Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
8bbba49b
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8bbba49b
编写于
11月 01, 2019
作者:
J
juncaipeng
提交者:
GitHub
11月 01, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update benchmark data (#2335)
* update benchmark results, test=develop
上级
1da984ab
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
27 addition
and
23 deletion
+27
-23
_all_pages/v2.0.0/benchmark.md
_all_pages/v2.0.0/benchmark.md
+26
-22
_all_pages/v2.0.0/index.md
_all_pages/v2.0.0/index.md
+1
-1
未找到文件。
_all_pages/v2.0.0/benchmark.md
浏览文件 @
8bbba49b
...
@@ -46,27 +46,28 @@ title: Benchmark 数据
...
@@ -46,27 +46,28 @@ title: Benchmark 数据
*
HUAWEI Mate10
*
HUAWEI Mate10
*
测试说明
*
测试说明
*
commit id: 12c129affaacd476e27a0a82b235a9d547d33f0f
*
branch: release/2.0.0
*
warmup=10, repeats=30,统计平均时间,单位是ms
*
warmup=10, repeats=30,统计平均时间,单位是ms
*
当线程数为1时,
```DeviceInfo::Global().SetRunMode```
设置LITE_POWER_HIGH,否者设置LITE_POWER_NO_BIND
*
当线程数为1时,
```DeviceInfo::Global().SetRunMode```
设置LITE_POWER_HIGH,否者设置LITE_POWER_NO_BIND
*
模型的输入图像的维度是{1, 3, 224, 224},输入图像的每一位数值是1
*
模型的输入图像的维度是{1, 3, 224, 224},输入图像的每一位数值是1
# 测试数据
# 测试数据
## fp32 模型测试数据
## fp32模型测试数据
### paddlepaddle model
### paddlepaddle model
骁龙855|armv
8 | | |armv7
| | |
骁龙855|armv
7 | | |armv8
| | |
----| ---- | ---- | ---- | ---- |---- |----
----| ---- | ---- | ---- | ---- |---- |----
threads num|1 |2 |4 |1 |2 |4
threads num|1 |2 |4 |1 |2 |4
mobilenet_v1 |32.19 |18.81 |10.90 |30.92 |18.31 |10.15
mobilenet_v1 |32.19 |18.81 |10.90 |30.92 |18.31 |10.15
mobilenet_v2 |22.91 |13.75 |8.64 |21.15 |12.79 |7.84
mobilenet_v2 |22.91 |13.75 |8.64 |21.15 |12.79 |7.84
shufflenet_v2 |4.67 |3.37 |2.65 |4.43 |3.15 |2.66
shufflenet_v2 |4.67 |3.37 |2.65 |4.43 |3.15 |2.66
squeezenet_v1.1 |25.10 |15.93 |9.68 |23.28 |14.61 |8.71
squeezenet_v1.1 |25.10 |15.93 |9.68 |23.28 |14.61 |8.71
mnasnet |21.84 |13.14 |7.96 |
23.29 |12.46 |7.48
mnasnet |21.84 |13.14 |7.96 |
19.61 |11.88 |7.55
骁龙835|armv
8 | | |armv7
| | |
骁龙835|armv
7 | | |armv8
| | |
----| ---- | ---- | ---- | ---- |---- |----
----| ---- | ---- | ---- | ---- |---- |----
threads num|1 |2 |4 |1 |2 |4
threads num|1 |2 |4 |1 |2 |4
mobilenet_v1 |94.13 |52.17 |30.68 |88.28 |47.58 |26.64
mobilenet_v1 |94.13 |52.17 |30.68 |88.28 |47.58 |26.64
...
@@ -75,7 +76,8 @@ shufflenet_v2 |10.87 |6.92 |5.12 |10.41 |6.76 |4.97
...
@@ -75,7 +76,8 @@ shufflenet_v2 |10.87 |6.92 |5.12 |10.41 |6.76 |4.97
squeezenet_v1.1 |73.61 |42.25 |24.44 |64.87 |38.43 |23.06
squeezenet_v1.1 |73.61 |42.25 |24.44 |64.87 |38.43 |23.06
mnasnet |58.22 |33.43 |20.44 |53.43 |30.20 |18.09
mnasnet |58.22 |33.43 |20.44 |53.43 |30.20 |18.09
麒麟980|armv8 | | |armv7 | | |
麒麟980|armv7 | | |armv8 | | |
----| ---- | ---- | ---- | ---- |---- |----
----| ---- | ---- | ---- | ---- |---- |----
threads num|1 |2 |4 |1 |2 |4
threads num|1 |2 |4 |1 |2 |4
mobilenet_v1 |55.11 |28.24 |13.27 |34.24 |17.74 |12.41
mobilenet_v1 |55.11 |28.24 |13.27 |34.24 |17.74 |12.41
...
@@ -84,7 +86,7 @@ shufflenet_v2 |7.26 |4.94 |15.06 |5.32 |3.33 |2.82
...
@@ -84,7 +86,7 @@ shufflenet_v2 |7.26 |4.94 |15.06 |5.32 |3.33 |2.82
squeezenet_v1.1 |42.73 |23.66 |57.39 |26.03 |14.53 |13.66
squeezenet_v1.1 |42.73 |23.66 |57.39 |26.03 |14.53 |13.66
mnasnet |36.87 |20.15 |46.04 |21.85 |12.06 |8.68
mnasnet |36.87 |20.15 |46.04 |21.85 |12.06 |8.68
麒麟970|armv
8 | | |armv7
| | |
麒麟970|armv
7 | | |armv8
| | |
----| ---- | ---- | ---- | ---- |---- |----
----| ---- | ---- | ---- | ---- |---- |----
threads num|1 |2 |4 |1 |2 |4
threads num|1 |2 |4 |1 |2 |4
mobilenet_v1 |97.80 |52.64 |34.46 |94.51 |49.36 |28.43
mobilenet_v1 |97.80 |52.64 |34.46 |94.51 |49.36 |28.43
...
@@ -95,52 +97,54 @@ mnasnet |61.86 |34.62 |22.68 |59.61 |32.79 |19.56
...
@@ -95,52 +97,54 @@ mnasnet |61.86 |34.62 |22.68 |59.61 |32.79 |19.56
## caffe model
## caffe model
骁龙855|armv
8 | | |armv7
| | |
骁龙855|armv
7 | | |armv8
| | |
----| ---- | ---- | ---- | ---- |---- |----|
----| ---- | ---- | ---- | ---- |---- |----|
threads num|1 |2 |4 |1 |2 |4 |
threads num|1 |2 |4 |1 |2 |4 |
mobilenet_v1 |32.42 |18.68 |10.86 |30.92 |18.35 |10.07 |
mobilenet_v1 |32.42 |18.68 |10.86 |30.92 |18.35 |10.07 |
mobilenet_v2 |29.53 |17.76 |10.89 |27.19 |16.53 |9.75 |
mobilenet_v2 |29.53 |17.76 |10.89 |27.19 |16.53 |9.75 |
shufflenet_v2 |4.61 |3.29 |2.61 |4.36 |3.11 |2.51 |
shufflenet_v2 |4.61 |3.29 |2.61 |4.36 |3.11 |2.51 |
骁龙835|armv8 | | |armv7 | | |
骁龙835|armv7 | | |armv8 | | |
----| ---- | ---- | ---- | ---- |---- |----|
----| ---- | ---- | ---- | ---- |---- |----|
threads num|1 |2 |4 |1 |2 |4 |
threads num|1 |2 |4 |1 |2 |4 |
mobilenet_v1 |92.52 |52.34 |30.37 |88.31 |49.75 |27.29 |
mobilenet_v1 |92.52 |52.34 |30.37 |88.31 |49.75 |27.29 |
mobilenet_v2 |79.50 |45.67 |28.79 |76.13 |44.01 |26.13 |
mobilenet_v2 |79.50 |45.67 |28.79 |76.13 |44.01 |26.13 |
shufflenet_v2 |10.94 |7.08 |5.16 |10.64 |6.83 |5.01 |
shufflenet_v2 |10.94 |7.08 |5.16 |10.64 |6.83 |5.01 |
麒麟980|armv8 | | |armv7 | | |
麒麟980|armv7 | | |armv8 | | |
----| ---- | ---- | ---- | ---- |---- |----|
----| ---- | ---- | ---- | ---- |---- |----|
threads num|1 |2 |4 |1 |2 |4 |
threads num|1 |2 |4 |1 |2 |4 |
mobilenet_v1 |55.36 |28.18 |13.31 |34.42 |17.93 |12.52 |
mobilenet_v1 |55.36 |28.18 |13.31 |34.42 |17.93 |12.52 |
mobilenet_v2 |49.17 |26.10 |65.49 |30.50 |16.66 |11.72 |
mobilenet_v2 |49.17 |26.10 |65.49 |30.50 |16.66 |11.72 |
shufflenet_v2 |8.45 |5.00 |15.65 |4.58 |3.14 |2.83 |
shufflenet_v2 |8.45 |5.00 |15.65 |4.58 |3.14 |2.83 |
麒麟970|armv8 | | |armv7 | | |
麒麟970|armv7 | | |armv8 | | |
----| ---- | ---- | ---- | ---- |---- |----|
----| ---- | ---- | ---- | ---- |---- |----|
threads num|1 |2 |4 |1 |2 |4 |
threads num|1 |2 |4 |1 |2 |4 |
mobilenet_v1 |97.85 |53.38 |33.85 |94.29 |49.42 |28.29 |
mobilenet_v1 |97.85 |53.38 |33.85 |94.29 |49.42 |28.29 |
mobilenet_v2 |87.40 |50.25 |31.85 |85.55 |48.11 |28.24 |
mobilenet_v2 |87.40 |50.25 |31.85 |85.55 |48.11 |28.24 |
shufflenet_v2 |12.16 |8.39 |6.21 |12.21 |8.33 |6.32 |
shufflenet_v2 |12.16 |8.39 |6.21 |12.21 |8.33 |6.32 |
##
量化模型
##
int8量化模型测试数据
骁龙855|armv
8 | | |armv7
| | |
骁龙855|armv
7 | | |armv8
| | |
----| ---- | ---- | ---- | ---- |---- |----|
----| ---- | ---- | ---- | ---- |---- |----|
threads num|1 |2 |4 |1 |2 |4 |
threads num|1 |2 |4 |1 |2 |4 |
mobilenet_v1 |
14.01 |8.13 |4.32 |36.80 |21.58 |11.1
2 |
mobilenet_v1 |
36.80 |21.58 |11.12 | 14.01 |8.13 |4.3
2 |
mobilenet_v2 |
17.24 |11.55 |7.82 |28.72 |19.08 |12.49
|
mobilenet_v2 |
28.72 |19.08 |12.49 | 17.24 |11.55 |7.82
|
骁龙835|armv
8 | | |armv7
| | |
骁龙835|armv
7 | | |armv8
| | |
----| ---- | ---- | ---- | ---- |---- |----|
----| ---- | ---- | ---- | ---- |---- |----|
threads num|1 |2 |4 |1 |2 |4 |
threads num|1 |2 |4 |1 |2 |4 |
mobilenet_v1 |
56.57 |29.84 |15.24 |60.76 |32.25 |16.66
|
mobilenet_v1 |
60.76 |32.25 |16.66 |56.57 |29.84 |15.24
|
mobilenet_v2 |4
7.52 |28.18 |19.24 |49.38 |31.10 |22.07
|
mobilenet_v2 |4
9.38 |31.10 |22.07 |47.52 |28.18 |19.24
|
骁龙970|armv
8 | | |armv7
| | |
骁龙970|armv
7 | | |armv8
| | |
----| ---- | ---- | ---- | ---- |---- |----|
----| ---- | ---- | ---- | ---- |---- |----|
threads num|1 |2 |4 |1 |2 |4 |
threads num|1 |2 |4 |1 |2 |4 |
mobilenet_v1 |60.86 |30.98 |16.31 |65.95 |34.39 |18.68 |
mobilenet_v1 |65.95 |34.39 |18.68 |60.86 |30.98 |16.31 |
mobilenet_v2 |65.57 |37.31 |20.87 |68.87 |39.39 |24.43 |
mobilenet_v2 |68.87 |39.39 |24.43 |65.57 |37.31 |20.87 |
\ No newline at end of file
_all_pages/v2.0.0/index.md
浏览文件 @
8bbba49b
...
@@ -3,7 +3,7 @@ layout: post
...
@@ -3,7 +3,7 @@ layout: post
title
:
Paddle-Lite文档
title
:
Paddle-Lite文档
---
---
> 版本:
develop
> 版本:
v2.0.0
Paddle-Lite 框架是 PaddleMobile 新一代架构,重点支持移动端推理预测,特点
**高性能、多硬件、轻量级**
。支持PaddleFluid/TensorFlow/Caffe/ONNX模型的推理部署,目前已经支持 ARM CPU, Mali GPU, Adreno GPU, Huawei NPU 等多种硬件,正在逐步增加 X86 CPU, Nvidia GPU 等多款硬件,相关硬件性能业内领先。
Paddle-Lite 框架是 PaddleMobile 新一代架构,重点支持移动端推理预测,特点
**高性能、多硬件、轻量级**
。支持PaddleFluid/TensorFlow/Caffe/ONNX模型的推理部署,目前已经支持 ARM CPU, Mali GPU, Adreno GPU, Huawei NPU 等多种硬件,正在逐步增加 X86 CPU, Nvidia GPU 等多款硬件,相关硬件性能业内领先。
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录