Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
986bcdfc
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
986bcdfc
编写于
3月 04, 2019
作者:
H
hjchen2
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Enable using optimization implementation for conv_add_relu op
上级
c3ae7671
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
201 addition
and
169 deletion
+201
-169
src/operators/kernel/arm/convolution/conv_add_relu_kernel.cpp
...operators/kernel/arm/convolution/conv_add_relu_kernel.cpp
+39
-2
src/operators/kernel/central-arm-func/conv_add_relu_arm_func.h
...perators/kernel/central-arm-func/conv_add_relu_arm_func.h
+0
-153
src/operators/kernel/central-arm-func/conv_arm_func.h
src/operators/kernel/central-arm-func/conv_arm_func.h
+94
-0
src/operators/math/conv_func.h
src/operators/math/conv_func.h
+52
-0
src/operators/math/gemm/executor.h
src/operators/math/gemm/executor.h
+16
-14
未找到文件。
src/operators/kernel/arm/convolution/conv_add_relu_kernel.cpp
浏览文件 @
986bcdfc
...
...
@@ -15,21 +15,58 @@ limitations under the License. */
#ifdef FUSION_CONVADDRELU_OP
#include "operators/kernel/conv_add_relu_kernel.h"
#include "operators/kernel/central-arm-func/conv_add_relu_arm_func.h"
#include "operators/kernel/arm/convolution/conv_common.h"
#include "operators/kernel/central-arm-func/conv_arm_func.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
ConvAddReluKernel
<
CPU
,
float
>::
Init
(
FusionConvAddReluParam
<
CPU
>
*
param
)
{
InitBaseConvKernel
(
param
);
return
true
;
}
template
<
>
void
ConvAddReluKernel
<
CPU
,
float
>::
Compute
(
const
FusionConvAddReluParam
<
CPU
>
&
param
)
{
ConvAddReluCompute
<
float
,
float
>
(
param
);
switch
(
param
.
ExecMode
())
{
case
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3S1P1_FLOAT
:
math
::
DepthwiseConv3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
Bias
(),
true
,
true
);
break
;
case
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3S2P1_FLOAT
:
math
::
DepthwiseConv3x3s2p1v2
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
Bias
(),
true
,
true
);
break
;
case
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3S2P0_FLOAT
:
math
::
DepthwiseConv3x3s2p0
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
Bias
(),
true
,
true
);
break
;
case
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3_FLOAT
:
math
::
DepthwiseConv3x3
(
param
.
Input
(),
param
.
Strides
(),
param
.
Paddings
(),
param
.
Filter
(),
nullptr
,
param
.
Output
(),
false
);
math
::
AddChannelWise
<
RELU
>
(
param
.
Output
(),
param
.
Bias
(),
param
.
Output
());
break
;
#ifndef __aarch64__
case
ConvParam
<
CPU
>::
EXEC_DEPTHWISE5x5_FLOAT
:
DepthwiseConv5x5
<
float
,
float
>
(
param
);
math
::
AddChannelWise
<
RELU
>
(
param
.
Output
(),
param
.
Bias
(),
param
.
Output
());
break
;
case
ConvParam
<
CPU
>::
EXEC_WINOGRAD3X3_FLOAT
:
WinogradConv3x3
<
8
,
3
>
(
param
);
math
::
AddChannelWise
<
RELU
>
(
param
.
Output
(),
param
.
Bias
(),
param
.
Output
());
break
;
#endif // __aarch64__
case
ConvParam
<
CPU
>::
EXEC_GEMM_FLOAT
:
ConvAddReluBasic
<
FusionConvAddReluParam
<
CPU
>>
(
param
);
break
;
default:
PADDLE_MOBILE_THROW_EXCEPTION
(
"Invalid convolution execute mode %d"
,
param
.
ExecMode
());
}
}
template
class
ConvAddReluKernel
<
CPU
,
float
>;
}
// namespace operators
...
...
src/operators/kernel/central-arm-func/conv_add_relu_arm_func.h
已删除
100644 → 0
浏览文件 @
c3ae7671
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADDRELU_OP
#pragma once
#include <operators/math/depthwise_conv3x3.h>
#include <vector>
#include "operators/math/conv_func.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/vol2col.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
Itype
,
typename
Otype
>
void
ConvAddReluBasic
(
const
FusionConvAddReluParam
<
CPU
>
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
bias
=
*
param
.
Bias
();
int32_t
axis
=
param
.
Axis
();
Otype
*
bias_data
=
bias
.
data
<
Otype
>
();
Tensor
*
output
=
param
.
Output
();
output
->
mutable_data
<
Otype
>
();
float
alpha
=
1.0
f
;
float
beta
=
1.0
f
;
int32_t
groups
=
param
.
Groups
();
std
::
vector
<
int32_t
>
strides
=
param
.
Strides
();
std
::
vector
<
int32_t
>
paddings
=
param
.
Paddings
();
std
::
vector
<
int32_t
>
dilations
=
param
.
Dilations
();
const
int32_t
batch_size
=
static_cast
<
int32_t
>
(
input
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
math
::
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
mutable_data
<
Itype
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int32_t
>
(
input
->
dims
().
size
()));
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
framework
::
DDim
output_matrix_shape
=
{
output
->
dims
()[
1
],
output
->
numel
()
/
(
output
->
dims
()[
0
]
*
output
->
dims
()[
1
])};
// convolution operator: im2col(or vol2col) + gemm
int32_t
in_step
=
static_cast
<
int32_t
>
(
input
->
dims
()[
1
])
/
groups
;
int32_t
out_step
=
static_cast
<
int32_t
>
(
output
->
dims
()[
1
])
/
groups
;
math
::
Vol2ColFunctor
<
CPU
,
Itype
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
Itype
>
im2col
;
for
(
int32_t
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int32_t
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
in_slice
,
dilations
,
strides
,
std
::
vector
<
int32_t
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
MatMul
<
Itype
,
Otype
>
(
filter_slice
,
false
,
col_matrix
,
false
,
alpha
,
&
out_slice
,
beta
,
true
,
bias_data
);
}
}
}
template
<
typename
Itype
,
typename
Otype
>
void
ConvAddReluCompute
(
const
FusionConvAddReluParam
<
CPU
>
&
param
)
{
param
.
Output
()
->
mutable_data
<
float
>
();
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
)
{
math
::
DepthwiseConv3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
Bias
(),
true
,
true
);
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
// math::DepthwiseConv3x3(param.Input(), param.Strides(),
// param.Paddings(),
// param.Filter(), param.Bias(),
// param.Output(), false);
if
(
param
.
Paddings
()[
0
]
==
0
)
{
math
::
DepthwiseConv3x3s2p0
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
Bias
(),
true
,
true
);
}
else
{
math
::
DepthwiseConv3x3s2p1v2
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
Bias
(),
true
,
true
);
}
}
else
{
ConvAddReluBasic
<
Itype
,
Otype
>
(
param
);
}
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/central-arm-func/conv_arm_func.h
浏览文件 @
986bcdfc
...
...
@@ -212,6 +212,100 @@ inline void DepthwiseConv5x5(const ConvParam<CPU> ¶m) {
}
#endif // __aarch64__
template
<
typename
ParamType
>
void
ConvAddReluBasic
(
const
ParamType
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
bias
=
*
param
.
Bias
();
Tensor
*
output
=
param
.
Output
();
output
->
mutable_data
<
float
>
();
float
alpha
=
1.0
f
;
float
beta
=
1.0
f
;
int32_t
groups
=
param
.
Groups
();
int32_t
axis
=
param
.
Axis
();
std
::
vector
<
int32_t
>
strides
=
param
.
Strides
();
std
::
vector
<
int32_t
>
paddings
=
param
.
Paddings
();
std
::
vector
<
int32_t
>
dilations
=
param
.
Dilations
();
const
int32_t
batch_size
=
static_cast
<
int32_t
>
(
input
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
math
::
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
mutable_data
<
float
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int32_t
>
(
input
->
dims
().
size
()));
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
framework
::
DDim
output_matrix_shape
=
{
output
->
dims
()[
1
],
output
->
numel
()
/
(
output
->
dims
()[
0
]
*
output
->
dims
()[
1
])};
// convolution operator: im2col(or vol2col) + gemm
int32_t
in_step
=
static_cast
<
int32_t
>
(
input
->
dims
()[
1
])
/
groups
;
int32_t
out_step
=
static_cast
<
int32_t
>
(
output
->
dims
()[
1
])
/
groups
;
float
*
bias_data
=
bias
.
data
<
float
>
();
math
::
Vol2ColFunctor
<
CPU
,
float
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
float
>
im2col
;
for
(
int32_t
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int32_t
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col_matrix
=
in_slice
;
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
in_slice
,
dilations
,
strides
,
std
::
vector
<
int32_t
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
MatMul
<
float
,
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
alpha
,
&
out_slice
,
beta
,
true
,
bias_data
);
}
}
}
template
<
typename
ParamType
>
void
ConvBNReluBasic
(
const
ParamType
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
...
...
src/operators/math/conv_func.h
浏览文件 @
986bcdfc
...
...
@@ -99,6 +99,58 @@ inline bool IsExpand(const std::vector<int64_t> &filter_dim,
return
!
(
filter_1
&&
strides_1
&&
padding_0
&&
dilation_1
);
}
template
<
ActivationType
Act
>
void
AddChannelWise
(
const
framework
::
Tensor
*
input
,
const
framework
::
Tensor
*
bias
,
framework
::
Tensor
*
output
)
{
const
float
*
input_ptr
=
input
->
data
<
float
>
();
const
float
*
bias_ptr
=
bias
->
data
<
float
>
();
float
*
output_ptr
=
output
->
mutable_data
<
float
>
();
// maybe check shape
int
batch_size
=
input
->
dims
()[
0
];
int
channels
=
input
->
dims
()[
1
];
size_t
spatial_size
=
input
->
dims
()[
2
]
*
input
->
dims
()[
3
];
for
(
int
batch
=
0
;
batch
<
batch_size
;
++
batch
)
{
for
(
int
channel
=
0
;
channel
<
channels
;
++
channel
)
{
size_t
offset
=
(
batch
*
channels
+
channel
)
*
spatial_size
;
const
float
*
x
=
input_ptr
+
offset
;
float
*
y
=
output_ptr
+
offset
;
float
beta
=
bias_ptr
[
channel
];
int
j
=
0
;
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
float32x4_t
__bias
=
vdupq_n_f32
(
beta
);
for
(;
j
<
spatial_size
-
15
;
j
+=
16
,
x
+=
16
,
y
+=
16
)
{
float32x4_t
in0
=
vld1q_f32
(
x
);
float32x4_t
in1
=
vld1q_f32
(
x
+
4
);
float32x4_t
in2
=
vld1q_f32
(
x
+
8
);
float32x4_t
in3
=
vld1q_f32
(
x
+
12
);
in0
=
vaddq_f32
(
__bias
,
in0
);
in1
=
vaddq_f32
(
__bias
,
in1
);
in2
=
vaddq_f32
(
__bias
,
in2
);
in3
=
vaddq_f32
(
__bias
,
in3
);
in0
=
math
::
vActiveq_f32
<
Act
>
(
in0
);
in1
=
math
::
vActiveq_f32
<
Act
>
(
in1
);
in2
=
math
::
vActiveq_f32
<
Act
>
(
in2
);
in3
=
math
::
vActiveq_f32
<
Act
>
(
in3
);
vst1q_f32
(
y
,
in0
);
vst1q_f32
(
y
+
4
,
in1
);
vst1q_f32
(
y
+
8
,
in2
);
vst1q_f32
(
y
+
12
,
in3
);
}
for
(;
j
<
spatial_size
-
3
;
j
+=
4
,
x
+=
4
,
y
+=
4
)
{
float32x4_t
in0
=
vld1q_f32
(
x
);
in0
=
vaddq_f32
(
__bias
,
in0
);
in0
=
math
::
vActiveq_f32
<
Act
>
(
in0
);
vst1q_f32
(
y
,
in0
);
}
#endif
for
(;
j
<
spatial_size
;
++
j
,
++
x
,
++
y
)
{
*
y
=
math
::
Active
<
Act
>
((
*
x
)
+
beta
);
}
}
}
}
template
<
ActivationType
Act
>
void
ScaleAddChannelWise
(
const
framework
::
Tensor
*
input
,
const
framework
::
Tensor
*
scale
,
...
...
src/operators/math/gemm/executor.h
浏览文件 @
986bcdfc
...
...
@@ -61,7 +61,7 @@ class GemmExecutor : public Executor {
K_
(
K
)
{
unsigned
int
L1_size
=
info
->
L1_cache
;
unsigned
int
L2_size
=
info
->
L2_cache
;
// if (N_ > 100
00) L1_size *= 2;
if
(
N_
>
30000
&&
K_
>
1
00
)
L1_size
*=
2
;
if
(
num_threads_
>=
2
)
L1_size
/=
2
;
rhs_tile_num_
=
L1_size
/
(
K
*
sizeof
(
Itype
));
...
...
@@ -74,8 +74,8 @@ class GemmExecutor : public Executor {
rhs_tile_num_
*=
Strategy
::
out_width
();
}
//
lhs_tile_num_ = CeilDiv(M, Strategy::out_height()) *
//
Strategy::out_height();
// lhs_tile_num_ = CeilDiv(M, Strategy::out_height()) *
// Strategy::out_height();
lhs_tile_num_
=
L2_size
/
(
K
*
sizeof
(
Itype
));
if
(
lhs_tile_num_
==
0
)
{
lhs_tile_num_
=
Strategy
::
out_height
();
...
...
@@ -90,8 +90,8 @@ class GemmExecutor : public Executor {
void
operator
()(
const
float
alpha
,
const
Itype
*
A
,
const
int
lda
,
const
Itype
*
B
,
const
int
ldb
,
const
float
beta
,
Otype
*
C
,
const
int
ldc
)
{
//
struct timeval tv_begin, tv_end;
//
gettimeofday(&tv_begin,NULL);
// struct timeval tv_begin, tv_end;
// gettimeofday(&tv_begin,NULL);
int
mblock
=
CeilDiv
(
M_
,
Strategy
::
out_height
())
*
Strategy
::
out_height
();
lhs_worksize_
=
sizeof
(
Itype
)
*
mblock
*
K_
;
...
...
@@ -107,9 +107,10 @@ class GemmExecutor : public Executor {
strategy_
.
pack_lhs
(
M_
,
K_
,
A
,
lda
,
lhs_workspace_
,
true
);
// std::cout << "M: " << M_ << ", N: " << N_ << ", K: " << K_ <<
// std::endl; std::cout << "rhs_block: " << CeilDiv(N_, rhs_tile_num_) <<
// std::endl;
// std::cout << "M: " << M_ << ", N: " << N_
// << ", K: " << K_ << std::endl;
// std::cout << "rhs_block: " << CeilDiv(N_, rhs_tile_num_)
// << std::endl;
#pragma omp parallel for if (N_ > 128)
for
(
int
rhs_block
=
0
;
rhs_block
<
N_
;
rhs_block
+=
rhs_tile_num_
)
{
...
...
@@ -145,11 +146,12 @@ class GemmExecutor : public Executor {
paddle_mobile
::
memory
::
Free
(
rhs_workspace_
);
paddle_mobile
::
memory
::
Free
(
out_workspace_
);
// gettimeofday(&tv_end,NULL);
// float elapsed = (tv_end.tv_sec - tv_begin.tv_sec) * 1000.f +
// (tv_end.tv_usec - tv_begin.tv_usec) / 1000.f; std::cout << "elapsed: "
// << elapsed << "ms, speed: " << (M_ * N_ * K_ / 1000.f / 1000.f) /
// elapsed << " gflops" << std::endl;
// gettimeofday(&tv_end,NULL);
// float elapsed = (tv_end.tv_sec - tv_begin.tv_sec) * 1000.f +
// (tv_end.tv_usec - tv_begin.tv_usec) / 1000.f;
// std::cout << "elapsed: " << elapsed << "ms, speed: "
// << (M_ * N_ * K_ / 1000.f / 1000.f) / elapsed
// << " gflops" << std::endl;
}
virtual
~
GemmExecutor
()
{}
...
...
@@ -189,7 +191,7 @@ class GemvExecutor : public Executor {
void
operator
()(
const
float
alpha
,
const
Itype
*
A
,
const
int
lda
,
const
Itype
*
B
,
const
float
beta
,
Otype
*
C
)
{
//
strategy_.kernel();
// strategy_.kernel();
}
virtual
~
GemvExecutor
()
{}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录