Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
89b3026c
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
89b3026c
编写于
9月 13, 2019
作者:
Z
Zhaolong Xing
提交者:
Yan Chunwei
9月 13, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add the memory optim pass (#2018)
上级
3d59e558
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
327 addition
and
1 deletion
+327
-1
lite/api/paddle_use_passes.h
lite/api/paddle_use_passes.h
+1
-0
lite/core/mir/CMakeLists.txt
lite/core/mir/CMakeLists.txt
+1
-0
lite/core/mir/memory_optimize_pass.cc
lite/core/mir/memory_optimize_pass.cc
+264
-0
lite/core/mir/memory_optimize_pass.h
lite/core/mir/memory_optimize_pass.h
+60
-0
lite/core/optimizer.h
lite/core/optimizer.h
+1
-1
未找到文件。
lite/api/paddle_use_passes.h
浏览文件 @
89b3026c
...
...
@@ -39,3 +39,4 @@ USE_MIR_PASS(lite_elementwise_add_activation_fuse_pass);
USE_MIR_PASS
(
lite_quant_dequant_fuse_pass
);
USE_MIR_PASS
(
type_precision_cast_pass
);
USE_MIR_PASS
(
type_layout_cast_pass
);
USE_MIR_PASS
(
memory_optimize_pass
);
lite/core/mir/CMakeLists.txt
浏览文件 @
89b3026c
...
...
@@ -31,6 +31,7 @@ lite_cc_library(mir_passes
argument_type_display_pass.cc
demo_pass.cc
runtime_context_assign_pass.cc
memory_optimize_pass.cc
DEPS mir_pass types context
${
mir_fusers
}
${
subgraph_passes
}
)
# lite_cc_test(test_ssa_graph SRCS ssa_graph_test.cc DEPS
...
...
lite/core/mir/memory_optimize_pass.cc
0 → 100644
浏览文件 @
89b3026c
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/core/mir/memory_optimize_pass.h"
#include <memory>
#include <utility>
#include <vector>
#include "lite/core/mir/graph_visualize_pass.h"
#include "lite/core/mir/pass_registry.h"
#include "lite/core/type_system.h"
namespace
paddle
{
namespace
lite
{
namespace
mir
{
typedef
struct
{
std
::
string
name
;
int
cluster
;
std
::
pair
<
int
,
int
>
lifetime
;
std
::
unordered_set
<
std
::
string
>
adj
;
}
MemNode
;
void
MemoryOptimizePass
::
CollectLifeCycleByDevice
(
std
::
unordered_map
<
std
::
string
,
lifecycle_map_t
>*
lifecycles
,
SSAGraph
*
graph
)
{
max_lifecycle_
=
0
;
auto
is_host
=
[](
TargetType
x
)
->
bool
{
return
x
==
TARGET
(
kHost
)
||
x
==
TARGET
(
kX86
)
||
x
==
TARGET
(
kARM
);
};
// The vars which inputs or outputs are invalid op will not be reused.
auto
valid_var
=
[
&
](
Node
*
node
)
->
bool
{
std
::
set
<
std
::
string
>
invalid_op
=
{
"while"
,
"conditional_block"
,
"conditional_block_infer"
,
"merge_lod_tensor_infer"
,
"merge_lod_tensor"
,
"equal"
,
"lod_reset"
,
"concat"
,
"graph_op"
};
for
(
auto
*
tmp
:
node
->
inlinks
)
{
CHECK
(
tmp
->
IsStmt
());
std
::
string
op_type
=
tmp
->
AsStmt
().
op_info
()
->
Type
();
if
(
std
::
find
(
invalid_op
.
begin
(),
invalid_op
.
end
(),
op_type
)
!=
invalid_op
.
end
())
{
return
false
;
}
}
for
(
auto
*
tmp
:
node
->
outlinks
)
{
CHECK
(
tmp
->
IsStmt
());
std
::
string
op_type
=
tmp
->
AsStmt
().
op_info
()
->
Type
();
if
(
std
::
find
(
invalid_op
.
begin
(),
invalid_op
.
end
(),
op_type
)
!=
invalid_op
.
end
())
{
return
false
;
}
}
return
true
;
};
for
(
auto
&
op_node
:
graph
->
StmtTopologicalOrder
())
{
if
(
op_node
->
IsStmt
())
{
auto
inputs
=
op_node
->
inlinks
;
auto
outputs
=
op_node
->
outlinks
;
std
::
vector
<
Node
*>
requires
(
inputs
.
begin
(),
inputs
.
end
());
requires
.
insert
(
requires
.
end
(),
outputs
.
begin
(),
outputs
.
end
());
auto
&
stmt
=
op_node
->
AsStmt
();
// The feed and fetch op's inputs and outputs will not be reused.
if
(
stmt
.
op_info
()
->
Type
()
==
"feed"
||
stmt
.
op_info
()
->
Type
()
==
"fetch"
)
{
for
(
auto
*
node
:
op_node
->
outlinks
)
{
CHECK
(
node
->
IsArg
());
std
::
string
var_name
=
node
->
AsArg
().
name
;
TargetType
target_type
=
node
->
AsArg
().
type
->
target
();
if
(
is_host
(
target_type
))
target_type
=
TARGET
(
kHost
);
(
*
lifecycles
)[
TargetToStr
(
target_type
)].
emplace
(
var_name
,
std
::
make_pair
(
0
,
std
::
numeric_limits
<
int
>::
max
()));
}
}
else
{
for
(
Node
*
node
:
requires
)
{
CHECK
(
node
->
IsArg
());
auto
&
arg
=
node
->
AsArg
();
if
(
arg
.
is_weight
||
arg
.
is_persist
)
continue
;
if
(
!
valid_var
(
node
))
continue
;
std
::
string
var_name
=
arg
.
name
;
TargetType
target_type
=
node
->
AsArg
().
type
->
target
();
if
(
is_host
(
target_type
))
target_type
=
TARGET
(
kHost
);
if
(
!
(
*
lifecycles
)[
TargetToStr
(
target_type
)].
count
(
var_name
))
{
(
*
lifecycles
)[
TargetToStr
(
target_type
)].
emplace
(
var_name
,
std
::
make_pair
(
max_lifecycle_
,
max_lifecycle_
));
}
else
{
int
cur_life
=
(
*
lifecycles
)[
TargetToStr
(
target_type
)][
var_name
].
second
;
(
*
lifecycles
)[
TargetToStr
(
target_type
)][
var_name
].
second
=
std
::
max
(
max_lifecycle_
,
cur_life
);
}
}
}
++
max_lifecycle_
;
}
}
LOG
(
INFO
)
<<
"There are "
<<
(
*
lifecycles
).
size
()
<<
" types device var."
;
}
void
MemoryOptimizePass
::
MakeReusePlan
(
const
lifecycle_map_t
&
lifecycles
,
std
::
unordered_map
<
std
::
string
,
std
::
string
>*
node2cluster
)
{
std
::
vector
<
MemNode
>
mem_nodes
;
std
::
vector
<
std
::
string
>
cluster
;
for
(
auto
&
data
:
lifecycles
)
{
MemNode
temp_node
;
temp_node
.
name
=
data
.
first
;
temp_node
.
cluster
=
-
1
;
temp_node
.
lifetime
=
data
.
second
;
mem_nodes
.
push_back
(
temp_node
);
}
auto
overlap
=
[](
std
::
pair
<
int
,
int
>
a
,
std
::
pair
<
int
,
int
>
b
)
->
bool
{
return
b
.
second
>=
a
.
first
&&
a
.
second
>=
b
.
first
;
};
// If the lifetime of two nodes is overwritten, we set them as adjacent nodes.
for
(
size_t
i
=
0
;
i
<
mem_nodes
.
size
();
i
++
)
{
for
(
size_t
j
=
i
+
1
;
j
<
mem_nodes
.
size
();
j
++
)
{
if
(
overlap
(
mem_nodes
[
i
].
lifetime
,
mem_nodes
[
j
].
lifetime
))
{
mem_nodes
[
i
].
adj
.
insert
(
mem_nodes
[
j
].
name
);
mem_nodes
[
j
].
adj
.
insert
(
mem_nodes
[
i
].
name
);
}
}
}
// Generating Memory Reuse Strategy Based on Greedy Way
// The vars can be reused if there is no overlap between them.
for
(
size_t
i
=
0
;
i
<
mem_nodes
.
size
();
i
++
)
{
if
(
mem_nodes
[
i
].
cluster
>=
0
)
continue
;
int
cluster_index
=
cluster
.
size
();
mem_nodes
[
i
].
cluster
=
cluster_index
;
(
*
node2cluster
)[
mem_nodes
[
i
].
name
]
=
mem_nodes
[
i
].
name
;
cluster
.
push_back
(
mem_nodes
[
i
].
name
);
std
::
unordered_set
<
std
::
string
>
cluster_adj
=
mem_nodes
[
i
].
adj
;
for
(
size_t
j
=
i
+
1
;
j
<
mem_nodes
.
size
();
j
++
)
{
if
(
mem_nodes
[
j
].
cluster
<
0
&&
(
cluster_adj
.
find
(
mem_nodes
[
j
].
name
)
==
cluster_adj
.
end
()))
{
(
*
node2cluster
)[
mem_nodes
[
j
].
name
]
=
mem_nodes
[
i
].
name
;
mem_nodes
[
j
].
cluster
=
cluster_index
;
for
(
auto
&
n
:
mem_nodes
[
j
].
adj
)
{
cluster_adj
.
insert
(
n
);
}
}
}
}
for
(
auto
&
name
:
cluster
)
{
LOG
(
INFO
)
<<
"cluster: "
<<
name
;
}
}
void
MemoryOptimizePass
::
PerformReusePlan
(
SSAGraph
*
graph
,
const
std
::
unordered_map
<
std
::
string
,
std
::
string
>&
reuse_table
)
{
for
(
auto
&
op_node
:
graph
->
StmtTopologicalOrder
())
{
if
(
!
op_node
->
IsStmt
())
continue
;
auto
&
stmt
=
op_node
->
AsStmt
();
auto
*
op_info
=
stmt
.
mutable_op_info
();
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
in_args
,
out_args
;
// replace the op's input according the reuse table.
for
(
auto
argument
:
op_info
->
inputs
())
{
for
(
const
auto
&
x
:
argument
.
second
)
{
auto
name
=
x
;
if
(
reuse_table
.
count
(
x
)
&&
reuse_table
.
at
(
x
)
!=
x
)
{
name
=
reuse_table
.
at
(
x
);
}
in_args
[
argument
.
first
].
push_back
(
name
);
VLOG
(
4
)
<<
op_info
->
Type
()
<<
" input "
<<
x
<<
" -> "
<<
name
;
}
}
// modify the graph
for
(
Node
*
input_node
:
op_node
->
inlinks
)
{
CHECK
(
input_node
->
IsArg
())
<<
"The op node's inputs should be var node."
;
std
::
string
name
=
input_node
->
AsArg
().
name
;
if
(
reuse_table
.
count
(
name
)
&&
reuse_table
.
at
(
name
)
!=
name
)
{
auto
replace_name
=
reuse_table
.
at
(
name
);
input_node
->
AsArg
().
name
=
replace_name
;
}
}
// replace the op's output according the reuse table.
for
(
auto
argument
:
op_info
->
outputs
())
{
for
(
const
auto
&
x
:
argument
.
second
)
{
auto
name
=
x
;
if
(
reuse_table
.
count
(
x
)
&&
reuse_table
.
at
(
x
)
!=
x
)
{
name
=
reuse_table
.
at
(
x
);
}
out_args
[
argument
.
first
].
push_back
(
name
);
VLOG
(
4
)
<<
op_info
->
Type
()
<<
" output "
<<
x
<<
" -> "
<<
name
;
}
}
// modify the graph
for
(
Node
*
out_node
:
op_node
->
outlinks
)
{
CHECK
(
out_node
->
IsArg
())
<<
"The op node's outputs should be var node."
;
std
::
string
name
=
out_node
->
AsArg
().
name
;
if
(
reuse_table
.
count
(
name
)
&&
reuse_table
.
at
(
name
)
!=
name
)
{
auto
replace_name
=
reuse_table
.
at
(
name
);
out_node
->
AsArg
().
name
=
replace_name
;
}
}
for
(
auto
&
arg
:
in_args
)
{
op_info
->
SetInput
(
arg
.
first
,
arg
.
second
);
}
for
(
auto
&
arg
:
out_args
)
{
op_info
->
SetOutput
(
arg
.
first
,
arg
.
second
);
}
auto
original_selected_kernel
=
std
::
move
(
stmt
.
kernels
().
front
());
auto
updated_op_info
=
*
stmt
.
mutable_op_info
();
stmt
.
ResetOp
(
updated_op_info
,
graph
->
valid_places
());
stmt
.
kernels
().
clear
();
stmt
.
kernels
().
emplace_back
(
std
::
move
(
original_selected_kernel
));
for
(
auto
&
kernel
:
stmt
.
kernels
())
{
VLOG
(
4
)
<<
"kernel info: "
<<
kernel
->
name
();
stmt
.
op
()
->
AttachKernel
(
kernel
.
get
());
}
graph
->
CheckValid
();
}
}
void
MemoryOptimizePass
::
Apply
(
const
std
::
unique_ptr
<
SSAGraph
>&
graph
)
{
// Memory optimization.
// We will perform the following operation:
// 1. Collect all var's lifetime, then classify them according to the device.
// Only the vars on the same device can be reused.
// 2. Make reuse plan: the vars can be reused if there is no overlap between
// them.
// The final plan is a mapping table in which the key represents the original
// name of var and the value in the table represents the current name of var.
// 3. Perform reuse plan: Replace all var's name in the model according to the
// mapping table.
std
::
unordered_map
<
std
::
string
,
lifecycle_map_t
>
lifecycles
;
CollectLifeCycleByDevice
(
&
lifecycles
,
graph
.
get
());
for
(
auto
&
ele
:
lifecycles
)
{
std
::
unordered_map
<
std
::
string
,
std
::
string
>
node2cluster
;
MakeReusePlan
(
ele
.
second
,
&
node2cluster
);
PerformReusePlan
(
graph
.
get
(),
node2cluster
);
}
}
}
// namespace mir
}
// namespace lite
}
// namespace paddle
REGISTER_MIR_PASS
(
memory_optimize_pass
,
paddle
::
lite
::
mir
::
MemoryOptimizePass
)
.
SetTargets
({
TARGET
(
kARM
)});
lite/core/mir/memory_optimize_pass.h
0 → 100644
浏览文件 @
89b3026c
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <limits>
#include <list>
#include <memory>
#include <set>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "lite/core/kernel.h"
#include "lite/core/mir/pass.h"
namespace
paddle
{
namespace
lite
{
namespace
mir
{
/*
* MemoryOptimizePass will
*/
class
MemoryOptimizePass
:
public
ProgramPass
{
public:
using
lifecycle_t
=
std
::
pair
<
int
,
int
>
;
using
lifecycle_map_t
=
std
::
unordered_map
<
std
::
string
,
lifecycle_t
>
;
void
Apply
(
const
std
::
unique_ptr
<
SSAGraph
>&
graph
)
override
;
private:
void
CollectLifeCycleByDevice
(
std
::
unordered_map
<
std
::
string
,
lifecycle_map_t
>*
lifecycles
,
SSAGraph
*
);
void
MakeReusePlan
(
const
lifecycle_map_t
&
lifecycles
,
std
::
unordered_map
<
std
::
string
,
std
::
string
>*
node2cluster
);
void
PerformReusePlan
(
SSAGraph
*
graph
,
const
std
::
unordered_map
<
std
::
string
,
std
::
string
>&
reuse_table
);
private:
int
max_lifecycle_
{
-
1
};
};
}
// namespace mir
}
// namespace lite
}
// namespace paddle
lite/core/optimizer.h
浏览文件 @
89b3026c
...
...
@@ -93,7 +93,7 @@ class Optimizer {
"argument_type_display_pass"
,
//
"runtime_context_assign_pass"
,
"
graph_visualze
"
}});
"
memory_optimize_pass
"
}});
}
else
{
RunPasses
(
passes
);
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录