未验证 提交 8a281e35 编写于 作者: J Jiaying Zhao 提交者: GitHub

Merge pull request #1579 from smilejames/develop

adjust gpu code structure
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
#include "framework/cl/cl_image_converter.h"
#include "framework/cl/cl_tensor.h"
namespace paddle_mobile {
namespace operators {
template <>
void winograd_transform_weight<4, 3>(framework::CLHelper &cl_helper,
framework::CLImage &weight){};
template <>
void WinogradConv3x3<4, 3>(framework::CLHelper &cl_helper,
const ConvParam<GPU_CL> &param) {}
void ConvAddBnRelu(framework::CLHelper &cl_helper,
const ConvParam<GPU_CL> &param, bool ifRelu,
const CLImage *biase, const CLImage *new_scale,
const CLImage *new_bias) {
auto kernel = cl_helper.KernelAt(0);
auto default_work_size = cl_helper.DefaultWorkSize(*param.Output());
int c_block = default_work_size[0];
int w = default_work_size[1];
int nh = default_work_size[2];
auto input = param.Input()->GetCLImage();
auto filter = param.Filter()->GetCLImage();
auto output = param.Output()->GetCLImage();
int stride = param.Strides()[0];
int offset = param.Offset();
int input_c = reinterpret_cast<framework::CLImageConverterFolder *>(
param.Input()->Converter())
->GetCBlock();
int dilation = param.Dilations()[0];
int input_width = param.Input()->dims()[3];
int input_height = param.Input()->dims()[2];
int output_width = param.Output()->dims()[3];
int output_height = param.Output()->dims()[2];
// DLOG << " c block " << c_block;
// DLOG << " w " << w;
// DLOG << " nh " << nh;
// DLOG << " stride " << stride;
// DLOG << " offset " << offset;
// DLOG << " input_c " << input_c;
// DLOG << " dilation " << dilation;
// DLOG << " input width " << input_width;
// DLOG << " input height " << input_height;
// DLOG << " output width " << output_width;
// DLOG << " output height " << output_height;
// DLOG << " input dim " << param.Input()->dims();
// DLOG << " output dim " << param.Output()->dims();
// DLOG << " filter dim " << param.Filter()->dims();
cl_int status;
int index = 0;
if (param.Filter()->dims()[2] == 1 && param.Filter()->dims()[3] == 1) {
status = clSetKernelArg(kernel, index++, sizeof(int), &c_block);
CL_CHECK_ERRORS(status);
int maped_w = maptofactor(w, 4);
status = clSetKernelArg(kernel, index++, sizeof(int), &maped_w);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(int), &nh);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &input);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &filter);
CL_CHECK_ERRORS(status);
if (biase) {
auto bias_mem = biase->GetCLImage();
status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &bias_mem);
CL_CHECK_ERRORS(status);
}
if (new_scale && new_bias) {
auto new_scale_mem = new_scale->GetCLImage();
status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &new_scale_mem);
CL_CHECK_ERRORS(status);
auto new_bias_mem = new_bias->GetCLImage();
status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &new_bias_mem);
CL_CHECK_ERRORS(status);
}
status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &output);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(int), &stride);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(int), &offset);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(int), &input_c);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(int), &dilation);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(int), &input_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(int), &input_height);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(int), &output_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(int), &output_height);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(int), &w);
CL_CHECK_ERRORS(status);
const size_t work_size[3] = {
static_cast<const uint32_t>(default_work_size.data()[0]),
static_cast<const uint32_t>(maped_w),
static_cast<const uint32_t>(default_work_size.data()[2])};
status = clEnqueueNDRangeKernel(cl_helper.CLCommandQueue(), kernel,
default_work_size.size(), NULL, work_size,
NULL, 0, NULL, NULL);
CL_CHECK_ERRORS(status);
} else {
status = clSetKernelArg(kernel, index++, sizeof(int), &c_block);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(int), &w);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(int), &nh);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &input);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &filter);
CL_CHECK_ERRORS(status);
if (biase) {
auto bias_mem = biase->GetCLImage();
status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &bias_mem);
CL_CHECK_ERRORS(status);
}
if (new_scale && new_bias) {
auto new_scale_mem = new_scale->GetCLImage();
status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &new_scale_mem);
CL_CHECK_ERRORS(status);
auto new_bias_mem = new_bias->GetCLImage();
status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &new_bias_mem);
CL_CHECK_ERRORS(status);
}
status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &output);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(int), &stride);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(int), &offset);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(int), &input_c);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(int), &dilation);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(int), &input_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(int), &input_height);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(int), &output_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, index++, sizeof(int), &output_height);
CL_CHECK_ERRORS(status);
status = clEnqueueNDRangeKernel(
cl_helper.CLCommandQueue(), kernel, default_work_size.size(), NULL,
default_work_size.data(), NULL, 0, NULL, NULL);
CL_CHECK_ERRORS(status);
}
}
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONV_OP
#pragma once
#include "framework/cl/cl_helper.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
using namespace framework;
inline int maptofactor(int i, int factor) { return (i + factor - 1) / factor; }
template <int tile, int kernel>
void winograd_transform_weight(framework::CLHelper &cl_helper,
framework::CLImage &weight);
template <int tile, int kernel>
void WinogradConv3x3(framework::CLHelper &cl_helper,
const ConvParam<GPU_CL> &param);
void ConvAddBnRelu(framework::CLHelper &cl_helper,
const ConvParam<GPU_CL> &param, bool ifRelu = false,
const CLImage *biase = nullptr,
const CLImage *new_scale = nullptr,
const CLImage *new_bias = nullptr);
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -2157,6 +2157,176 @@ __kernel void convBNAdd_1x1(__private const int global_size_dim0,
write_imageh(output_image, output_pos, output);
}
__kernel void convBNAdd_1x1_spl(
__private const int global_size_dim0, __private const int global_size_dim1,
__private const int global_size_dim2, __read_only image2d_t input_image,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale, __read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image, __private const int stride,
__private const int offset, __private const int input_c,
__private const int dilation,
__private const int input_width, /* of one block */
__private const int input_height, /* of one block */
__private const int output_width,
__private const int output_height,
__private const int old_w
) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
int out_w0 = out_w;
int out_w1 = out_w + global_size_dim1;
int out_w2 = out_w + global_size_dim1 * 2;
int out_w3 = out_w + global_size_dim1 * 3;
// int out_w1 = out_w + global_size_dim1;
// int out_w2 = out_w + global_size_dim1 * 2;
// int out_w3 = out_w + global_size_dim1 * 3;
const sampler_t sampler =
CLK_NORMALIZED_COORDS_TRUE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
int2 stride_xy = (int2)(stride, stride);
int2 ouput_pos_in_one_block0 = (int2)(out_w0, out_nh);
int2 in_pos_in_one_block0 =
ouput_pos_in_one_block0 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block1 = (int2)(out_w1, out_nh);
int2 in_pos_in_one_block1 =
ouput_pos_in_one_block1 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block2 = (int2)(out_w2, out_nh);
int2 in_pos_in_one_block2 =
ouput_pos_in_one_block2 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block3 = (int2)(out_w3, out_nh);
int2 in_pos_in_one_block3 =
ouput_pos_in_one_block3 * stride_xy + (int2)(offset, offset);
half4 output0 = 0.0f;
half4 output1 = 0.0f;
half4 output2 = 0.0f;
half4 output3 = 0.0f;
for (int i = 0; i < input_c; ++i) {
// ------------0---------------
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block0.x, in_pos_in_one_block0.y);
half4 input0 = read_imageh(input_image, sampler, pos_in);
half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 0));
half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 1));
half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));
output0 = mad(input0.x, weight0, output0);
output0 = mad(input0.y, weight1, output0);
output0 = mad(input0.z, weight2, output0);
output0 = mad(input0.w, weight3, output0);
// -------------1--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block1.x, in_pos_in_one_block1.y);
half4 input1 = read_imageh(input_image, sampler, pos_in);
//
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output1 = mad(input1.x, weight0, output1);
output1 = mad(input1.y, weight1, output1);
output1 = mad(input1.z, weight2, output1);
output1 = mad(input1.w, weight3, output1);
// -------------2--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block2.x, in_pos_in_one_block2.y);
half4 input2 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output2 = mad(input2.x, weight0, output2);
output2 = mad(input2.y, weight1, output2);
output2 = mad(input2.z, weight2, output2);
output2 = mad(input2.w, weight3, output2);
// -------------3--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block3.x, in_pos_in_one_block3.y);
half4 input3 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output3 = mad(input3.x, weight0, output3);
output3 = mad(input3.y, weight1, output3);
output3 = mad(input3.z, weight2, output3);
output3 = mad(input3.w, weight3, output3);
}
#ifdef BATCH_NORM
output0 = output0 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output1 = output1 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output2 = output2 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output3 = output3 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef BIASE
output0= read_imageh(bias, sampler, (int2)(out_c, 0));
output1 = read_imageh(bias, sampler, (int2)(out_c, 0));
output2 = read_imageh(bias, sampler, (int2)(out_c, 0));
output3 = read_imageh(bias, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output0 = activation(output0);
output1 = activation(output1);
output2 = activation(output2);
output3 = activation(output3);
#endif
int outpos_main = mul24(out_c , old_w);
int2 output_pos0 = (int2)(outpos_main + out_w0, out_nh);
if (out_w0 < old_w) {
write_imageh(output_image, output_pos0, output0);
}
int2 output_pos1 = (int2)(outpos_main + out_w1, out_nh);
if (out_w1 < old_w){
write_imageh(output_image, output_pos1, output1);
}
int2 output_pos2 = (int2)(outpos_main + out_w2, out_nh);
if (out_w2 < old_w){
write_imageh(output_image, output_pos2, output2);
}
int2 output_pos3 = (int2)(outpos_main + out_w3, out_nh);
if (out_w3 < old_w){
write_imageh(output_image, output_pos3, output3);
}
}
......
......@@ -18,10 +18,10 @@ limitations under the License. */
#include <cmath>
#include "framework/cl/cl_image.h"
#include "framework/cl/cl_tool.h"
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
namespace paddle_mobile {
namespace operators {
bool optimise = true;
template <>
bool ConvAddBNReluKernel<GPU_CL, float>::Init(
FusionConvAddBNReluParam<GPU_CL> *param) {
......@@ -139,11 +139,7 @@ bool ConvAddBNReluKernel<GPU_CL, float>::Init(
if (param->Filter()->dims()[2] == 1 && param->Filter()->dims()[3] == 1) {
param->Filter()->InitNImage(cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
if (optimise) {
this->cl_helper_.AddKernel("conv_1x1_spl", "conv_add_bn_relu_kernel.cl");
} else {
this->cl_helper_.AddKernel("conv_1x1", "conv_add_bn_relu_kernel.cl");
}
this->cl_helper_.AddKernel("conv_1x1_spl", "conv_add_bn_relu_kernel.cl");
DLOG << " conv add bn relu conv 1x1";
} else if (param->Filter()->dims()[1] == 1 &&
......@@ -171,225 +167,8 @@ bool ConvAddBNReluKernel<GPU_CL, float>::Init(
template <>
void ConvAddBNReluKernel<GPU_CL, float>::Compute(
const FusionConvAddBNReluParam<GPU_CL> &param) {
auto kernel = this->cl_helper_.KernelAt(0);
auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
int c_block = default_work_size[0];
int w = default_work_size[1];
int nh = default_work_size[2];
auto input = param.Input()->GetCLImage();
auto filter = param.Filter()->GetCLImage();
auto biase = param.Bias()->GetCLImage();
auto new_scale = param.NewScale()->GetCLImage();
auto new_bias = param.NewBias()->GetCLImage();
auto output = param.Output()->GetCLImage();
int stride = param.Strides()[0];
int offset = param.Offset();
int input_c = reinterpret_cast<framework::CLImageConverterFolder *>(
param.Input()->Converter())
->GetCBlock();
int dilation = param.Dilations()[0];
int input_width = param.Input()->dims()[3];
int input_height = param.Input()->dims()[2];
int output_width = param.Output()->dims()[3];
int output_height = param.Output()->dims()[2];
// DLOG << " c block " << c_block;
// DLOG << " w " << w;
// DLOG << " nh " << nh;
// DLOG << " stride " << stride;
// DLOG << " offset " << offset;
// DLOG << " input_c " << input_c;
// DLOG << " dilation " << dilation;
// DLOG << " input width " << input_width;
// DLOG << " input height " << input_height;
// DLOG << " output width " << output_width;
// DLOG << " output height " << output_height;
// DLOG << " input dim " << param.Input()->dims();
// DLOG << " output dim " << param.Output()->dims();
// DLOG << " filter dim " << param.Filter()->dims();
cl_int status;
if (optimise) {
if (param.Filter()->dims()[2] == 1 && param.Filter()->dims()[3] == 1) {
status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
CL_CHECK_ERRORS(status);
int maped_w = maptofactor(w, 4);
status = clSetKernelArg(kernel, 1, sizeof(int), &maped_w);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &biase);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 6, sizeof(cl_mem), &new_scale);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 7, sizeof(cl_mem), &new_bias);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 8, sizeof(cl_mem), &output);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 9, sizeof(int), &stride);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 10, sizeof(int), &offset);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 11, sizeof(int), &input_c);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 12, sizeof(int), &dilation);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 13, sizeof(int), &input_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 14, sizeof(int), &input_height);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 15, sizeof(int), &output_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 16, sizeof(int), &output_height);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 17, sizeof(int), &w);
CL_CHECK_ERRORS(status);
const size_t work_size[3] = {
static_cast<const uint32_t>(default_work_size.data()[0]),
static_cast<const uint32_t>(maped_w),
static_cast<const uint32_t>(default_work_size.data()[2])};
status = clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel,
default_work_size.size(), NULL, work_size,
NULL, 0, NULL, NULL);
CL_CHECK_ERRORS(status);
} else {
status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 1, sizeof(int), &w);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &biase);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 6, sizeof(cl_mem), &new_scale);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 7, sizeof(cl_mem), &new_bias);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 8, sizeof(cl_mem), &output);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 9, sizeof(int), &stride);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 10, sizeof(int), &offset);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 11, sizeof(int), &input_c);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 12, sizeof(int), &dilation);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 13, sizeof(int), &input_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 14, sizeof(int), &input_height);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 15, sizeof(int), &output_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 16, sizeof(int), &output_height);
CL_CHECK_ERRORS(status);
status = clEnqueueNDRangeKernel(
this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(),
NULL, default_work_size.data(), NULL, 0, NULL, NULL);
CL_CHECK_ERRORS(status);
}
} else {
status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 1, sizeof(int), &w);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &biase);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 6, sizeof(cl_mem), &new_scale);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 7, sizeof(cl_mem), &new_bias);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 8, sizeof(cl_mem), &output);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 9, sizeof(int), &stride);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 10, sizeof(int), &offset);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 11, sizeof(int), &input_c);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 12, sizeof(int), &dilation);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 13, sizeof(int), &input_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 14, sizeof(int), &input_height);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 15, sizeof(int), &output_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 16, sizeof(int), &output_height);
CL_CHECK_ERRORS(status);
status = clEnqueueNDRangeKernel(
this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(),
NULL, default_work_size.data(), NULL, 0, NULL, NULL);
CL_CHECK_ERRORS(status);
}
ConvAddBnRelu(this->cl_helper_, param, true, param.Bias(), param.NewScale(),
param.NewBias());
}
template class ConvAddBNReluKernel<GPU_CL, float>;
......
......@@ -15,10 +15,10 @@ limitations under the License. */
#ifdef FUSION_CONVADD_OP
#include "operators/kernel/conv_add_kernel.h"
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
namespace paddle_mobile {
namespace operators {
bool optimise_convadd = true;
template <>
bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
......@@ -36,11 +36,7 @@ bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
if (param->Filter()->dims()[2] == 1 && param->Filter()->dims()[3] == 1) {
param->Filter()->InitNImage(cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
if (optimise_convadd) {
this->cl_helper_.AddKernel("conv_1x1_spl", "conv_add_kernel.cl");
} else {
this->cl_helper_.AddKernel("conv_1x1", "conv_add_kernel.cl");
}
this->cl_helper_.AddKernel("conv_1x1_spl", "conv_add_kernel.cl");
} else if (param->Filter()->dims()[1] == 1 &&
param->Input()->dims()[1] == param->Output()->dims()[1] &&
param->Filter()->dims()[2] == 3) {
......@@ -73,143 +69,7 @@ bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
template <>
void ConvAddKernel<GPU_CL, float>::Compute(
const FusionConvAddParam<GPU_CL> &param) {
auto kernel = this->cl_helper_.KernelAt(0);
auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
int c_block = default_work_size[0];
int w = default_work_size[1];
int nh = default_work_size[2];
auto input = param.Input()->GetCLImage();
auto filter = param.Filter()->GetCLImage();
auto biase = param.Bias()->GetCLImage();
param.Output()->InitEmptyImage(cl_helper_.CLContext(),
cl_helper_.CLCommandQueue(),
param.Output()->dims());
auto output = param.Output()->GetCLImage();
int stride = param.Strides()[0];
int offset = param.Offset();
int input_c = reinterpret_cast<framework::CLImageConverterFolder *>(
param.Input()->Converter())
->GetCBlock();
int dilation = param.Dilations()[0];
int input_width = param.Input()->dims()[3];
int input_height = param.Input()->dims()[2];
int output_width = param.Output()->dims()[3];
int output_height = param.Output()->dims()[2];
cl_int status;
if (optimise_convadd && param.Filter()->dims()[2] == 1 &&
param.Filter()->dims()[3] == 1) {
status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
CL_CHECK_ERRORS(status);
int maped_w = maptofactor(w, 4);
status = clSetKernelArg(kernel, 1, sizeof(int), &maped_w);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &biase);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 6, sizeof(cl_mem), &output);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 7, sizeof(int), &stride);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 8, sizeof(int), &offset);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 9, sizeof(int), &input_c);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 10, sizeof(int), &dilation);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 11, sizeof(int), &input_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 12, sizeof(int), &input_height);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 13, sizeof(int), &output_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 14, sizeof(int), &output_height);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 15, sizeof(int), &w);
CL_CHECK_ERRORS(status);
const size_t work_size[3] = {
static_cast<const uint32_t>(default_work_size.data()[0]),
static_cast<const uint32_t>(maped_w),
static_cast<const uint32_t>(default_work_size.data()[2])};
status = clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel,
default_work_size.size(), NULL, work_size,
NULL, 0, NULL, NULL);
CL_CHECK_ERRORS(status);
} else {
status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 1, sizeof(int), &w);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &biase);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 6, sizeof(cl_mem), &output);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 7, sizeof(int), &stride);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 8, sizeof(int), &offset);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 9, sizeof(int), &input_c);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 10, sizeof(int), &dilation);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 11, sizeof(int), &input_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 12, sizeof(int), &input_height);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 13, sizeof(int), &output_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 14, sizeof(int), &output_height);
CL_CHECK_ERRORS(status);
status = clEnqueueNDRangeKernel(
this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(),
NULL, default_work_size.data(), NULL, 0, NULL, NULL);
CL_CHECK_ERRORS(status);
}
ConvAddBnRelu(this->cl_helper_, param, false, param.Bias());
}
template class ConvAddKernel<GPU_CL, float>;
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef FUSION_CONVADDRELU_OP
#include "operators/kernel/conv_add_relu_kernel.h"
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
namespace paddle_mobile {
namespace operators {
......@@ -37,7 +38,7 @@ bool ConvAddReluKernel<GPU_CL, float>::Init(
param->Filter()->InitNImage(cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
this->cl_helper_.AddKernel("conv_1x1", "conv_add_relu_kernel.cl");
this->cl_helper_.AddKernel("conv_1x1_spl", "conv_add_relu_kernel.cl");
} else if (param->Filter()->dims()[1] == 1 &&
param->Input()->dims()[1] == param->Output()->dims()[1] &&
param->Filter()->dims()[2] == 3) {
......@@ -72,84 +73,7 @@ bool ConvAddReluKernel<GPU_CL, float>::Init(
template <>
void ConvAddReluKernel<GPU_CL, float>::Compute(
const FusionConvAddReluParam<GPU_CL> &param) {
auto kernel = this->cl_helper_.KernelAt(0);
auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
int c_block = default_work_size[0];
int w = default_work_size[1];
int nh = default_work_size[2];
auto input = param.Input()->GetCLImage();
auto filter = param.Filter()->GetCLImage();
DLOG << "---yangfei30---";
DLOG << *param.Filter();
DLOG << param.Paddings();
auto biase = param.Bias()->GetCLImage();
auto output = param.Output()->GetCLImage();
int stride = param.Strides()[0];
int offset = param.Offset();
int input_c = reinterpret_cast<framework::CLImageConverterFolder *>(
param.Input()->Converter())
->GetCBlock();
int dilation = param.Dilations()[0];
int input_width = param.Input()->dims()[3];
int input_height = param.Input()->dims()[2];
int output_width = param.Output()->dims()[3];
int output_height = param.Output()->dims()[2];
cl_int status;
status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 1, sizeof(int), &w);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &biase);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 6, sizeof(cl_mem), &output);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 7, sizeof(int), &stride);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 8, sizeof(int), &offset);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 9, sizeof(int), &input_c);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 10, sizeof(int), &dilation);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 11, sizeof(int), &input_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 12, sizeof(int), &input_height);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 13, sizeof(int), &output_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 14, sizeof(int), &output_height);
CL_CHECK_ERRORS(status);
// cl_event out_event = param.Output()->GetClEvent();
// cl_event wait_event = param.Input()->GetClEvent();
status = clEnqueueNDRangeKernel(
this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(), NULL,
default_work_size.data(), NULL, 0, NULL, NULL);
CL_CHECK_ERRORS(status);
ConvAddBnRelu(this->cl_helper_, param, true, param.Bias());
}
template class ConvAddReluKernel<GPU_CL, float>;
......
......@@ -16,6 +16,7 @@ limitations under the License. */
#include "operators/kernel/conv_bn_add_relu_kernel.h"
#include <cmath>
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
namespace paddle_mobile {
namespace operators {
......@@ -102,7 +103,8 @@ bool ConvBNAddReluKernel<GPU_CL, float>::Init(
if (param->Filter()->dims()[2] == 1 && param->Filter()->dims()[3] == 1) {
param->Filter()->InitNImage(cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
this->cl_helper_.AddKernel("convBNAdd_1x1", "conv_bn_add_relu_kernel.cl");
this->cl_helper_.AddKernel("convBNAdd_1x1_spl",
"conv_bn_add_relu_kernel.cl");
DLOG << " conv bn add relu conv 1x1";
} else if (param->Filter()->dims()[1] == 1 &&
param->Input()->dims()[1] == param->Output()->dims()[1] &&
......@@ -130,101 +132,8 @@ bool ConvBNAddReluKernel<GPU_CL, float>::Init(
template <>
void ConvBNAddReluKernel<GPU_CL, float>::Compute(
const FusionConvBNAddReluParam<GPU_CL> &param) {
auto kernel = this->cl_helper_.KernelAt(0);
auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
int c_block = default_work_size[0];
int w = default_work_size[1];
int nh = default_work_size[2];
auto input = param.Input()->GetCLImage();
auto filter = param.Filter()->GetCLImage();
auto biase = param.Bias()->GetCLImage();
auto new_scale = param.NewScale()->GetCLImage();
auto new_bias = param.NewBias()->GetCLImage();
auto output = param.Output()->GetCLImage();
int stride = param.Strides()[0];
int offset = param.Offset();
int input_c = reinterpret_cast<framework::CLImageConverterFolder *>(
param.Input()->Converter())
->GetCBlock();
int dilation = param.Dilations()[0];
int input_width = param.Input()->dims()[3];
int input_height = param.Input()->dims()[2];
int output_width = param.Output()->dims()[3];
int output_height = param.Output()->dims()[2];
// DLOG << " c block " << c_block;
// DLOG << " w " << w;
// DLOG << " nh " << nh;
// DLOG << " stride " << stride;
// DLOG << " offset " << offset;
// DLOG << " input_c " << input_c;
// DLOG << " dilation " << dilation;
// DLOG << " input width " << input_width;
// DLOG << " input height " << input_height;
// DLOG << " output width " << output_width;
// DLOG << " output height " << output_height;
// DLOG << " input dim " << *param.Input();
// DLOG << " output dim " <<* param.Output();
// DLOG << " filter dim " << *param.Filter();
// DLOG<<*param.Bias();
cl_int status;
status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 1, sizeof(int), &w);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &biase);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 6, sizeof(cl_mem), &new_scale);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 7, sizeof(cl_mem), &new_bias);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 8, sizeof(cl_mem), &output);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 9, sizeof(int), &stride);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 10, sizeof(int), &offset);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 11, sizeof(int), &input_c);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 12, sizeof(int), &dilation);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 13, sizeof(int), &input_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 14, sizeof(int), &input_height);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 15, sizeof(int), &output_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 16, sizeof(int), &output_height);
CL_CHECK_ERRORS(status);
status = clEnqueueNDRangeKernel(
this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(), NULL,
default_work_size.data(), NULL, 0, NULL, NULL);
CL_CHECK_ERRORS(status);
ConvAddBnRelu(this->cl_helper_, param, true, param.Bias(), param.NewScale(),
param.NewBias());
}
template class ConvBNAddReluKernel<GPU_CL, float>;
......
......@@ -16,6 +16,7 @@ limitations under the License. */
#include "operators/kernel/conv_bn_relu_kernel.h"
#include <cmath>
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
namespace paddle_mobile {
namespace operators {
......@@ -100,7 +101,7 @@ bool ConvBNReluKernel<GPU_CL, float>::Init(
if (param->Filter()->dims()[2] == 1 && param->Filter()->dims()[3] == 1) {
param->Filter()->InitNImage(cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
this->cl_helper_.AddKernel("conv_1x1", "conv_bn_relu_kernel.cl");
this->cl_helper_.AddKernel("conv_1x1_spl", "conv_bn_relu_kernel.cl");
DLOG << " conv bn relu conv 1x1";
} else if (param->Filter()->dims()[1] == 1 &&
param->Input()->dims()[1] == param->Output()->dims()[1] &&
......@@ -126,81 +127,8 @@ bool ConvBNReluKernel<GPU_CL, float>::Init(
template <>
void ConvBNReluKernel<GPU_CL, float>::Compute(
const FusionConvBNReluParam<GPU_CL> &param) {
auto kernel = this->cl_helper_.KernelAt(0);
auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
int c_block = default_work_size[0];
int w = default_work_size[1];
int nh = default_work_size[2];
auto input = param.Input()->GetCLImage();
auto filter = param.Filter()->GetCLImage();
auto new_scale = param.NewScale()->GetCLImage();
auto new_bias = param.NewBias()->GetCLImage();
auto output = param.Output()->GetCLImage();
int stride = param.Strides()[0];
int offset = param.Offset();
int input_c = reinterpret_cast<framework::CLImageConverterFolder *>(
param.Input()->Converter())
->GetCBlock();
int dilation = param.Dilations()[0];
int input_width = param.Input()->dims()[3];
int input_height = param.Input()->dims()[2];
int output_width = param.Output()->dims()[3];
int output_height = param.Output()->dims()[2];
cl_int status;
status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 1, sizeof(int), &w);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &new_scale);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 6, sizeof(cl_mem), &new_bias);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 7, sizeof(cl_mem), &output);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 8, sizeof(int), &stride);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 9, sizeof(int), &offset);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 10, sizeof(int), &input_c);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 11, sizeof(int), &dilation);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 12, sizeof(int), &input_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 13, sizeof(int), &input_height);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 14, sizeof(int), &output_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 15, sizeof(int), &output_height);
CL_CHECK_ERRORS(status);
status = clEnqueueNDRangeKernel(
this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(), NULL,
default_work_size.data(), NULL, 0, NULL, NULL);
CL_CHECK_ERRORS(status);
ConvAddBnRelu(this->cl_helper_, param, true, nullptr, param.NewScale(),
param.NewBias());
}
template class ConvBNReluKernel<GPU_CL, float>;
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef CONV_OP
#include "operators/kernel/conv_kernel.h"
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
namespace paddle_mobile {
namespace operators {
......@@ -39,7 +40,7 @@ bool ConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
if (param->Filter()->dims()[2] == 1 && param->Filter()->dims()[3] == 1) {
param->Filter()->InitNImage(cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
this->cl_helper_.AddKernel("conv_1x1", "conv_kernel.cl");
this->cl_helper_.AddKernel("conv_1x1_spl", "conv_kernel.cl");
DLOG << "conv 1x1";
} else if (param->Filter()->dims()[1] == 1 &&
......@@ -66,64 +67,7 @@ bool ConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
template <>
void ConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> &param) {
auto kernel = this->cl_helper_.KernelAt(0);
auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
int c_block = default_work_size[0];
int w = default_work_size[1];
int nh = default_work_size[2];
auto input = param.Input()->GetCLImage();
auto filter = param.Filter()->GetCLImage();
auto output = param.Output()->GetCLImage();
int stride = param.Strides()[0];
int offset = param.Offset();
int input_c = reinterpret_cast<framework::CLImageConverterFolder *>(
param.Input()->Converter())
->GetCBlock();
int dilation = param.Dilations()[0];
int input_width = param.Input()->dims()[3];
int input_height = param.Input()->dims()[2];
int output_width = param.Output()->dims()[3];
int output_height = param.Output()->dims()[2];
cl_int status;
DLOG << " begin set kernel arg ";
DLOG << " c block " << c_block;
DLOG << " w " << w;
DLOG << " nh " << nh;
DLOG << " stride " << stride;
DLOG << " offset " << offset;
DLOG << " input_c " << input_c;
DLOG << " dilation " << dilation;
DLOG << " input width " << input_width;
DLOG << " input height " << input_height;
DLOG << " output width " << output_width;
DLOG << " output height " << output_height;
status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
status = clSetKernelArg(kernel, 1, sizeof(int), &w);
status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &output);
status = clSetKernelArg(kernel, 6, sizeof(int), &stride);
status = clSetKernelArg(kernel, 7, sizeof(int), &offset);
status = clSetKernelArg(kernel, 8, sizeof(int), &input_c);
status = clSetKernelArg(kernel, 9, sizeof(int), &dilation);
status = clSetKernelArg(kernel, 10, sizeof(int), &input_width);
status = clSetKernelArg(kernel, 11, sizeof(int), &input_height);
status = clSetKernelArg(kernel, 12, sizeof(int), &output_width);
status = clSetKernelArg(kernel, 13, sizeof(int), &output_height);
// cl_event out_event = param.Output()->GetClEvent();
// cl_event wait_event = param.Input()->GetClEvent();
status = clEnqueueNDRangeKernel(
this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(), NULL,
default_work_size.data(), NULL, 0, NULL, NULL);
CL_CHECK_ERRORS(status);
ConvAddBnRelu(this->cl_helper_, param);
}
template class ConvKernel<GPU_CL, float>;
......
......@@ -36,9 +36,6 @@ class ConvAddBNReluKernel
public:
void Compute(const FusionConvAddBNReluParam<DeviceType> &param);
bool Init(FusionConvAddBNReluParam<DeviceType> *param);
inline int maptofactor(int i, int factor) {
return (i + factor - 1) / factor;
}
};
} // namespace operators
......
......@@ -41,9 +41,6 @@ class ConvAddKernel
public:
void Compute(const FusionConvAddParam<DeviceType> &param);
bool Init(FusionConvAddParam<DeviceType> *param);
inline int maptofactor(int i, int factor) {
return (i + factor - 1) / factor;
}
};
} // namespace operators
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册