Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
9875843e
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9875843e
编写于
12月 23, 2019
作者:
Y
yiicy
提交者:
GitHub
12月 23, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[ARM] add grid_sampler op and ut, test=develop (#2598)
上级
8dd2a62f
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
545 addition
and
1 deletion
+545
-1
lite/core/arena/framework.h
lite/core/arena/framework.h
+11
-1
lite/kernels/arm/CMakeLists.txt
lite/kernels/arm/CMakeLists.txt
+1
-0
lite/kernels/arm/grid_sampler_compute.cc
lite/kernels/arm/grid_sampler_compute.cc
+202
-0
lite/kernels/arm/grid_sampler_compute.h
lite/kernels/arm/grid_sampler_compute.h
+40
-0
lite/operators/CMakeLists.txt
lite/operators/CMakeLists.txt
+1
-0
lite/operators/grid_sampler_op.cc
lite/operators/grid_sampler_op.cc
+64
-0
lite/operators/grid_sampler_op.h
lite/operators/grid_sampler_op.h
+47
-0
lite/operators/op_params.h
lite/operators/op_params.h
+6
-0
lite/tests/kernels/CMakeLists.txt
lite/tests/kernels/CMakeLists.txt
+1
-0
lite/tests/kernels/grid_sampler_compute_test.cc
lite/tests/kernels/grid_sampler_compute_test.cc
+172
-0
未找到文件。
lite/core/arena/framework.h
浏览文件 @
9875843e
...
...
@@ -213,7 +213,17 @@ class Arena {
}
auto
duration
=
std
::
chrono
::
duration_cast
<
std
::
chrono
::
milliseconds
>
(
std
::
chrono
::
high_resolution_clock
::
now
()
-
timer
);
LOG
(
INFO
)
<<
"average duration: "
<<
duration
.
count
()
<<
" ms"
;
timer
=
std
::
chrono
::
high_resolution_clock
::
now
();
for
(
int
i
=
0
;
i
<
times
;
i
++
)
{
tester_
->
RunBaseline
(
tester_
->
baseline_scope
());
}
auto
duration_basic
=
std
::
chrono
::
duration_cast
<
std
::
chrono
::
milliseconds
>
(
std
::
chrono
::
high_resolution_clock
::
now
()
-
timer
);
LOG
(
INFO
)
<<
"average lite duration: "
<<
duration
.
count
()
<<
" ms"
;
LOG
(
INFO
)
<<
"average basic duration: "
<<
duration_basic
.
count
()
<<
" ms"
;
LOG
(
INFO
)
<<
"speed up ratio: lite_speed / basic_speed: "
<<
static_cast
<
float
>
(
duration_basic
.
count
())
/
duration
.
count
();
}
private:
...
...
lite/kernels/arm/CMakeLists.txt
浏览文件 @
9875843e
...
...
@@ -49,6 +49,7 @@ add_kernel(range_compute_arm ARM basic SRCS range_compute.cc DEPS ${lite_kernel_
add_kernel
(
dropout_compute_arm ARM basic SRCS dropout_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
add_kernel
(
layout_compute_arm ARM basic SRCS layout_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
add_kernel
(
instance_norm_compute_arm ARM basic SRCS instance_norm_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
add_kernel
(
grid_sampler_compute_arm ARM basic SRCS grid_sampler_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
## 2.other basic kernels: basic kernels that not used in basic models
add_kernel
(
negative_compute_arm ARM extra SRCS negative_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
...
...
lite/kernels/arm/grid_sampler_compute.cc
0 → 100644
浏览文件 @
9875843e
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/arm/grid_sampler_compute.h"
#include "lite/backends/arm/math/funcs.h"
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
arm
{
void
GridSamplerCompute
::
PrepareForRun
()
{}
void
GridSamplerCompute
::
Run
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
auto
n
=
param
.
x
->
dims
()[
0
];
auto
c
=
param
.
x
->
dims
()[
1
];
auto
h
=
param
.
x
->
dims
()[
2
];
auto
w
=
param
.
x
->
dims
()[
3
];
const
float
*
in
=
param
.
x
->
data
<
float
>
();
const
float
*
grid
=
param
.
grid
->
data
<
float
>
();
float
*
out
=
param
.
out
->
mutable_data
<
float
>
();
auto
&
ctx
=
this
->
ctx_
->
template
As
<
ARMContext
>();
const
size_t
coor_size
=
n
*
h
*
w
;
const
size_t
workspace_size
=
coor_size
*
12
*
sizeof
(
float
);
ctx
.
ExtendWorkspace
(
workspace_size
);
int32_t
*
coor_p
=
ctx
.
workspace_data
<
int
>
();
float
*
dis_p
=
reinterpret_cast
<
float
*>
(
coor_p
)
+
coor_size
*
4
;
uint32_t
*
bound_p
=
reinterpret_cast
<
uint32_t
*>
(
dis_p
)
+
coor_size
*
4
;
float
x_max
=
static_cast
<
float
>
(
w
-
1
);
float
y_max
=
static_cast
<
float
>
(
h
-
1
);
float32x4_t
vxmax
=
vdupq_n_f32
(
x_max
);
float32x4_t
vymax
=
vdupq_n_f32
(
y_max
);
float32x4_t
vone
=
vdupq_n_f32
(
1.
f
);
float32x4_t
vzero
=
vdupq_n_f32
(
0.
f
);
// compute coor, dis, bound
int
i
=
coor_size
;
for
(;
i
>
3
;
i
-=
4
)
{
float32x4x2_t
xy
=
vld2q_f32
(
grid
);
float32x4_t
grid_x
=
vmulq_n_f32
(
vaddq_f32
(
xy
.
val
[
0
],
vone
),
0.5
*
x_max
);
float32x4_t
grid_y
=
vmulq_n_f32
(
vaddq_f32
(
xy
.
val
[
1
],
vone
),
0.5
*
y_max
);
grid
+=
8
;
// compute xw, we, yn, ys
int32x4x4_t
vcoor
;
vcoor
.
val
[
0
]
=
vcvtq_s32_f32
(
grid_x
);
vcoor
.
val
[
2
]
=
vcvtq_s32_f32
(
grid_y
);
float32x4_t
vxwf
=
vcvtq_f32_s32
(
vcoor
.
val
[
0
]);
float32x4_t
vynf
=
vcvtq_f32_s32
(
vcoor
.
val
[
2
]);
float32x4_t
vxef
=
vaddq_f32
(
vxwf
,
vone
);
float32x4_t
vysf
=
vaddq_f32
(
vynf
,
vone
);
vcoor
.
val
[
1
]
=
vcvtq_s32_f32
(
vxef
);
vcoor
.
val
[
3
]
=
vcvtq_s32_f32
(
vysf
);
vst4q_s32
(
coor_p
,
vcoor
);
coor_p
+=
16
;
// compute dw, dn ,de, ds
float32x4x4_t
vdis
;
vdis
.
val
[
0
]
=
vsubq_f32
(
grid_x
,
vxwf
);
vdis
.
val
[
2
]
=
vsubq_f32
(
grid_y
,
vynf
);
vdis
.
val
[
1
]
=
vsubq_f32
(
vxef
,
grid_x
);
vdis
.
val
[
3
]
=
vsubq_f32
(
vysf
,
grid_y
);
vst4q_f32
(
dis_p
,
vdis
);
dis_p
+=
16
;
// compute bound
uint32x4x4_t
vbound
;
uint32x4_t
logic_xw
=
vorrq_u32
(
vcltq_f32
(
vxwf
,
vzero
),
vcgtq_f32
(
vxwf
,
vxmax
));
uint32x4_t
logic_xe
=
vorrq_u32
(
vcltq_f32
(
vxef
,
vzero
),
vcgtq_f32
(
vxef
,
vxmax
));
uint32x4_t
logic_yn
=
vorrq_u32
(
vcltq_f32
(
vynf
,
vzero
),
vcgtq_f32
(
vynf
,
vymax
));
uint32x4_t
logic_ys
=
vorrq_u32
(
vcltq_f32
(
vysf
,
vzero
),
vcgtq_f32
(
vysf
,
vymax
));
vbound
.
val
[
0
]
=
vmvnq_u32
(
vorrq_u32
(
logic_xw
,
logic_yn
));
vbound
.
val
[
1
]
=
vmvnq_u32
(
vorrq_u32
(
logic_xe
,
logic_yn
));
vbound
.
val
[
2
]
=
vmvnq_u32
(
vorrq_u32
(
logic_xw
,
logic_ys
));
vbound
.
val
[
3
]
=
vmvnq_u32
(
vorrq_u32
(
logic_xe
,
logic_ys
));
vst4q_u32
(
bound_p
,
vbound
);
bound_p
+=
16
;
}
for
(;
i
>
0
;
i
--
)
{
float
x
=
grid
[
0
];
float
y
=
grid
[
1
];
float
grid_x
=
(
x
+
1
)
*
0.5
*
x_max
;
float
grid_y
=
(
y
+
1
)
*
0.5
*
y_max
;
grid
+=
2
;
// compute xw, xe, yn, ys
int32_t
xw
=
static_cast
<
int32_t
>
(
floor
(
grid_x
));
int32_t
xe
=
xw
+
1
;
int32_t
yn
=
static_cast
<
int32_t
>
(
floor
(
grid_y
));
int32_t
ys
=
yn
+
1
;
*
coor_p
++
=
xw
;
*
coor_p
++
=
xe
;
*
coor_p
++
=
yn
;
*
coor_p
++
=
ys
;
// compute dw, de, dn, ds
float
dw
=
grid_x
-
xw
;
float
de
=
xe
-
grid_x
;
float
dn
=
grid_y
-
yn
;
float
ds
=
ys
-
grid_y
;
*
dis_p
++
=
dw
;
*
dis_p
++
=
de
;
*
dis_p
++
=
dn
;
*
dis_p
++
=
ds
;
// compute bound
bool
logic_xw
=
(
xw
<
0.
f
||
xw
>
x_max
);
bool
logic_xe
=
(
xe
<
0.
f
||
xe
>
x_max
);
bool
logic_yn
=
(
yn
<
0.
f
||
yn
>
y_max
);
bool
logic_ys
=
(
ys
<
0.
f
||
ys
>
y_max
);
*
bound_p
++
=
((
logic_xw
||
logic_yn
)
?
0
:
0xffffffff
);
*
bound_p
++
=
((
logic_xe
||
logic_yn
)
?
0
:
0xffffffff
);
*
bound_p
++
=
((
logic_xw
||
logic_ys
)
?
0
:
0xffffffff
);
*
bound_p
++
=
((
logic_xe
||
logic_ys
)
?
0
:
0xffffffff
);
}
size_t
cube_size
=
c
*
h
*
w
;
size_t
spatial_size
=
h
*
w
;
// compute output
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
const
float
*
in_n
=
in
+
i
*
cube_size
;
float
*
out_n
=
out
+
i
*
cube_size
;
int32_t
*
coor_n
=
ctx
.
workspace_data
<
int
>
()
+
i
*
spatial_size
*
4
;
float
*
dis_n
=
reinterpret_cast
<
float
*>
(
coor_n
)
+
coor_size
*
4
;
uint32_t
*
bound_n
=
reinterpret_cast
<
uint32_t
*>
(
dis_n
)
+
coor_size
*
4
;
#pragma omp parallel for
for
(
int
j
=
0
;
j
<
c
;
++
j
)
{
int32_t
*
coor_ptr
=
coor_n
;
float
*
dis_ptr
=
dis_n
;
uint32_t
*
bound_ptr
=
bound_n
;
const
float
*
in_c
=
in_n
+
j
*
spatial_size
;
float
*
out_c
=
out_n
+
j
*
spatial_size
;
for
(
int
k
=
0
;
k
<
spatial_size
;
k
++
)
{
int32x4_t
vcoor
=
vld1q_s32
(
coor_ptr
);
float32x4_t
vdis
=
vld1q_f32
(
dis_ptr
);
int32_t
xw
=
vgetq_lane_s32
(
vcoor
,
0
);
int32_t
xe
=
vgetq_lane_s32
(
vcoor
,
1
);
int32_t
yn
=
vgetq_lane_s32
(
vcoor
,
2
);
int32_t
ys
=
vgetq_lane_s32
(
vcoor
,
3
);
uint32x4_t
vbound
=
vld1q_u32
(
bound_ptr
);
float
dw
=
vgetq_lane_f32
(
vdis
,
0
);
float
de
=
vgetq_lane_f32
(
vdis
,
1
);
float
dn
=
vgetq_lane_f32
(
vdis
,
2
);
float
ds
=
vgetq_lane_f32
(
vdis
,
3
);
uint32_t
wnbound
=
vgetq_lane_u32
(
vbound
,
0
);
uint32_t
enbound
=
vgetq_lane_u32
(
vbound
,
1
);
uint32_t
wsbound
=
vgetq_lane_u32
(
vbound
,
2
);
uint32_t
esbound
=
vgetq_lane_u32
(
vbound
,
3
);
float
in_wn
=
wnbound
?
in_c
[
yn
*
w
+
xw
]
:
0.
f
;
float
in_en
=
enbound
?
in_c
[
yn
*
w
+
xe
]
:
0.
f
;
float
in_ws
=
wsbound
?
in_c
[
ys
*
w
+
xw
]
:
0.
f
;
float
in_es
=
esbound
?
in_c
[
ys
*
w
+
xe
]
:
0.
f
;
coor_ptr
+=
4
;
dis_ptr
+=
4
;
bound_ptr
+=
4
;
*
out_c
++
=
ds
*
(
in_wn
*
de
+
in_en
*
dw
)
+
dn
*
(
in_ws
*
de
+
in_es
*
dw
);
}
}
}
}
}
// namespace arm
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_KERNEL
(
grid_sampler
,
kARM
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
arm
::
GridSamplerCompute
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"Grid"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Output"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
Finalize
();
lite/kernels/arm/grid_sampler_compute.h
0 → 100644
浏览文件 @
9875843e
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
arm
{
class
GridSamplerCompute
:
public
KernelLite
<
TARGET
(
kARM
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
GridSamplerParam
;
void
PrepareForRun
()
override
;
void
Run
()
override
;
virtual
~
GridSamplerCompute
()
=
default
;
private:
};
}
// namespace arm
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
lite/operators/CMakeLists.txt
浏览文件 @
9875843e
...
...
@@ -49,6 +49,7 @@ add_operator(dropout_op basic SRCS dropout_op.cc DEPS ${op_DEPS})
add_operator
(
layout_op basic SRCS layout_op.cc DEPS
${
op_DEPS
}
)
add_operator
(
instance_norm_op basic SRCS instance_norm_op.cc DEPS
${
op_DEPS
}
)
add_operator
(
subgraph_op basic SRCS subgraph_op.cc DEPS
${
op_DEPS
}
)
add_operator
(
grid_sampler_op basic SRCS grid_sampler_op.cc DEPS
${
op_DEPS
}
)
# 2.basic ops not used in basic models
add_operator
(
negative_op extra SRCS negative_op.cc DEPS
${
op_DEPS
}
)
...
...
lite/operators/grid_sampler_op.cc
0 → 100644
浏览文件 @
9875843e
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/grid_sampler_op.h"
#include <string>
#include <vector>
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
bool
GridSamplerOp
::
CheckShape
()
const
{
CHECK_OR_FALSE
(
param_
.
x
);
CHECK_OR_FALSE
(
param_
.
out
);
CHECK_OR_FALSE
(
param_
.
grid
);
auto
x_dims
=
param_
.
x
->
dims
();
auto
grid_dims
=
param_
.
grid
->
dims
();
CHECK_EQ
(
x_dims
.
size
(),
4UL
)
<<
"Input must have 4 dimensions."
;
CHECK_EQ
(
grid_dims
.
size
(),
4UL
)
<<
"Grid must have 4 dimensions."
;
CHECK_EQ
(
grid_dims
[
0
],
x_dims
[
0
])
<<
"Input(X) dims[0] and Input(Grid) dims[0] should be equal."
;
CHECK_EQ
(
grid_dims
[
1
],
x_dims
[
2
])
<<
"Input(X) dims[2] and Input(Grid) dims[1] should be equal."
;
CHECK_EQ
(
grid_dims
[
2
],
x_dims
[
3
])
<<
"Input(X) dims[3] and Input(Grid) dims[2] should be equal."
;
return
true
;
}
bool
GridSamplerOp
::
InferShape
()
const
{
auto
x_dims
=
param_
.
x
->
dims
();
param_
.
out
->
Resize
(
x_dims
);
return
true
;
}
bool
GridSamplerOp
::
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
{
param_
.
x
=
scope
->
FindVar
(
op_desc
.
Input
(
"X"
).
front
())
->
GetMutable
<
Tensor
>
();
param_
.
grid
=
scope
->
FindVar
(
op_desc
.
Input
(
"Grid"
).
front
())
->
GetMutable
<
Tensor
>
();
param_
.
out
=
scope
->
FindVar
(
op_desc
.
Output
(
"Output"
).
front
())
->
GetMutable
<
Tensor
>
();
return
true
;
}
}
/* namespace operators */
}
/* namespace lite */
}
/* namespace paddle */
REGISTER_LITE_OP
(
grid_sampler
,
paddle
::
lite
::
operators
::
GridSamplerOp
);
lite/operators/grid_sampler_op.h
0 → 100644
浏览文件 @
9875843e
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "lite/core/op_lite.h"
#include "lite/core/scope.h"
#include "lite/utils/all.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
class
GridSamplerOp
:
public
OpLite
{
public:
GridSamplerOp
()
{}
explicit
GridSamplerOp
(
const
std
::
string
&
op_type
)
:
OpLite
(
op_type
)
{}
bool
CheckShape
()
const
override
;
bool
InferShape
()
const
override
;
bool
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
override
;
void
AttachKernel
(
KernelBase
*
kernel
)
override
{
kernel
->
SetParam
(
param_
);
}
std
::
string
DebugString
()
const
override
{
return
"grid_sampler"
;
}
private:
mutable
GridSamplerParam
param_
;
};
}
/* namespace operators */
}
/* namespace lite */
}
/* namespace paddle */
lite/operators/op_params.h
浏览文件 @
9875843e
...
...
@@ -1118,6 +1118,12 @@ struct InstanceNormParam {
lite
::
Tensor
*
saved_variance
{};
float
epsilon
;
};
/// --------------------- grid sampler operators --------------------
struct
GridSamplerParam
{
lite
::
Tensor
*
x
{};
lite
::
Tensor
*
out
{};
lite
::
Tensor
*
grid
{};
};
}
// namespace operators
}
// namespace lite
...
...
lite/tests/kernels/CMakeLists.txt
浏览文件 @
9875843e
...
...
@@ -15,6 +15,7 @@ if((NOT LITE_WITH_OPENCL AND NOT LITE_WITH_FPGA) AND (LITE_WITH_X86 OR LITE_WITH
lite_cc_test
(
test_kernel_norm_compute SRCS norm_compute_test.cc DEPS arena_framework
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_cast_compute SRCS cast_compute_test.cc DEPS arena_framework
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_instance_norm_compute SRCS instance_norm_compute_test.cc DEPS arena_framework
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_grid_sampler_compute SRCS grid_sampler_compute_test.cc DEPS arena_framework
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
#lite_cc_test(test_kernel_sequence_softmax_compute SRCS sequence_softmax_compute_test.cc DEPS arena_framework ${x86_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
#lite_cc_test(test_kernel_im2sequence_compute SRCS im2sequence_compute_test.cc DEPS arena_framework ${x86_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
#lite_cc_test(test_kernel_compare_compute SRCS compare_compute_test.cc DEPS arena_framework ${x86_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
...
...
lite/tests/kernels/grid_sampler_compute_test.cc
0 → 100644
浏览文件 @
9875843e
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
#include "lite/tests/utils/fill_data.h"
namespace
paddle
{
namespace
lite
{
class
GridSamplerComputeTest
:
public
arena
::
TestCase
{
protected:
// common attributes for this op.
std
::
string
input_
=
"x"
;
std
::
string
output_
=
"y"
;
std
::
string
grid_
=
"grid"
;
DDim
dims_
{{
4
,
5
,
19
,
19
}};
public:
GridSamplerComputeTest
(
const
Place
&
place
,
const
std
::
string
&
alias
,
DDim
dims
)
:
TestCase
(
place
,
alias
),
dims_
(
dims
)
{}
void
RunBaseline
(
Scope
*
scope
)
override
{
auto
x
=
scope
->
FindTensor
(
input_
);
auto
grid
=
scope
->
FindTensor
(
grid_
);
auto
out
=
scope
->
NewTensor
(
output_
);
CHECK
(
out
);
out
->
Resize
(
dims_
);
const
float
*
x_data
=
x
->
data
<
float
>
();
const
float
*
grid_data
=
grid
->
data
<
float
>
();
float
*
out_data
=
out
->
mutable_data
<
float
>
();
int
num
=
x
->
dims
()[
0
];
int
channel
=
x
->
dims
()[
1
];
int
height
=
x
->
dims
()[
2
];
int
width
=
x
->
dims
()[
3
];
int
spatial_size
=
height
*
width
;
auto
inbound
=
[](
int
x
,
int
y
,
float
x_max
,
float
y_max
)
{
if
(
x
<
0
||
x
>
x_max
||
y
<
0
||
y
>
y_max
)
{
return
false
;
}
return
true
;
};
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
const
float
*
x_n
=
x_data
+
n
*
channel
*
height
*
width
;
float
*
out_n
=
out_data
+
n
*
channel
*
height
*
width
;
const
float
*
grid_n
=
grid_data
+
n
*
height
*
width
*
2
;
for
(
int
c
=
0
;
c
<
channel
;
++
c
)
{
const
float
*
x_c
=
x_n
+
c
*
spatial_size
;
float
*
out_c
=
out_n
+
c
*
spatial_size
;
for
(
int
s
=
0
;
s
<
spatial_size
;
++
s
)
{
float
x
=
grid_n
[
s
*
2
];
float
y
=
grid_n
[
s
*
2
+
1
];
float
xwf
=
(
x
+
1.
f
)
*
0.5
*
(
width
-
1
);
float
ynf
=
(
y
+
1.
f
)
*
0.5
*
(
height
-
1
);
int
xw
=
floor
(
xwf
);
int
xe
=
xw
+
1
;
int
yn
=
floor
(
ynf
);
int
ys
=
yn
+
1
;
float
dw
=
xwf
-
xw
;
float
de
=
xe
-
xwf
;
float
dn
=
ynf
-
yn
;
float
ds
=
ys
-
ynf
;
float
wn
=
inbound
(
xw
,
yn
,
static_cast
<
float
>
(
width
-
1
),
static_cast
<
float
>
(
height
-
1
))
?
x_c
[
yn
*
width
+
xw
]
:
0.
f
;
float
en
=
inbound
(
xe
,
yn
,
static_cast
<
float
>
(
width
-
1
),
static_cast
<
float
>
(
height
-
1
))
?
x_c
[
yn
*
width
+
xe
]
:
0.
f
;
float
ws
=
inbound
(
xw
,
ys
,
static_cast
<
float
>
(
width
-
1
),
static_cast
<
float
>
(
height
-
1
))
?
x_c
[
ys
*
width
+
xw
]
:
0.
f
;
float
es
=
inbound
(
xe
,
ys
,
static_cast
<
float
>
(
width
-
1
),
static_cast
<
float
>
(
height
-
1
))
?
x_c
[
ys
*
width
+
xe
]
:
0.
f
;
out_c
[
s
]
=
wn
*
de
*
ds
+
en
*
dw
*
ds
+
ws
*
de
*
dn
+
es
*
dw
*
dn
;
}
}
}
}
void
PrepareOpDesc
(
cpp
::
OpDesc
*
op_desc
)
{
op_desc
->
SetType
(
"grid_sampler"
);
op_desc
->
SetInput
(
"X"
,
{
input_
});
op_desc
->
SetInput
(
"Grid"
,
{
grid_
});
op_desc
->
SetOutput
(
"Output"
,
{
output_
});
}
void
PrepareData
()
override
{
std
::
vector
<
float
>
din
(
dims_
.
production
());
fill_data_rand
(
din
.
data
(),
-
1.
f
,
1.
f
,
dims_
.
production
());
DDim
gird_dims
{{
dims_
[
0
],
dims_
[
2
],
dims_
[
3
],
2
}};
std
::
vector
<
float
>
grid
(
gird_dims
.
production
());
fill_data_rand
(
grid
.
data
(),
-
1.
f
,
1.
f
,
gird_dims
.
production
());
SetCommonTensor
(
input_
,
dims_
,
din
.
data
());
SetCommonTensor
(
grid_
,
gird_dims
,
grid
.
data
());
}
};
void
test_grid_sampler
(
Place
place
)
{
for
(
auto
&
n
:
{
1
,
13
})
{
for
(
auto
&
c
:
{
1
,
3
,
8
})
{
for
(
auto
&
h
:
{
1
,
3
,
8
,
64
})
{
for
(
auto
&
w
:
{
2
,
4
,
9
,
63
})
{
DDim
dim_in
({
n
,
c
,
h
,
w
});
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
GridSamplerComputeTest
(
place
,
"def"
,
dim_in
));
#ifdef LITE_WITH_ARM
auto
&
ctx
=
tester
->
context
()
->
As
<
ARMContext
>
();
ctx
.
SetRunMode
(
lite_api
::
LITE_POWER_HIGH
,
1
);
#endif
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
6e-5
);
LOG
(
INFO
)
<<
"run n: "
<<
n
<<
", c: "
<<
c
<<
", h: "
<<
h
<<
", w: "
<<
w
;
if
(
!
arena
.
TestPrecision
())
{
LOG
(
ERROR
)
<<
"No Pass!!"
;
return
;
}
// if you want to test this op performance, uncomment the following
// line
// arena.TestPerformance();
}
}
}
}
}
TEST
(
GridSampler
,
precision
)
{
#ifdef LITE_WITH_ARM
Place
place
(
TARGET
(
kARM
));
test_grid_sampler
(
place
);
#endif
}
}
// namespace lite
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录