|麒麟970(ms)|212.686|127.205|77.485|
|麒麟960(ms)|212.641|125.338|75.250|
|高通845(ms)|182.863|95.671|56.857|
|高通835(ms)|213.849|127.717|77.006|
|||||
|googlenet(v1) arm v7|1线程|2线程|4线程|
|麒麟970(ms)|335.288|234.559|161.295|
|麒麟960(ms)|354.443|232.642|157.815|
|高通845(ms)|282.007|173.146|122.148|
|高通835(ms)|341.250|233.354|158.554|
|||||
|squeezenet arm v7|1线程|2线程|4线程|
|麒麟970(ms)|83.726|57.944|36.923|
|麒麟960(ms)|85.835|55.762|36.496|
|高通845(ms)|71.301|41.618|28.785|
|高通835(ms)|82.407|56.176|36.455|
|||||
|yolo arm v7|1线程|2线程|4线程|
|麒麟970(ms)|129.658|79.993|49.969|
|麒麟960(ms)|130.208|78.791|48.390|
|高通845(ms)|109.244|61.736|40.600|
|高通835(ms)|130.402|80.863|50.359|
测试机型信息:
麒麟970:荣耀v10 (2.36GHz * 4 + 1.8GHz * 4)
麒麟960:华为mate9 (2.36GHz * 4 + 1.8GHz * 4)
骁龙835:小米6 (2.45GHz * 4 + 1.9GHz * 4)
骁龙845:OPPO FindX (2.80GHz * 4 + 1.8GHz * 4)
- **Mali GPU**
Mali GPU是百度和ARM合作开发的,双方团队近期都在致力于将paddle的op能无缝运行在ACL(arm compute library)。目前已经支持squeezenet,googlenet,resnet等几个网络模型,后续会继续加大力度。使全部移动端paddle op能高效运行在mali gpu上。
- **苹果设备的GPU Metal实现**
|mobilenetfssd|速度|
|------------|-----|
|A9(ms)|33.78|
|A10(ms)|24.05|
|A11(ms)|17.15|
|||
|genet|速度|
|A9(ms) |3.49|
|A10(ms)|2.54|
|A11(ms)|1.43|
- **FPGA**
目前已经支持 ZCU102 开发板。
......
......@@ -27,8 +27,9 @@ ___
## 准备模型和数据
___
1. 模型文件放在./test/models/resnet50中。将[\_\_model\_\_](http://mms-graph.bj.bcebos.com/paddle-mobile/fpga/files.tar.gz)文件复制到此文件夹下。
2. 另外下载模型[权重文件](http://paddle-imagenet-models.bj.bcebos.com/resnet_50_model.tar),解压后也放在./test/models/resnet50 中。
3. 将数据文件[image_src_float](http://mms-graph.bj.bcebos.com/paddle-mobile/fpga/files.tar.gz)复制到/test/images下。此数据文件对应着标准数据集中的ILSVRC2012_val_00000885.JPEG,分类标签为80, 对应着"black grouse".
2. 如果不存在,则创建文件夹./test/models/resnet50 和 ./test/images。
3. 另外下载模型[权重文件](http://paddle-imagenet-models.bj.bcebos.com/resnet_50_model.tar),解压后也放在./test/models/resnet50 中。
4. 将数据文件[image_src_float](http://mms-graph.bj.bcebos.com/paddle-mobile/fpga/files.tar.gz)复制到./test/images下。此数据文件对应着标准数据集中的ILSVRC2012_val_00000885.JPEG,分类标签为80, 对应着"black grouse"。
## 运行程序
___
......
......@@ -34,7 +34,7 @@ cd ../build/release/ios/build
libpaddle-mobile.a
/src/ios_io/ 下的
PaddleMobile.h
PaddleMobileCPU.h
```
拖入工程
......
......@@ -26,7 +26,7 @@ void PolygonBoxTransformCompute(const PolygonBoxTransformParam<CPU>& param) {
const auto& input_dims = input->dims();
const auto* input_data = input->data<float>();
auto* output = param.Output();
auto* output_data = output->mutable_data<float>();
auto* output_data = output->mutable_data<float>(input_dims);
int64_t batch_size = input_dims[0];
int64_t geo_channel = input_dims[1];
......
......@@ -209,12 +209,18 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
int32_t lda, int8_t *buffer);
void PackMatrixB_8c(int32_t k, int32_t n, int32_t n_tail, const int8_t *B,
int32_t ldb, int8_t *buffer);
void PackMatrixA_omp_4r(int32_t m, int32_t k, int32_t m_tail, const int8_t *A,
int32_t lda, int8_t *buffer);
void PackMatrixB_omp_8c(int32_t k, int32_t n, int32_t n_tail, const int8_t *B,
int32_t ldb, int8_t *buffer);
// 8 bits int matrix product
void Sgemm(int32_t m, int32_t n, int32_t k, int8_t alpha, const int8_t *A,
int32_t lda, const int8_t *B, int32_t ldb, int8_t beta, int32_t *C,
int32_t ldc, bool relu, int8_t *bias);
void Sgemm_omp(int32_t m, int32_t n, int32_t k, int8_t alpha, const int8_t *A,
int32_t lda, const int8_t *B, int32_t ldb, int8_t beta,
int32_t *C, int32_t ldc, bool relu, int8_t *bias);
// 8 bits int write back
// C = alpha * A * B + beta * C
void WriteWithAlphaBeta(int32_t mc, int32_t nc, int32_t *c, int32_t *C,
......
......@@ -30,7 +30,7 @@ void Gemm::AddDot4x8(int32_t k, const int8_t *a, const int8_t *b, int32_t *c,
int32_t ldc) {
#if __ARM_NEON
#if __aarch64__
// TODO
// TODO(wzzju)
#else
const int8_t *a_ptr, *b_ptr;
a_ptr = a;
......@@ -246,7 +246,7 @@ void Gemm::AddDot6x8(int32_t k, const int8_t *a, const int8_t *b, int32_t *c,
int32_t ldc) {
#if __ARM_NEON
#if __aarch64__
// TODO
// TODO(wzzju)
#else
const int8_t *a_ptr, *b_ptr;
a_ptr = a;
......@@ -546,8 +546,12 @@ void Gemm::InnerKernelWithBias(int32_t mc, int32_t nc, int8_t alpha,
#pragma omp parallel for
for (int32_t j = 0; j < nc; j += NR) {
for (int32_t i = 0; i < mc; i += MR_INT8) {
#if __aarch64__
// TODO(wzzju)
#else
// AddDot6x8(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
AddDot4x8(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
#endif // __aarch64__
}
}
if (alpha != 1) {
......@@ -682,7 +686,7 @@ void Gemm::PackMatrixB_8c(int32_t k, int32_t n, int32_t n_tail, const int8_t *B,
const int8_t *b0 = &B(i, j);
#if __ARM_NEON
#if __aarch64__
// TODO
// TODO(wzzju)
#else
asm volatile(
// "pld [%[b0]] \n\t"
......@@ -791,7 +795,7 @@ void Gemm::WriteBasic(int32_t mc, int32_t nc, int32_t *c, int32_t *C,
int32_t ldc) {
#if __ARM_NEON
#if __aarch64__
// TODO
// TODO(wzzju)
#else
int32_t nc1 = nc >> 4;
int32_t _nc1 = nc & 15;
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string.h>
#include "common/log.h"
#include "memory/t_malloc.h"
#include "operators/math/gemm.h"
#if __ARM_NEON
#include <arm_neon.h>
#endif
#ifdef _OPENMP
#include <omp.h>
#endif
namespace paddle_mobile {
namespace operators {
namespace math {
// 8 bits int matrix product (m*k x k*n)
void Gemm::Sgemm_omp(int32_t m, int32_t n, int32_t k, int8_t alpha,
const int8_t *A, int32_t lda, const int8_t *B, int32_t ldb,
int8_t beta, int32_t *C, int32_t ldc, bool relu,
int8_t *bias) {
#ifdef _OPENMP
int32_t max_threads = omp_get_max_threads();
#else
int32_t max_threads = 1;
#endif
int32_t L1 = 64 / max_threads * 1024;
KC = k;
zero_int8 =
static_cast<int8_t *>(paddle_mobile::memory::Alloc(sizeof(int8_t) * KC));
memset(static_cast<void *>(zero_int8), 0, sizeof(int8_t) * KC);
if (m > n) {
// 对 A 分块
MC = L1 / (KC * sizeof(int8_t));
if (MC == 0) {
MC = MR_INT8;
} else {
int32_t mblock_num = (m + MC - 1) / MC;
MC = (m + mblock_num - 1) / mblock_num;
MC = (MC + MR_INT8 - 1) / MR_INT8 * MR_INT8;
}
// 补齐 B
NC = (n + NR - 1) / NR * NR;
packedB_int8 = static_cast<int8_t *>(
paddle_mobile::memory::Alloc(sizeof(int8_t) * KC * NC));
#if __aarch64__
// TODO(wzzju)
#else
PackMatrixB_omp_8c(KC, n, n % NR, B, ldb, packedB_int8);
#endif
packedA_int8 = static_cast<int8_t *>(
paddle_mobile::memory::Alloc(sizeof(int8_t) * MC * KC * max_threads));
} else {
// 对 B 分块
NC = L1 / (KC * sizeof(int8_t));
if (NC == 0) {
NC = NR;
} else {
int32_t nblock_num = (n + NC - 1) / NC;
NC = (n + nblock_num - 1) / nblock_num;
NC = (NC + NR - 1) / NR * NR;
}
// 补齐 A
MC = (m + MR_INT8 - 1) / MR_INT8 * MR_INT8;
packedA_int8 = static_cast<int8_t *>(
paddle_mobile::memory::Alloc(sizeof(int8_t) * MC * KC));
#if __aarch64__
// TODO(wzzju)
#else
PackMatrixA_omp_4r(m, KC, m % MR_INT8, A, lda, packedA_int8);
#endif
packedB_int8 = static_cast<int8_t *>(
paddle_mobile::memory::Alloc(sizeof(int8_t) * KC * NC * max_threads));
}
packedC_int8 = static_cast<int32_t *>(
paddle_mobile::memory::Alloc(sizeof(int32_t) * MC * NC * max_threads));
if (m > n) {
#pragma omp parallel for
for (int32_t i = 0; i < m; i += MC) {
#ifdef _OPENMP
int32_t local_threads = omp_get_thread_num();
#else
int32_t local_threads = 0;
#endif
int32_t mc;
mc = s_min(m - i, MC);
int8_t *local_A = packedA_int8 + MC * KC * local_threads;
int32_t *local_C = packedC_int8 + MC * NC * local_threads;
#if __aarch64__
// TODO(wzzju)
#else
PackMatrixA_4r(mc, KC, mc % MR_INT8, &A(i, 0), lda, local_A);
#endif
InnerKernelWithBias(mc, n, alpha, local_A, packedB_int8, beta, local_C,
&C(i, 0), ldc, relu, bias + i);
}
} else {
#pragma omp parallel for
for (int32_t j = 0; j < n; j += NC) {
#ifdef _OPENMP
int32_t local_threads = omp_get_thread_num();
#else
int32_t local_threads = 0;
#endif
int32_t nc;
nc = s_min(n - j, NC);
int8_t *local_B = packedB_int8 + KC * NC * local_threads;
int32_t *local_C = packedC_int8 + MC * NC * local_threads;
#if __aarch64__
// TODO(wzzju)
#else
PackMatrixB_8c(KC, nc, nc % NR, &B(0, j), ldb, local_B);
#endif
InnerKernelWithBias(m, nc, alpha, packedA_int8, local_B, beta, local_C,
&C(0, j), ldc, relu, bias);
}
}
paddle_mobile::memory::Free(packedA_int8);
paddle_mobile::memory::Free(packedB_int8);
paddle_mobile::memory::Free(packedC_int8);
paddle_mobile::memory::Free(zero_int8);
}
void Gemm::PackMatrixB_omp_8c(int32_t k, int32_t n, int32_t n_tail,
const int8_t *B, int32_t ldb, int8_t *buffer) {
const int32_t j_length = n - n_tail;
#pragma omp parallel for
for (int32_t j = 0; j < j_length; j += NR) {
int8_t *local_buffer = buffer + j * k;
for (int32_t i = 0; i < k; ++i) {
const int8_t *b0 = &B(i, j);
#if __ARM_NEON
#if __aarch64__
// TODO(wzzju)
#else
asm volatile(
// "pld [%[b0]] \n\t"
"vld1.s8 {d0}, [%[b0]] \n\t"
"vst1.s8 {d0}, [%[local_buffer]]! \n\t"
: [local_buffer] "+r"(local_buffer)
: [b0] "r"(b0)
: "memory", "q0");
#endif // __aarch64__
#else
*local_buffer++ = *b0++;
*local_buffer++ = *b0++;
*local_buffer++ = *b0++;
*local_buffer++ = *b0++;
*local_buffer++ = *b0++;
*local_buffer++ = *b0++;
*local_buffer++ = *b0++;
*local_buffer++ = *b0++;
#endif // __ARM_NEON
}
}
if (n_tail != 0) {
int8_t *local_buffer = buffer + j_length * k;
for (int32_t i = 0; i < k; ++i) {
const int8_t *b0 = &B(i, j_length);
for (int32_t j = j_length; j < n; ++j) {
*local_buffer++ = *b0++;
}
for (int32_t j = n; j < j_length + NR; ++j) {
*local_buffer++ = 0;
}
}
}
}
void Gemm::PackMatrixA_omp_4r(int32_t m, int32_t k, int32_t m_tail,
const int8_t *A, int32_t lda, int8_t *buffer) {
const int i_length = m - m_tail;
#pragma omp parallel for
for (int32_t i = 0; i < i_length; i += MR_INT8) {
const int8_t *a0 = A + i * lda;
const int8_t *a1 = A + (i + 1) * lda;
const int8_t *a2 = A + (i + 2) * lda;
const int8_t *a3 = A + (i + 3) * lda;
int8_t *local_buffer = buffer + i * k;
for (int32_t j = 0; j < k; ++j) {
*local_buffer++ = *a0++;
*local_buffer++ = *a1++;
*local_buffer++ = *a2++;
*local_buffer++ = *a3++;
}
}
if (m_tail != 0) {
const int8_t *a0 = &A(i_length, 0);
const int8_t *a1 = a0 + lda;
const int8_t *a2 = a0 + 2 * lda;
const int8_t *a3 = a0 + 3 * lda;
int8_t *local_buffer = buffer + i_length * k;
switch (m_tail) {
case 1:
a1 = zero_int8;
case 2:
a2 = zero_int8;
case 3:
a3 = zero_int8;
break;
default:
break;
}
for (int j = 0; j < k; ++j) {
*local_buffer++ = *a0++;
*local_buffer++ = *a1++;
*local_buffer++ = *a2++;
*local_buffer++ = *a3++;
}
}
}
} // namespace math
} // namespace operators
} // namespace paddle_mobile
......@@ -51,12 +51,23 @@ void matmul<int8_t>(const framework::Tensor &matrix_a, bool trans_a,
}
}
#ifdef _OPENMP
gemm.Sgemm_omp(M, N, K, alpha, a, K, matrix_b.data<int8_t>(), N, beta,
matrix_out->data<int32_t>(), N, relu, bias);
#else
gemm.Sgemm(M, N, K, alpha, a, K, matrix_b.data<int8_t>(), N, beta,
matrix_out->data<int32_t>(), N, relu, bias);
#endif
} else {
#ifdef _OPENMP
gemm.Sgemm_omp(M, N, K, alpha, matrix_a.data<int8_t>(), K,
matrix_b.data<int8_t>(), N, beta,
matrix_out->data<int32_t>(), N, relu, bias);
#else
gemm.Sgemm(M, N, K, alpha, matrix_a.data<int8_t>(), K,
matrix_b.data<int8_t>(), N, beta, matrix_out->data<int32_t>(), N,
relu, bias);
#endif
}
}
} // namespace math
......
......@@ -20,6 +20,9 @@ limitations under the License. */
#include "common/log.h"
#include "memory/t_malloc.h"
#include "operators/math/gemm.h"
#ifdef _OPENMP
#include <omp.h>
#endif // _OPENMP
#define a(i, j) a[(i)*lda + (j)]
#define b(i, j) b[(i)*ldb + (j)]
......@@ -84,8 +87,13 @@ int do_sgemm(int m, int n, int k, bool relu, int pr) {
}
paddle_mobile::operators::math::Gemm gemm;
#ifdef _OPENMP
gemm.Sgemm_omp(m, n, k, static_cast<int8_t>(1), a, lda, b, ldb,
static_cast<int8_t>(0), c, ldc, relu, nullptr);
#else
gemm.Sgemm(m, n, k, static_cast<int8_t>(1), a, lda, b, ldb,
static_cast<int8_t>(0), c, ldc, relu, nullptr);
#endif
int eq = 0;
int neq = 0;
for (int i = 0; i < m * n; ++i) {
......@@ -119,12 +127,17 @@ int do_sgemm(int m, int n, int k, bool relu, int pr) {
}
int main() {
do_sgemm(9, 9, 9, false, 10);
#ifdef _OPENMP
omp_set_num_threads(8);
#endif
do_sgemm(9, 9, 9, false, 1);
do_sgemm(10, 6, 12, false, 0);
do_sgemm(512, 256, 384, false, 0);
do_sgemm(1366, 768, 256, false, 0);
do_sgemm(1255, 755, 333, false, 0);
do_sgemm(555, 777, 999, false, 0);
do_sgemm(599, 1133, 393, false, 0);
do_sgemm(777, 555, 999, false, 0);
do_sgemm(333, 797, 939, false, 0);
do_sgemm(1024, 1024, 1024, false, 0);
return 0;
......
......@@ -28,7 +28,7 @@ limitations under the License. */
int main() {
paddle_mobile::PaddleMobile<paddle_mobile::CPU> paddle_mobile;
paddle_mobile.SetThreadNum(1);
paddle_mobile.SetThreadNum(8);
Tensor aa, bb, cc;
auto aaptr = aa.mutable_data<float>({m, k});
auto bbptr = bb.mutable_data<float>({k, n});
......
......@@ -93,6 +93,8 @@ int TestMulOP() {
} // namespace paddle_mobile
int main() {
paddle_mobile::PaddleMobile<paddle_mobile::CPU> paddle_mobile;
paddle_mobile.SetThreadNum(8);
paddle_mobile::TestMulOP<int8_t, int32_t>();
paddle_mobile::TestMulOP<float, float>();
return 0;
......
......@@ -160,7 +160,7 @@ build_for_ios() {
fi
cd "${BUILD_DIR}"
make -j 8
cp ../../../src/ios_io/PaddleMobile.h ./build/PaddleMobile.h
cp ../../../src/ios_io/PaddleMobileCPU.h ./build/PaddleMobileCPU.h
cd ./build
# 生成符号表
ranlib *.a
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册