Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
8884755c
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8884755c
编写于
12月 07, 2018
作者:
H
hjchen2
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'dev-latest' of
https://github.com/hjchen2/paddle-mobile
into dev-latest
上级
ab6b3178
fa1efd3e
变更
38
展开全部
隐藏空白更改
内联
并排
Showing
38 changed file
with
1760 addition
and
1207 deletion
+1760
-1207
src/fpga/V1/api.cpp
src/fpga/V1/api.cpp
+23
-5
src/fpga/V1/filter.cpp
src/fpga/V1/filter.cpp
+24
-19
src/fpga/V1/pe.cpp
src/fpga/V1/pe.cpp
+775
-12
src/fpga/V2/api.cpp
src/fpga/V2/api.cpp
+2
-2
src/fpga/V2/api.h
src/fpga/V2/api.h
+1
-1
src/fpga/common/driver.cpp
src/fpga/common/driver.cpp
+16
-2
src/fpga/common/driver.h
src/fpga/common/driver.h
+7
-2
src/fpga/common/fpga_common.h
src/fpga/common/fpga_common.h
+19
-12
src/framework/cl/cl_image.h
src/framework/cl/cl_image.h
+7
-0
src/operators/feed_op.cpp
src/operators/feed_op.cpp
+0
-1
src/operators/fusion_fc_op.cpp
src/operators/fusion_fc_op.cpp
+3
-0
src/operators/kernel/arm/dequant_bn_relu_kernel.cpp
src/operators/kernel/arm/dequant_bn_relu_kernel.cpp
+5
-3
src/operators/kernel/central-arm-func/conv_arm_func.h
src/operators/kernel/central-arm-func/conv_arm_func.h
+1
-7
src/operators/kernel/central-arm-func/mul_arm_func.h
src/operators/kernel/central-arm-func/mul_arm_func.h
+2
-2
src/operators/kernel/cl/cl_kernel/concat_kernel.cl
src/operators/kernel/cl/cl_kernel/concat_kernel.cl
+25
-25
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
+232
-0
src/operators/kernel/cl/cl_kernel/lrn_kernel.cl
src/operators/kernel/cl/cl_kernel/lrn_kernel.cl
+136
-0
src/operators/kernel/cl/cl_kernel/pool_kernel.cl
src/operators/kernel/cl/cl_kernel/pool_kernel.cl
+4
-2
src/operators/kernel/cl/concat_kernel.cpp
src/operators/kernel/cl/concat_kernel.cpp
+75
-0
src/operators/kernel/cl/conv_add_kernel.cpp
src/operators/kernel/cl/conv_add_kernel.cpp
+10
-2
src/operators/kernel/cl/conv_add_relu_kernel.cpp
src/operators/kernel/cl/conv_add_relu_kernel.cpp
+10
-0
src/operators/kernel/cl/fusion_fc_kernel.cpp
src/operators/kernel/cl/fusion_fc_kernel.cpp
+130
-0
src/operators/kernel/cl/lrn_kernel.cpp
src/operators/kernel/cl/lrn_kernel.cpp
+79
-0
src/operators/kernel/fpga/V2/conv_add_bn_kernel.cpp
src/operators/kernel/fpga/V2/conv_add_bn_kernel.cpp
+1
-1
src/operators/kernel/fpga/V2/conv_add_bn_relu_kernel.cpp
src/operators/kernel/fpga/V2/conv_add_bn_relu_kernel.cpp
+1
-1
src/operators/kernel/fpga/V2/conv_add_kernel.cpp
src/operators/kernel/fpga/V2/conv_add_kernel.cpp
+1
-1
src/operators/kernel/fpga/V2/conv_add_relu_kernel.cpp
src/operators/kernel/fpga/V2/conv_add_relu_kernel.cpp
+1
-1
src/operators/kernel/fpga/V2/conv_bn_kernel.cpp
src/operators/kernel/fpga/V2/conv_bn_kernel.cpp
+1
-1
src/operators/kernel/fpga/V2/conv_bn_relu_kernel.cpp
src/operators/kernel/fpga/V2/conv_bn_relu_kernel.cpp
+2
-1
src/operators/lrn_op.cpp
src/operators/lrn_op.cpp
+4
-1
src/operators/math/gemm.h
src/operators/math/gemm.h
+26
-34
src/operators/math/gemm_int8.cpp
src/operators/math/gemm_int8.cpp
+63
-710
src/operators/math/gemm_omp_int8.cpp
src/operators/math/gemm_omp_int8.cpp
+26
-263
src/operators/math/math_function.h
src/operators/math/math_function.h
+1
-6
src/operators/math/math_function_int8.cpp
src/operators/math/math_function_int8.cpp
+15
-38
src/operators/op_param.h
src/operators/op_param.h
+3
-3
test/common/test_gemm_perf.cpp
test/common/test_gemm_perf.cpp
+11
-36
test/fpga/test_resnet50.cpp
test/fpga/test_resnet50.cpp
+18
-13
未找到文件。
src/fpga/V1/api.cpp
浏览文件 @
8884755c
...
...
@@ -196,19 +196,35 @@ void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
arg
->
conv_arg
[
i
].
image
.
pad_height
=
(
uint32_t
)
padding_h
;
arg
->
conv_arg
[
i
].
image
.
pad_width
=
(
uint32_t
)
padding_w
;
arg
->
conv_arg
[
i
].
filter_scale_address
=
filter
->
scale
;
arg
->
conv_arg
[
i
].
filter_address
=
&
(
(
int8_t
*
)
filter_ptr
)[
i
*
element_num
*
filter_num_per_div
];
// NOLINT
arg
->
conv_arg
[
i
].
sb_address
=
&
bs_ptr
[
i
*
filter_num_per_div
*
2
];
// arg->conv_arg[i].filter_address = &(
// (int8_t *)filter_ptr)[i * element_num * filter_num_per_div]; //
// NOLINT
// arg->conv_arg[i].sb_address = &bs_ptr[i * filter_num_per_div * 2];
arg
->
conv_arg
[
i
].
filter_num
=
(
uint32_t
)(
i
==
n
-
1
?
channel
-
(
n
-
1
)
*
filter_num_per_div
// NOLINT
:
filter_num_per_div
);
size_t
filter_size
=
element_num
*
arg
->
conv_arg
[
i
].
filter_num
*
sizeof
(
int8_t
);
auto
filter_head
=
&
((
int8_t
*
)
filter_ptr
)[
i
*
element_num
*
filter_num_per_div
];
arg
->
conv_arg
[
i
].
filter_address
=
fpga_malloc
(
filter_size
);
memcpy
(
arg
->
conv_arg
[
i
].
filter_address
,
filter_head
,
filter_size
);
fpga_flush
(
arg
->
conv_arg
[
i
].
filter_address
,
filter_size
);
size_t
bs_size
=
2
*
arg
->
conv_arg
[
i
].
filter_num
*
sizeof
(
float
);
auto
bs_head
=
&
bs_ptr
[
i
*
filter_num_per_div
*
2
];
arg
->
conv_arg
[
i
].
sb_address
=
fpga_malloc
(
bs_size
);
memcpy
(
arg
->
conv_arg
[
i
].
sb_address
,
bs_head
,
bs_size
);
fpga_flush
(
arg
->
conv_arg
[
i
].
sb_address
,
bs_size
);
if
(
n
>
1
)
{
arg
->
conv_arg
[
i
].
output
.
scale_address
=
(
float
*
)
fpga_malloc
(
2
*
sizeof
(
float
));
// NOLINT
arg
->
conv_arg
[
i
].
output
.
address
=
fpga_malloc
(
inp
ut
->
dims
()[
2
]
*
align_to_x
(
inp
ut
->
dims
()[
3
]
*
arg
->
conv_arg
[
i
].
filter_num
,
fpga_malloc
(
o
ut
->
dims
()[
2
]
*
align_to_x
(
o
ut
->
dims
()[
3
]
*
arg
->
conv_arg
[
i
].
filter_num
,
IMAGE_ALIGNMENT
)
*
sizeof
(
half
));
}
else
{
...
...
@@ -221,6 +237,8 @@ void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
arg
->
concat_arg
.
scales_in
[
i
]
=
arg
->
conv_arg
[
i
].
output
.
scale_address
;
arg
->
concat_arg
.
channel_num
[
i
]
=
arg
->
conv_arg
[
i
].
filter_num
;
}
filter
->
reset_data_ptr
(
nullptr
);
fpga_free
(
bs_ptr
);
}
}
// namespace fpga
...
...
src/fpga/V1/filter.cpp
浏览文件 @
8884755c
...
...
@@ -137,24 +137,23 @@ void align_num(char **data_in, int num_per_div_before_alignment, int num,
int
align_chw
=
align_to_x
(
chw
,
FILTER_ELEMENT_ALIGNMENT
);
int
num_per_div_after_alignment
=
align_to_x
(
num_per_div_before_alignment
,
FILTER_NUM_ALIGNMENT
);
if
(
num_per_div_after_alignment
!=
num_per_div_before_alignment
)
{
char
*
tmp
=
*
data_in
;
int
div_num
=
(
num
+
num_per_div_before_alignment
-
1
)
/
num_per_div_before_alignment
;
int
num_element
=
div_num
*
num_per_div_after_alignment
*
align_chw
;
char
*
data_tmp
=
(
char
*
)
fpga_malloc
(
num_element
*
sizeof
(
char
));
// NOLINT
memset
(
data_tmp
,
0
,
num_element
*
sizeof
(
char
));
char
*
tmp
=
*
data_in
;
int
div_num
=
(
num
+
num_per_div_before_alignment
-
1
)
/
num_per_div_before_alignment
;
int
num_element
=
div_num
*
num_per_div_after_alignment
*
align_chw
;
char
*
data_tmp
=
(
char
*
)
fpga_malloc
(
num_element
*
sizeof
(
char
));
// NOLINT
for
(
i
=
0
;
i
<
div_num
;
i
++
)
{
memcpy
(
data_tmp
+
num_per_div_after_alignment
*
align_chw
*
i
,
*
data_in
+
num_per_div_before_alignment
*
align_chw
*
i
,
num_per_div_before_alignment
*
align_chw
);
}
memset
(
data_tmp
,
0
,
num_element
*
sizeof
(
char
));
*
data_in
=
data_tmp
;
fpga_free
(
tmp
);
for
(
i
=
0
;
i
<
div_num
;
i
++
)
{
memcpy
(
data_tmp
+
num_per_div_after_alignment
*
align_chw
*
i
,
*
data_in
+
num_per_div_before_alignment
*
align_chw
*
i
,
num_per_div_before_alignment
*
align_chw
);
}
*
data_in
=
data_tmp
;
fpga_free
(
tmp
);
}
void
reorder
(
char
**
data_in
,
int
num_after_alignment
,
int
chw
)
{
...
...
@@ -223,7 +222,10 @@ void format_filter(float **data_in, int num, int channel, int height, int width,
char
**
quantize_data
=
(
char
**
)
data_in
;
// NOLINT
convert_to_hwc
(
quantize_data
,
num
,
channel
,
height
,
width
);
align_element
(
quantize_data
,
num
,
chw
);
align_num
(
quantize_data
,
num_per_div_before_alignment
,
num
,
chw
);
if
(
num_after_alignment
!=
num
)
{
align_num
(
quantize_data
,
num_per_div_before_alignment
,
num
,
chw
);
}
reorder
(
quantize_data
,
num_after_alignment
,
chw
);
interleave
(
quantize_data
,
num_after_alignment
,
chw
);
fpga_flush
(
*
quantize_data
,
align_to_x
(
chw
,
FILTER_ELEMENT_ALIGNMENT
)
*
...
...
@@ -254,15 +256,18 @@ void format_fc_filter(float **data_in, int num, int channel, int height,
align_to_x
(
num_per_div_before_alignment
,
FILTER_NUM_ALIGNMENT
);
int
div_num
=
(
num
+
num_per_div_before_alignment
-
1
)
/
num_per_div_before_alignment
;
int
num_after_alignment
=
num_per_div_after_alignment
*
div_num
;
int
residual
=
num
%
num_per_div_before_alignment
;
int
num_after_alignment
=
num_per_div_after_alignment
*
((
residual
==
0
)
?
div_num
:
(
div_num
-
1
))
+
align_to_x
(
residual
,
FILTER_NUM_ALIGNMENT
);
quantize
(
data_in
,
data_size
,
max
);
char
**
quantize_data
=
(
char
**
)
data_in
;
// NOLINT
convert_fc_filter
(
quantize_data
,
num
,
chw
);
align_element
(
quantize_data
,
num
,
chw
);
align_num
(
quantize_data
,
num_per_div_before_alignment
,
num
,
chw
);
if
(
num_after_alignment
!=
num
)
{
align_num
(
quantize_data
,
num_per_div_before_alignment
,
num
,
chw
);
}
reorder
(
quantize_data
,
num_after_alignment
,
chw
);
interleave
(
quantize_data
,
num_after_alignment
,
chw
);
fpga_flush
(
*
quantize_data
,
align_to_x
(
chw
,
FILTER_ELEMENT_ALIGNMENT
)
*
...
...
src/fpga/V1/pe.cpp
浏览文件 @
8884755c
此差异已折叠。
点击以展开。
src/fpga/V2/api.cpp
浏览文件 @
8884755c
...
...
@@ -132,11 +132,11 @@ void format_concat_output(framework::Tensor *out, int height, int width,
}
int
format_conv_data
(
framework
::
Tensor
*
filter_tensor
,
framework
::
Tensor
*
ofm_tensor
,
float
*
bs_ptr
,
int
group
)
{
framework
::
Tensor
*
ofm_tensor
,
float
*
*
bs_ptr
,
int
group
)
{
float
max_value
=
fpga
::
filter_find_max
(
filter_tensor
);
fpga
::
format_filter
(
filter_tensor
,
max_value
,
group
);
int
aligned_num
=
get_aligned_filter_num
(
filter_tensor
);
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
fpga
::
format_bias_scale_array
(
bs_ptr
,
(
int
)
filter_tensor
->
dims
()[
0
],
// NOLINT
aligned_num
);
int
aligned_channel
=
fpga
::
get_conv_output_channel
(
filter_tensor
);
...
...
src/fpga/V2/api.h
浏览文件 @
8884755c
...
...
@@ -39,7 +39,7 @@ void format_bias_scale_array(float** bias_scale_array, int filter_num,
void
format_concat_output
(
framework
::
Tensor
*
out
,
int
height
,
int
width
,
uint32_t
out_channel
);
int
format_conv_data
(
framework
::
Tensor
*
filter_tensor
,
framework
::
Tensor
*
ofm_tensor
,
float
*
bs_ptr
,
int
group
);
framework
::
Tensor
*
ofm_tensor
,
float
*
*
bs_ptr
,
int
group
);
int
format_fc_data
(
framework
::
Tensor
*
filter_tensor
,
framework
::
Tensor
*
ofm_tensor
,
float
*
bs_ptr
);
void
fill_split_arg
(
struct
SplitConvArgs
*
arg
,
framework
::
Tensor
*
input
,
...
...
src/fpga/common/driver.cpp
浏览文件 @
8884755c
...
...
@@ -137,11 +137,13 @@ int fpga_regpoll(uint64_t reg, uint64_t val, int time) {
for
(
i
=
0
;
i
<
timeout
;
i
++
)
{
if
(
val
==
reg_readq
(
reg
))
{
std
::
cout
<<
"fpga_regpoll:"
<<
i
<<
"val:"
<<
val
<<
"reg:"
<<
reg
<<
std
::
endl
;
break
;
}
}
if
(
i
<
=
timeout
)
{
if
(
i
<
timeout
)
{
return
0
;
}
else
{
return
-
1
;
...
...
@@ -153,6 +155,12 @@ int memory_request(struct fpga_memory *memory, size_t size, uint64_t *addr) {
uint64_t
_nr
=
DIV_ROUND_UP
(
size
,
FPGA_PAGE_SIZE
);
unsigned
int
nr
=
(
unsigned
int
)
_nr
;
int
ret
=
0
;
DLOG
<<
size
;
DLOG
<<
_nr
;
DLOG
<<
nr
;
uint64_t
a_size
=
FPGA_PAGE_SIZE
*
nr
;
DLOG
<<
a_size
;
pthread_mutex_lock
(
&
memory
->
mutex
);
...
...
@@ -166,6 +174,7 @@ int memory_request(struct fpga_memory *memory, size_t size, uint64_t *addr) {
*
addr
=
address_ofset
;
}
else
{
DLOG
<<
"memory request failed!"
;
ret
=
-
ENOMEM
;
}
...
...
@@ -282,7 +291,7 @@ uint64_t vaddr_to_paddr(void *address) {
if
(
iter
!=
g_fpgainfo
.
fpga_vaddr2paddr_map
.
end
())
{
paddr
=
iter
->
second
;
}
else
{
DLOG
<<
"Invalid pointer
"
;
DLOG
<<
"Invalid pointer
: "
<<
address
;
}
return
paddr
;
...
...
@@ -348,6 +357,11 @@ void fpga_free_driver(void *ptr) {
fpga_bitmap
::
bitmap_clear
(
g_fpgainfo
.
memory_info
->
bitmap
,
pos
,
g_fpgainfo
.
memory_info
->
nr
[
pos
]);
pthread_mutex_unlock
(
&
g_fpgainfo
.
memory_info
->
mutex
);
auto
iter
=
g_fpgainfo
.
fpga_vaddr2paddr_map
.
find
(
ptr
);
if
(
iter
!=
g_fpgainfo
.
fpga_vaddr2paddr_map
.
end
())
{
g_fpgainfo
.
fpga_vaddr2paddr_map
.
erase
(
iter
);
}
}
else
{
DLOG
<<
"Invalid pointer"
;
}
...
...
src/fpga/common/driver.h
浏览文件 @
8884755c
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <cstring>
#include <map>
...
...
@@ -44,7 +45,7 @@ const int PE_IDX_POOLING = 1;
const
int
PE_IDX_EW
=
2
;
const
int
PE_IDX_BYPASS
=
3
;
enum
pe_status
{
IDLE
=
0
,
BUSY
=
1
};
enum
pe_status
{
IDLE
=
0
,
BUSY
=
1
,
ERROR
=
2
};
struct
MemoryCacheArgs
{
void
*
offset
;
...
...
@@ -58,7 +59,7 @@ struct MemoryCacheArgs {
struct
fpga_pe
{
char
type_name
[
MAX_TYPE_NAME_LENTH
+
1
];
struct
pe_data_s
*
outer
;
pe_status
status
;
// 0=idle 1=busy -1=fail
pe_status
status
;
uint64_t
interrupt_cnt
;
};
...
...
@@ -106,6 +107,8 @@ inline uint64_t reg_readq(uint32_t offset) {
uint64_t
value
=
*
(
volatile
uint64_t
*
)((
uint8_t
*
)
g_fpgainfo
.
FpgaRegVirAddr
+
// NOLINT
offset
);
// NOLINT
// DLOG << "read end";
usleep
(
10
);
return
value
;
}
...
...
@@ -114,6 +117,8 @@ inline void reg_writeq(uint64_t value, uint32_t offset) {
// DLOG << "offset : " << offset << ", value : " << value;
*
(
volatile
uint64_t
*
)((
uint8_t
*
)
g_fpgainfo
.
FpgaRegVirAddr
+
// NOLINT
offset
)
=
value
;
// DLOG << "write end";
usleep
(
10
);
}
int
open_device_driver
();
...
...
src/fpga/common/fpga_common.h
浏览文件 @
8884755c
...
...
@@ -74,12 +74,21 @@ struct ConcatArgs {
void
*
image_out
;
float
*
scale_out
;
uint32_t
*
channel_num
;
//
uint32_t* aligned_channel_num;
//
uint32_t out_channel;
uint32_t
*
aligned_channel_num
;
uint32_t
out_channel
;
uint32_t
height
;
uint32_t
width
;
};
struct
SplitConvArgs
{
uint32_t
split_num
;
uint32_t
group_num
;
uint32_t
filter_num
;
struct
ImageOutputArgs
output
;
struct
ConvArgs
*
conv_arg
;
struct
ConcatArgs
concat_arg
;
};
struct
SplitArgs
{
uint32_t
image_num
;
int16_t
*
image_in
;
...
...
@@ -91,15 +100,6 @@ struct SplitArgs {
uint32_t
width
;
};
struct
SplitConvArgs
{
uint32_t
split_num
;
uint32_t
group_num
;
uint32_t
filter_num
;
struct
ImageOutputArgs
output
;
struct
ConvArgs
*
conv_arg
;
struct
ConcatArgs
concat_arg
;
};
struct
PoolingArgs
{
int16_t
mode
;
// mode: 0:max, 1:avg
int16_t
kernel_reciprocal
;
...
...
@@ -127,7 +127,14 @@ struct BypassArgs {
};
struct
DeconvArgs
{
struct
ConvArgs
conv_arg
;
uint32_t
sub_conv_num
;
uint32_t
group_num
;
uint32_t
filter_num
;
uint32_t
omit_size
;
uint32_t
sub_output_width
;
uint32_t
sub_output_height
;
struct
ImageOutputArgs
output
;
struct
ConvArgs
*
conv_args
;
};
static
inline
int
align_to_x
(
int
num
,
int
x
)
{
return
(
num
+
x
-
1
)
/
x
*
x
;
}
...
...
src/framework/cl/cl_image.h
浏览文件 @
8884755c
...
...
@@ -68,6 +68,13 @@ class CLImage {
InitCLImage
(
context
,
command_queue
,
folder_converter
);
}
void
InitNormalCLImage
(
cl_context
context
,
cl_command_queue
command_queue
)
{
PADDLE_MOBILE_ENFORCE
(
tensor_data_
!=
nullptr
,
" need call SetTensorData first"
);
CLImageConverterNormal
*
normal_converter
=
new
CLImageConverterNormal
();
InitCLImage
(
context
,
command_queue
,
normal_converter
);
}
void
InitCLImage
(
cl_context
context
,
cl_command_queue
command_queue
,
CLImageConverterBase
*
converter
)
{
if
(
image_converter_
!=
nullptr
)
{
...
...
src/operators/feed_op.cpp
浏览文件 @
8884755c
...
...
@@ -22,7 +22,6 @@ void FeedOp<DeviceType, T>::InferShape() const {
auto
out_dims
=
this
->
param_
.
Out
()
->
dims
();
out_dims
[
0
]
=
this
->
param_
.
BatchSize
();
auto
input_dims
=
this
->
param_
.
InputX
()
->
dims
();
DLOG
<<
input_dims
.
size
();
if
(
input_dims
.
size
()
==
4
)
{
this
->
param_
.
Out
()
->
Resize
(
input_dims
);
}
else
{
...
...
src/operators/fusion_fc_op.cpp
浏览文件 @
8884755c
...
...
@@ -60,6 +60,9 @@ REGISTER_FUSION_MATCHER(fusion_fc, ops::FusionFcMatcher);
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU
(
fusion_fc
,
ops
::
FusionFcOp
);
#endif
#ifdef PADDLE_MOBILE_CL
REGISTER_OPERATOR_CL
(
fusion_fc
,
ops
::
FusionFcOp
);
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
REGISTER_OPERATOR_MALI_GPU
(
fusion_fc
,
ops
::
FusionFcOp
);
#endif
...
...
src/operators/kernel/arm/dequant_bn_relu_kernel.cpp
浏览文件 @
8884755c
/* Copyright (c) 201
f
8 PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -167,8 +167,9 @@ void DequantBNQuantCompute(const FusionDequantAddBNQuantParam<CPU> *param) {
// if (param->is_static_) {
if
(
true
)
{
max_abs
=
param
->
static_scale_
;
max_abs
=
param
->
offline_scale_
->
data
<
float
>
()[
0
]
;
float
quant_scale
=
127.
f
/
max_abs
;
#pragma omp parallel for collapse(2)
for
(
int
batch
=
0
;
batch
<
batch_size
;
++
batch
)
{
for
(
int
c
=
0
;
c
<
channels
;
++
c
)
{
...
...
@@ -287,8 +288,9 @@ void DequantBNReluQuantCompute(
// if (param->is_static_) {
if
(
true
)
{
max_abs
=
param
->
static_scale_
;
max_abs
=
param
->
offline_scale_
->
data
<
float
>
()[
0
]
;
float
quant_scale
=
127.
f
/
max_abs
;
#pragma omp parallel for collapse(2)
for
(
int
batch
=
0
;
batch
<
batch_size
;
++
batch
)
{
for
(
int
c
=
0
;
c
<
channels
;
++
c
)
{
...
...
src/operators/kernel/central-arm-func/conv_arm_func.h
浏览文件 @
8884755c
...
...
@@ -107,15 +107,9 @@ inline void GemmConv(const ConvParam<CPU> ¶m) {
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
if
(
param
.
Input
()
->
type
()
==
typeid
(
int8_t
))
{
math
::
matmul_int8
(
filter_slice
,
false
,
col_matrix
,
false
,
math
::
matmul
<
Itype
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
));
}
else
{
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
));
}
}
}
}
...
...
src/operators/kernel/central-arm-func/mul_arm_func.h
浏览文件 @
8884755c
...
...
@@ -73,8 +73,8 @@ void MulCompute(const MulParam<CPU> ¶m) {
}
if
(
param
.
InputX
()
->
type
()
==
typeid
(
int8_t
))
{
out
->
mutable_data
<
int32_t
>
();
math
::
matmul
_int8
(
x_matrix
,
false
,
y_matrix
,
false
,
static_cast
<
float
>
(
1
)
,
out
,
static_cast
<
floa
t
>
(
0
));
math
::
matmul
<
int8_t
>
(
x_matrix
,
false
,
y_matrix
,
false
,
static_cast
<
int8_t
>
(
1
),
out
,
static_cast
<
int8_
t
>
(
0
));
}
else
{
out
->
mutable_data
<
float
>
();
...
...
src/operators/kernel/cl/cl_kernel/concat_kernel.cl
浏览文件 @
8884755c
...
...
@@ -13,7 +13,27 @@ See the License for the specific language governing permissions and
limitations
under
the
License.
*/
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
/*
__kernel
void
concatByC0
(
__read_only
image2d_t
input_image,
__write_only
image2d_t
output_image,
__private
const
int
out_W
)
{
const
int
in_c
=
get_global_id
(
0
)
;
const
int
in_w
=
get_global_id
(
1
)
;
const
int
in_nh
=
get_global_id
(
2
)
;
int2
input_pos
;
input_pos.x
=
in_c
*
out_W
+
in_w
;
input_pos.y
=
in_nh
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
half4
input
;
input
=
read_imageh
(
input_image,
sampler,input_pos
)
;
write_imageh
(
output_image,
input_pos,
input
)
;
}
__kernel
void
concatByC
(
__read_only
image2d_t
input_image1,
__read_only
image2d_t
input_image2,
...
...
@@ -24,13 +44,13 @@ __kernel void concatByC(__read_only image2d_t input_image1,
__private
const
int
out_C_Start,
__private
const
int
in_W,
__private
const
int
in_H,
__private
const
int
in
t
_C1,
__private
const
int
in
t
_C2
)
{
__private
const
int
in_C1,
__private
const
int
in_C2
)
{
const
int
in_c
=
get_global_id
(
0
)
;
const
int
in_w
=
get_global_id
(
1
)
;
const
int
in_nh
=
get_global_id
(
2
)
;
int
out_c1
=
(
out_C_Start
)
/4
+
in_c
;
int
out_c1
=
(
out_C_Start
+
3
)
/4
-1
+
in_c
;
int
out_c2
=
out_c1
+
1
;
...
...
@@ -45,7 +65,7 @@ __kernel void concatByC(__read_only image2d_t input_image1,
int2
input_pos1
;
if
(
in_c==0
)
{
input_pos1.x
=
((
in_C1
-1
)
/4
)
*
in_W
+
in_w
;
input_pos1.x
=
((
in_C1
+
3
)
/4-1
)
*
in_W
+
in_w
;
}else{
input_pos1.x
=
(
in_c
-
1
)
*
in_W
+
in_w
;
}
...
...
@@ -103,26 +123,6 @@ __kernel void concatByC(__read_only image2d_t input_image1,
write_imageh
(
output_image,
output_pos2,
output2
)
;
}
__kernel
void
concatByW0
(
__read_only
image2d_t
input_image,
__write_only
image2d_t
output_image,
__private
const
int
out_W
)
{
const
int
in_c
=
get_global_id
(
0
)
;
const
int
in_w
=
get_global_id
(
1
)
;
const
int
in_nh
=
get_global_id
(
2
)
;
int2
input_pos
=
in_c
*
out_W
+
in_w
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
half4
input
;
input
=
read_imageh
(
input_image,
sampler,input_pos
)
;
write_imageh
(
output_image,
input_pos,
input
)
;
}
*/
__kernel
void
concatByH
(
__read_only
image2d_t
input_image,
__write_only
image2d_t
output_image,
...
...
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
浏览文件 @
8884755c
...
...
@@ -692,6 +692,238 @@ __kernel void conv_1x1_4(__private const int global_size_dim0,
*/
__kernel void conv_7x7(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input_image,
__read_only image2d_t filter_image,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height,/* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
if (out_c >= global_size_dim0 ||
out_w >= global_size_dim1 ||
out_nh >= global_size_dim2) {
return;
}
const filter_n0 = 4 * out_c + 0;
const filter_n1 = 4 * out_c + 1;
const filter_n2 = 4 * out_c + 2;
const filter_n3 = 4 * out_c + 3;
int2 stride_xy;
stride_xy.x = stride;
stride_xy.y = stride;
int2 ouput_pos_in_one_block;
ouput_pos_in_one_block.x = out_w;
ouput_pos_in_one_block.y = out_nh;
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
|
CLK_FILTER_NEAREST;
int2 in_pos_in_one_block;
in_pos_in_one_block.x = ouput_pos_in_one_block.x * stride + offset;
in_pos_in_one_block.y = ouput_pos_in_one_block.y * stride + offset;
#ifdef BIASE
half4 output = read_imageh(bias, sampler, (int2)(out_c, 0));
#else
half4 output = 0.0f;
#endif
half4 input;
half4 filter[4];
int2 filter_pos0;
int2 filter_pos1;
int2 filter_pos2;
int2 filter_pos3;
for (int i = 0; i < input_c; ++i) {
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
for(int j = 0; j < 7; j++){
for(int k = 0; k < 7; k++){
input = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + (j - 3) * dilation, pos_in.y + (k - 3) * dilation)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x + (j - 3) * dilation < 0 || in_pos_in_one_block.y + (k - 3) * dilation < 0 || in_pos_in_one_block.x + (j - 3) * dilation >= input_width || in_pos_in_one_block.y + (k - 3) * dilation >= input_height) << 15));
int filter_h = k;
int filter_w = j;
int filter_c = i;
filter_pos0.x = filter_c * 7 + filter_w;
filter_pos0.y = filter_n0 * 7 + filter_h;
filter_pos1.x = filter_c * 7 + filter_w;
filter_pos1.y = filter_n1 * 7 + filter_h;
filter_pos2.x = filter_c * 7 + filter_w;
filter_pos2.y = filter_n2 * 7 + filter_h;
filter_pos3.x = filter_c * 7 + filter_w;
filter_pos3.y = filter_n3 * 7 + filter_h;
filter[0] = read_imageh(filter_image, sampler, filter_pos0);
filter[1] = read_imageh(filter_image, sampler, filter_pos1);
filter[2] = read_imageh(filter_image, sampler, filter_pos2);
filter[3] = read_imageh(filter_image, sampler, filter_pos3);
output.x += dot(input, filter[0]);
output.y += dot(input, filter[1]);
output.z += dot(input, filter[2]);
output.w += dot(input, filter[3]);
}
}
}
#ifdef BATCH_NORM
output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output = activation(output);
#endif
write_imageh(output_image, (int2)(out_c * global_size_dim1 + out_w, out_nh), output);
}
__kernel void conv_5x5(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input_image,
__read_only image2d_t filter_image,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height,/* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
if (out_c >= global_size_dim0 ||
out_w >= global_size_dim1 ||
out_nh >= global_size_dim2) {
return;
}
const filter_n0 = 4 * out_c + 0;
const filter_n1 = 4 * out_c + 1;
const filter_n2 = 4 * out_c + 2;
const filter_n3 = 4 * out_c + 3;
int2 stride_xy;
stride_xy.x = stride;
stride_xy.y = stride;
int2 ouput_pos_in_one_block;
ouput_pos_in_one_block.x = out_w;
ouput_pos_in_one_block.y = out_nh;
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
|
CLK_FILTER_NEAREST;
int2 in_pos_in_one_block;
in_pos_in_one_block.x = ouput_pos_in_one_block.x * stride + offset;
in_pos_in_one_block.y = ouput_pos_in_one_block.y * stride + offset;
#ifdef BIASE
half4 output = read_imageh(bias, sampler, (int2)(out_c, 0));
#else
half4 output = 0.0f;
#endif
half4 input;
half4 filter[4];
int2 filter_pos0;
int2 filter_pos1;
int2 filter_pos2;
int2 filter_pos3;
for (int i = 0; i < input_c; ++i) {
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
for(int j = 0; j < 5; j++){
for(int k = 0; k < 5; k++){
input = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + (j - 2) * dilation, pos_in.y + (k - 2) * dilation)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x + (j - 2) * dilation < 0 || in_pos_in_one_block.y + (k - 2) * dilation < 0 || in_pos_in_one_block.x + (j - 2) * dilation >= input_width |
|
in_pos_in_one_block.y
+
(
k
-
2
)
*
dilation
>=
input_height
)
<<
15
))
;
int
filter_h
=
k
;
int
filter_w
=
j
;
int
filter_c
=
i
;
filter_pos0.x
=
filter_c
*
5
+
filter_w
;
filter_pos0.y
=
filter_n0
*
5
+
filter_h
;
filter_pos1.x
=
filter_c
*
5
+
filter_w
;
filter_pos1.y
=
filter_n1
*
5
+
filter_h
;
filter_pos2.x
=
filter_c
*
5
+
filter_w
;
filter_pos2.y
=
filter_n2
*
5
+
filter_h
;
filter_pos3.x
=
filter_c
*
5
+
filter_w
;
filter_pos3.y
=
filter_n3
*
5
+
filter_h
;
filter[0]
=
read_imageh
(
filter_image,
sampler,
filter_pos0
)
;
filter[1]
=
read_imageh
(
filter_image,
sampler,
filter_pos1
)
;
filter[2]
=
read_imageh
(
filter_image,
sampler,
filter_pos2
)
;
filter[3]
=
read_imageh
(
filter_image,
sampler,
filter_pos3
)
;
output.x
+=
dot
(
input,
filter[0]
)
;
output.y
+=
dot
(
input,
filter[1]
)
;
output.z
+=
dot
(
input,
filter[2]
)
;
output.w
+=
dot
(
input,
filter[3]
)
;
}
}
}
#
ifdef
BATCH_NORM
output
=
output
*
read_imageh
(
new_scale,
sampler,
(
int2
)(
out_c,
0
))
+
read_imageh
(
new_biase,
sampler,
(
int2
)(
out_c,
0
))
;
#
endif
#
ifdef
RELU
output
=
activation
(
output
)
;
#
endif
write_imageh
(
output_image,
(
int2
)(
out_c
*
global_size_dim1
+
out_w,
out_nh
)
,
output
)
;
}
...
...
src/operators/kernel/cl/cl_kernel/lrn_kernel.cl
0 → 100644
浏览文件 @
8884755c
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
__kernel
void
lrn
(
__read_only
image2d_t
input_image,
__write_only
image2d_t
output_image,
__private
const
int
out_C,
__private
const
int
out_W,
__private
const
int
n,
__private
const
float
k,
__private
const
float
alpha,
__private
const
float
beta
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
const
int
out_c0
=
out_c
*
4
;
const
int
out_c1
=
out_c
*
4
+
1
;
const
int
out_c2
=
out_c
*
4+
2
;
const
int
out_c3
=
out_c
*
4+
3
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
const
int
start
=
-
(
n-1
)
/2
;
const
end
=
start
+
n
;
float
sqr_sum0
=
0.0f
;
float
sqr_sum1
=
0.0f
;
float
sqr_sum2
=
0.0f
;
float
sqr_sum3
=
0.0f
;
int
input_c0,input_c1,input_c2,input_c3
;
int2
input_pos0,input_pos1,input_pos2,input_pos3
;
float4
input0,input1,input2,input3
;
for
(
int
i
=
start
; i < end ;i++){
if
(
out_c0
+
i>=0&&out_c0
+
i<out_C
)
{
input_c0
=
(
out_c0
+
i
)
/4
;
input_pos0.x
=
input_c0
*
out_W
+
out_w
;
input_pos0.y
=
out_nh
;
input0
=
convert_float4
(
read_imageh
(
input_image,
sampler,input_pos0
))
;
if
((
out_c0
+
i
)
%4
==
0
)
{
sqr_sum0
+=
input0.x
*
input0.x
;
}else
if
((
out_c0
+
i
)
%4
==
1
)
{
sqr_sum0
+=
input0.y
*
input0.y
;
}else
if
((
out_c0
+
i
)
%4
==
2
)
{
sqr_sum0
+=
input0.z
*
input0.z
;
}else{
sqr_sum0
+=
input0.w
*
input0.w
;
}
}
if
(
out_c1
+
i>=0&&out_c1
+
i<out_C
)
{
input_c1
=
(
out_c1
+
i
)
/4
;
input_pos1.x
=
input_c1
*
out_W
+
out_w
;
input_pos1.y
=
out_nh
;
input1
=
convert_float4
(
read_imageh
(
input_image,
sampler,input_pos1
))
;
if
((
out_c1
+
i
)
%4
==
0
)
{
sqr_sum1
+=
input1.x
*
input1.x
;
}else
if
((
out_c1
+
i
)
%4
==
1
)
{
sqr_sum1
+=
input1.y
*
input1.y
;
}else
if
((
out_c1
+
i
)
%4
==
2
)
{
sqr_sum1
+=
input1.z
*
input1.z
;
}else{
sqr_sum1
+=
input1.w
*
input1.w
;
}
}
if
(
out_c2
+
i>=0&&out_c2
+
i<out_C
)
{
input_c2
=
(
out_c2
+
i
)
/4
;
input_pos2.x
=
input_c2
*
out_W
+
out_w
;
input_pos2.y
=
out_nh
;
input2
=
convert_float4
(
read_imageh
(
input_image,
sampler,input_pos2
))
;
if
((
out_c2
+
i
)
%4
==
0
)
{
sqr_sum2
+=
input2.x
*
input2.x
;
}else
if
((
out_c2
+
i
)
%4
==
1
)
{
sqr_sum2
+=
input2.y
*
input2.y
;
}else
if
((
out_c2
+
i
)
%4
==
2
)
{
sqr_sum2
+=
input2.z
*
input2.z
;
}else{
sqr_sum2
+=
input2.w
*
input2.w
;
}
}
if
(
out_c3
+
i>=0&&out_c3
+
i<out_C
)
{
input_c3
=
(
out_c3
+
i
)
/4
;
input_pos3.x
=
input_c3
*
out_W
+
out_w
;
input_pos3.y
=
out_nh
;
input3
=
convert_float4
(
read_imageh
(
input_image,
sampler,input_pos3
))
;
if
((
out_c3
+
i
)
%4
==
0
)
{
sqr_sum3
+=
input3.x
*
input3.x
;
}else
if
((
out_c3
+
i
)
%4
==
1
)
{
sqr_sum3
+=
input3.y
*
input3.y
;
}else
if
((
out_c3
+
i
)
%4
==
2
)
{
sqr_sum3
+=
input3.z
*
input3.z
;
}else{
sqr_sum3
+=
input3.w
*
input3.w
;
}
}
}
float4
output
=
(
float4
)
0.0f
;
float4
input
;
int2
output_pos
;
output_pos.x
=
out_c
*
out_W
+
out_w
;
output_pos.y
=
out_nh
;
input
=
convert_float4
(
read_imageh
(
input_image,
sampler,output_pos
))
;
output.x
=
input.x
/
(
pow
(
k
+
alpha
*
(
sqr_sum0
)
,
beta
))
;
if
(
out_C
-
4
*
out_c>=2
)
{
output.y
=
input.y
/
(
pow
(
k
+
alpha
*
(
sqr_sum1
)
,
beta
))
;
}
if
(
out_C
-
4
*
out_c>=3
)
{
output.z
=
input.z
/
(
pow
(
k
+
alpha
*
(
sqr_sum2
)
,
beta
))
;
}
if
(
out_C
-
4
*
out_c>=4
)
{
output.w
=
input.w
/
(
pow
(
k
+
alpha
*
(
sqr_sum3
)
,
beta
))
;
}
half4
tmp
=
convert_half4
(
output
)
;
write_imageh
(
output_image,
output_pos,
tmp
)
;
}
\ No newline at end of file
src/operators/kernel/cl/cl_kernel/pool_kernel.cl
浏览文件 @
8884755c
...
...
@@ -31,11 +31,13 @@ __kernel void pool_max(
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
| CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
int
start_h
=
max
(
out_h
*
stride_h
-
pad_top,
0
)
;
int
start_h
=
out_h
*
stride_h
-
pad_top
;
int
end_h
=
min
(
start_h
+
ksize_h,
in_height
)
;
start_h
=
max
(
start_h,0
)
;
int
start_w
=
max
(
out_w
*
stride_w
-
pad_left,
0
)
;
int
start_w
=
out_w
*
stride_w
-
pad_left
;
int
end_w
=
min
(
start_w
+
ksize_w,
in_width
)
;
start_w
=
max
(
start_w,0
)
;
const
int
pos_in_x
=
out_c
*
in_width
;
const
int
pos_in_y
=
out_n
*
in_height
;
...
...
src/operators/kernel/cl/concat_kernel.cpp
浏览文件 @
8884755c
...
...
@@ -23,12 +23,17 @@ template <>
bool
ConcatKernel
<
GPU_CL
,
float
>::
Init
(
ConcatParam
<
GPU_CL
>
*
param
)
{
if
(
param
->
Out
()
->
dims
().
size
()
<
4
)
{
this
->
cl_helper_
.
AddKernel
(
"concatByH"
,
"concat_kernel.cl"
);
}
else
if
(
param
->
Out
()
->
dims
().
size
()
==
4
)
{
this
->
cl_helper_
.
AddKernel
(
"concatByC0"
,
"concat_kernel.cl"
);
this
->
cl_helper_
.
AddKernel
(
"concatByC"
,
"concat_kernel.cl"
);
}
return
true
;
}
template
<
>
void
ConcatKernel
<
GPU_CL
,
float
>::
Compute
(
const
ConcatParam
<
GPU_CL
>
&
param
)
{
DLOG
<<
"yangfei50"
;
DLOG
<<
param
.
Out
()
->
dims
();
if
(
param
.
Out
()
->
dims
().
size
()
<
4
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
inputs
=
param
.
Inputs
();
...
...
@@ -62,6 +67,76 @@ void ConcatKernel<GPU_CL, float>::Compute(const ConcatParam<GPU_CL> ¶m) {
out_H_Start
+=
inputs
[
i
]
->
dims
()[
0
];
}
}
}
else
{
auto
kernel0
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
kernel1
=
this
->
cl_helper_
.
KernelAt
(
1
);
auto
inputs
=
param
.
Inputs
();
auto
*
output_image
=
param
.
Out
()
->
GetCLImage
();
int
out_C_Start
=
0
;
auto
input_image
=
inputs
[
0
]
->
GetCLImage
();
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
inputs
[
0
]);
int
out_W
=
param
.
Out
()
->
dims
()[
3
];
cl_int
status
;
status
=
clSetKernelArg
(
kernel0
,
0
,
sizeof
(
cl_mem
),
&
input_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel0
,
1
,
sizeof
(
cl_mem
),
&
output_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel0
,
2
,
sizeof
(
int
),
&
out_W
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel0
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
out_C_Start
+=
inputs
[
0
]
->
dims
()[
1
];
for
(
int
i
=
1
;
i
<
inputs
.
size
();
i
++
)
{
auto
input_image1
=
inputs
[
i
-
1
]
->
GetCLImage
();
auto
input_image2
=
inputs
[
i
]
->
GetCLImage
();
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
inputs
[
i
]);
int
out_C
=
param
.
Out
()
->
dims
()[
1
];
int
out_H
=
param
.
Out
()
->
dims
()[
2
];
int
in_W
=
inputs
[
i
]
->
dims
()[
3
];
int
in_H
=
inputs
[
i
]
->
dims
()[
2
];
int
in_C1
=
inputs
[
i
-
1
]
->
dims
()[
1
];
int
in_C2
=
inputs
[
i
]
->
dims
()[
1
];
DLOG
<<
"第"
<<
i
<<
"个"
;
DLOG
<<
"out_C="
<<
out_C
;
DLOG
<<
"out_H="
<<
out_H
;
DLOG
<<
"in_W="
<<
in_W
;
DLOG
<<
"in_H="
<<
in_H
;
DLOG
<<
"in_C1="
<<
in_C1
;
DLOG
<<
"in_C2="
<<
in_C2
;
DLOG
<<
"out_C_Start = "
<<
out_C_Start
;
status
=
clSetKernelArg
(
kernel1
,
0
,
sizeof
(
cl_mem
),
&
input_image1
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel1
,
1
,
sizeof
(
cl_mem
),
&
input_image2
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel1
,
2
,
sizeof
(
cl_mem
),
&
output_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel1
,
3
,
sizeof
(
int
),
&
out_C
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel1
,
4
,
sizeof
(
int
),
&
out_H
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel1
,
5
,
sizeof
(
int
),
&
out_W
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel1
,
6
,
sizeof
(
int
),
&
out_C_Start
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel1
,
7
,
sizeof
(
int
),
&
in_W
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel1
,
8
,
sizeof
(
int
),
&
in_H
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel1
,
9
,
sizeof
(
int
),
&
in_C1
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel1
,
10
,
sizeof
(
int
),
&
in_C2
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel1
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
out_C_Start
+=
inputs
[
i
]
->
dims
()[
1
];
}
}
}
...
...
src/operators/kernel/cl/conv_add_kernel.cpp
浏览文件 @
8884755c
...
...
@@ -51,8 +51,16 @@ bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
this
->
cl_helper_
.
AddKernel
(
"conv_3x3"
,
"conv_add_kernel.cl"
);
}
else
{
PADDLE_MOBILE_THROW_EXCEPTION
(
" not support "
);
}
else
if
(
param
->
Filter
()
->
dims
()[
2
]
==
7
&&
param
->
Filter
()
->
dims
()[
3
]
==
7
)
{
param
->
Filter
()
->
InitCLImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
this
->
cl_helper_
.
AddKernel
(
"conv_7x7"
,
"conv_add_kernel.cl"
);
}
else
if
(
param
->
Filter
()
->
dims
()[
2
]
==
5
&&
param
->
Filter
()
->
dims
()[
3
]
==
5
)
{
param
->
Filter
()
->
InitCLImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
this
->
cl_helper_
.
AddKernel
(
"conv_5x5"
,
"conv_add_kernel.cl"
);
}
return
true
;
...
...
src/operators/kernel/cl/conv_add_relu_kernel.cpp
浏览文件 @
8884755c
...
...
@@ -52,6 +52,16 @@ bool ConvAddReluKernel<GPU_CL, float>::Init(
this
->
cl_helper_
.
AddKernel
(
"conv_3x3"
,
"conv_add_relu_kernel.cl"
);
}
else
if
(
param
->
Filter
()
->
dims
()[
2
]
==
7
&&
param
->
Filter
()
->
dims
()[
3
]
==
7
)
{
param
->
Filter
()
->
InitCLImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
this
->
cl_helper_
.
AddKernel
(
"conv_7x7"
,
"conv_add_relu_kernel.cl"
);
}
else
if
(
param
->
Filter
()
->
dims
()[
2
]
==
5
&&
param
->
Filter
()
->
dims
()[
3
]
==
5
)
{
param
->
Filter
()
->
InitCLImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
this
->
cl_helper_
.
AddKernel
(
"conv_5x5"
,
"conv_add_relu_kernel.cl"
);
}
else
{
PADDLE_MOBILE_THROW_EXCEPTION
(
" not support "
);
}
...
...
src/operators/kernel/cl/fusion_fc_kernel.cpp
0 → 100644
浏览文件 @
8884755c
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_FC_OP
#include "operators/kernel/fusion_fc_kernel.h"
#include "operators/math/math_function.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
FusionFcKernel
<
GPU_CL
,
float
>::
Init
(
FusionFcParam
<
GPU_CL
>
*
param
)
{
param
->
InputY
()
->
InitNormalCLImage
(
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
());
param
->
InputZ
()
->
InitNormalCLImage
(
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
());
this
->
cl_helper_
.
AddKernel
(
"fetch"
,
"fetch_kernel.cl"
);
this
->
cl_helper_
.
AddKernel
(
"feed"
,
"feed_kernel.cl"
);
return
true
;
}
template
<
typename
P
>
void
FusionFcCompute
(
const
FusionFcParam
<
GPU_CL
>
&
param
,
cl_context
context
,
cl_command_queue
commandQueue
,
cl_kernel
kernel0
,
cl_kernel
kernel1
)
{
auto
*
input_x_image
=
param
.
InputX
();
auto
*
input_y_image
=
param
.
InputY
();
auto
*
input_z_image
=
param
.
InputZ
();
int
axis
=
param
.
Axis
();
auto
*
out_image
=
param
.
Out
();
Tensor
*
input_x
=
new
Tensor
();
input_x
->
Resize
(
input_x_image
->
dims
());
input_x
->
mutable_data
<
float
>
();
framework
::
CLImageToTensor
(
input_x_image
,
input_x
,
context
,
commandQueue
,
kernel0
);
Tensor
*
input_y
=
new
Tensor
();
input_y
->
Resize
(
input_y_image
->
dims
());
input_y
->
mutable_data
<
float
>
();
framework
::
CLImageToTensor
(
input_y_image
,
input_y
,
context
,
commandQueue
,
kernel0
);
Tensor
*
input_z
=
new
Tensor
();
input_z
->
Resize
(
input_z_image
->
dims
());
input_z
->
mutable_data
<
float
>
();
framework
::
CLImageToTensor
(
input_z_image
,
input_z
,
context
,
commandQueue
,
kernel0
);
auto
*
input_z_data
=
input_z
->
data
<
float
>
();
DLOG
<<
*
input_x
;
DLOG
<<
*
input_y
;
DLOG
<<
*
input_z
;
Tensor
*
out
=
new
Tensor
();
out
->
Resize
(
out_image
->
dims
());
out
->
mutable_data
<
float
>
();
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
const
Tensor
x_matrix
=
input_x
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
input_x
,
param
.
XNumColDims
())
:
*
input_x
;
const
Tensor
y_matrix
=
input_y
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
input_y
,
param
.
YNumColDims
())
:
*
input_y
;
auto
out_dim
=
out
->
dims
();
if
(
out_dim
.
size
()
!=
2
)
{
out
->
Resize
({
x_matrix
.
dims
()[
0
],
y_matrix
.
dims
()[
1
]});
}
PADDLE_MOBILE_ENFORCE
(
out_dim
.
size
()
==
2
,
" out_dim.size must be 2."
);
PADDLE_MOBILE_ENFORCE
(
input_z
->
dims
().
size
()
==
1
,
"inpu_z size must be 1"
);
PADDLE_MOBILE_ENFORCE
(
out_dim
[
1
]
==
input_z
->
dims
()[
0
],
" out_dim.size must be 2."
);
axis
=
(
axis
==
-
1
?
out_dim
.
size
()
-
input_z
->
dims
().
size
()
:
axis
);
PADDLE_MOBILE_ENFORCE
(
axis
==
1
,
" to fit broadcast, axis = 1. "
);
int64_t
classes
=
input_z
->
numel
();
for
(
int
i
=
0
;
i
<
out_dim
[
0
];
i
++
)
{
memory
::
Copy
(
out_data
+
i
*
classes
,
input_z_data
,
sizeof
(
float
)
*
classes
);
}
// for (int i = 0; i < out->numel(); i++) {
// DLOG << out_data[i];
// }
// bias_data的维度和out的维度一致
math
::
matmul
<
float
>
(
x_matrix
,
false
,
y_matrix
,
false
,
static_cast
<
float
>
(
1
),
out
,
static_cast
<
float
>
(
1
),
false
);
out_image
->
InitEmptyImage
(
context
,
commandQueue
,
out
->
dims
());
framework
::
TensorToCLImage
(
out
,
out_image
,
context
,
commandQueue
,
kernel1
);
DLOG
<<
*
out
;
delete
(
input_x
);
delete
(
input_y
);
delete
(
input_z
);
delete
(
out
);
PADDLE_MOBILE_ENFORCE
(
out_dim
.
size
()
==
2
,
" out_dim.size must be 2."
);
// if (out_dim.size() != 2) {
// out->Resize(out_dim);
// }
}
template
<
>
void
FusionFcKernel
<
GPU_CL
,
float
>::
Compute
(
const
FusionFcParam
<
GPU_CL
>
&
param
)
{
auto
kernel0
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
kernel1
=
this
->
cl_helper_
.
KernelAt
(
1
);
FusionFcCompute
<
float
>
(
param
,
this
->
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
(),
kernel0
,
kernel1
);
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/cl/lrn_kernel.cpp
0 → 100644
浏览文件 @
8884755c
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef LRN_OP
#include "operators/kernel/lrn_kernel.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
LrnKernel
<
GPU_CL
,
float
>::
Init
(
LrnParam
<
GPU_CL
>
*
param
)
{
this
->
cl_helper_
.
AddKernel
(
"lrn"
,
"lrn_kernel.cl"
);
return
true
;
}
template
<
>
void
LrnKernel
<
GPU_CL
,
float
>::
Compute
(
const
LrnParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Out
());
auto
input_image
=
param
.
InputX
()
->
GetCLImage
();
auto
x_dims
=
param
.
InputX
()
->
dims
();
auto
output_image
=
param
.
Out
()
->
GetCLImage
();
const
int
N
=
x_dims
[
0
];
const
int
C
=
x_dims
[
1
];
const
int
H
=
x_dims
[
2
];
const
int
W
=
x_dims
[
3
];
const
int
n
=
param
.
N
();
const
float
alpha
=
param
.
Alpha
();
const
float
beta
=
param
.
Beta
();
const
float
k
=
param
.
K
();
DLOG
<<
"n="
<<
n
;
DLOG
<<
"alpha="
<<
alpha
;
DLOG
<<
"beta="
<<
beta
;
DLOG
<<
"k="
<<
k
;
DLOG
<<
default_work_size
;
DLOG
<<
C
;
DLOG
<<
W
;
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
input_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
output_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
C
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
int
),
&
W
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
&
n
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
float
),
&
k
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
float
),
&
alpha
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
float
),
&
beta
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/fpga/V2/conv_add_bn_kernel.cpp
浏览文件 @
8884755c
...
...
@@ -58,7 +58,7 @@ bool ConvAddBNKernel<FPGA, float>::Init(FusionConvAddBNParam<FPGA> *param) {
param
->
SetNewScale
(
new_scale
);
param
->
SetNewBias
(
new_bias
);
fpga
::
format_conv_data
(
filter
,
out
,
bs_ptr
,
param
->
Groups
());
fpga
::
format_conv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
());
fpga
::
SplitConvArgs
conv_arg
=
{
0
};
fpga
::
fill_split_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
...
...
src/operators/kernel/fpga/V2/conv_add_bn_relu_kernel.cpp
浏览文件 @
8884755c
...
...
@@ -56,7 +56,7 @@ bool ConvAddBNReluKernel<FPGA, float>::Init(
param
->
SetNewScale
(
new_scale
);
param
->
SetNewBias
(
new_bias
);
fpga
::
format_conv_data
(
filter
,
out
,
bs_ptr
,
param
->
Groups
());
fpga
::
format_conv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
());
fpga
::
SplitConvArgs
conv_arg
=
{
0
};
fpga
::
fill_split_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
...
...
src/operators/kernel/fpga/V2/conv_add_kernel.cpp
浏览文件 @
8884755c
...
...
@@ -38,7 +38,7 @@ bool ConvAddKernel<FPGA, float>::Init(FusionConvAddParam<FPGA> *param) {
bs_ptr
[
i
]
=
bias_ptr
[
i
];
}
fpga
::
format_conv_data
(
filter
,
out
,
bs_ptr
,
param
->
Groups
());
fpga
::
format_conv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
());
fpga
::
SplitConvArgs
conv_arg
=
{
0
};
fpga
::
fill_split_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
...
...
src/operators/kernel/fpga/V2/conv_add_relu_kernel.cpp
浏览文件 @
8884755c
...
...
@@ -38,7 +38,7 @@ bool ConvAddReluKernel<FPGA, float>::Init(FusionConvAddReluParam<FPGA> *param) {
bs_ptr
[
i
]
=
bias_ptr
[
i
];
}
fpga
::
format_conv_data
(
filter
,
out
,
bs_ptr
,
param
->
Groups
());
fpga
::
format_conv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
());
fpga
::
SplitConvArgs
conv_arg
=
{
0
};
fpga
::
fill_split_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
...
...
src/operators/kernel/fpga/V2/conv_bn_kernel.cpp
浏览文件 @
8884755c
...
...
@@ -50,7 +50,7 @@ bool ConvBNKernel<FPGA, float>::Init(FusionConvBNParam<FPGA> *param) {
param
->
SetNewScale
(
new_scale
);
param
->
SetNewBias
(
new_bias
);
fpga
::
format_conv_data
(
filter
,
out
,
bs_ptr
,
param
->
Groups
());
fpga
::
format_conv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
());
fpga
::
SplitConvArgs
conv_arg
=
{
0
};
fpga
::
fill_split_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
...
...
src/operators/kernel/fpga/V2/conv_bn_relu_kernel.cpp
浏览文件 @
8884755c
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef FUSION_CONVBNRELU_OP
#include "operators/kernel/conv_bn_relu_kernel.h"
#include "fpga/V2/filter.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -50,7 +51,7 @@ bool ConvBNReluKernel<FPGA, float>::Init(FusionConvBNReluParam<FPGA> *param) {
param
->
SetNewScale
(
new_scale
);
param
->
SetNewBias
(
new_bias
);
fpga
::
format_conv_data
(
filter
,
out
,
bs_ptr
,
param
->
Groups
());
fpga
::
format_conv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
());
fpga
::
SplitConvArgs
conv_arg
=
{
0
};
fpga
::
fill_split_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
...
...
src/operators/lrn_op.cpp
浏览文件 @
8884755c
...
...
@@ -14,7 +14,7 @@ limitations under the License. */
#ifdef LRN_OP
#include "lrn_op.h"
#include "
operators/
lrn_op.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -32,6 +32,9 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU
(
lrn
,
ops
::
LrnOp
);
#endif
#ifdef PADDLE_MOBILE_CL
REGISTER_OPERATOR_CL
(
lrn
,
ops
::
LrnOp
);
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
REGISTER_OPERATOR_MALI_GPU
(
lrn
,
ops
::
LrnOp
);
#endif
...
...
src/operators/math/gemm.h
浏览文件 @
8884755c
...
...
@@ -23,12 +23,10 @@ limitations under the License. */
#if __aarch64__
#define MR_INT8 4
#define NR_INT8 2
#define MR 6
#define NR 16
#else
#define MR_INT8 4
#define NR_INT8 2
#define MR 6
#define NR 8
#endif
...
...
@@ -195,58 +193,52 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
// 8 bits int small block inner product
void
AddDot4x8
(
int32_t
k
,
const
int8_t
*
a
,
const
int8_t
*
b
,
int32_t
*
c
,
int32_t
ldc
);
void
AddDot4x2
(
int32_t
k
,
const
int8_t
*
a
,
const
int8_t
*
b
,
int32_t
*
c
,
int32_t
ldc
);
void
AddDot6x8
(
int32_t
k
,
const
int8_t
*
a
,
const
int8_t
*
b
,
int32_t
*
c
,
int32_t
ldc
);
// 8 bits int inner product
void
InnerKernel
(
int32_t
mc
,
int32_t
nc
,
float
alpha
,
const
int8_t
*
a
,
const
int8_t
*
b
,
float
beta
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
);
void
InnerKernelWithBias
(
int32_t
mc
,
int32_t
nc
,
float
alpha
,
const
int8_t
*
a
,
const
int8_t
*
b
,
float
beta
,
int32_t
*
c
,
int8_t
*
C
,
int32_t
ldc
,
bool
relu
,
int32_t
*
bias
);
void
InnerKernelWithBias
(
int32_t
mc
,
int32_t
nc
,
int8_t
alpha
,
const
int8_t
*
a
,
const
int8_t
*
b
,
int8_t
beta
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int8_t
*
bias
);
// 8 bits int pack function
void
PackMatrixA_4r
(
int32_t
m
,
int32_t
k
,
int32_t
m_tail
,
const
int8_t
*
A
,
int32_t
lda
,
int8_t
*
buffer
);
void
PackMatrixA_4r_16
(
int32_t
m
,
int32_t
k
,
int32_t
m_tail
,
const
int8_t
*
A
,
int32_t
lda
,
int8_t
*
buffer
);
void
PackMatrixA_6r
(
int32_t
m
,
int32_t
k
,
int32_t
m_tail
,
const
int8_t
*
A
,
int32_t
lda
,
int8_t
*
buffer
);
void
PackMatrixB_2c_16
(
int32_t
k
,
int32_t
n
,
int32_t
n_tail
,
const
int8_t
*
B
,
int32_t
ldb
,
int8_t
*
buffer
);
void
PackMatrixB_8c
(
int32_t
k
,
int32_t
n
,
int32_t
n_tail
,
const
int8_t
*
B
,
int32_t
ldb
,
int8_t
*
buffer
);
void
PackMatrixA_omp_4r
(
int32_t
m
,
int32_t
k
,
int32_t
m_tail
,
const
int8_t
*
A
,
int32_t
lda
,
int8_t
*
buffer
);
void
PackMatrixB_omp_8c
(
int32_t
k
,
int32_t
n
,
int32_t
n_tail
,
const
int8_t
*
B
,
int32_t
ldb
,
int8_t
*
buffer
);
void
PackMatrixA_omp_4r_16
(
int32_t
m
,
int32_t
k
,
int32_t
m_tail
,
const
int8_t
*
A
,
int32_t
lda
,
int8_t
*
buffer
);
void
PackMatrixB_omp_2c_16
(
int32_t
k
,
int32_t
n
,
int32_t
n_tail
,
const
int8_t
*
B
,
int32_t
ldb
,
int8_t
*
buffer
);
// 8 bits int matrix product
void
Sgemm
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
float
alpha
,
const
int8_t
*
A
,
int32_t
lda
,
const
int8_t
*
B
,
int32_t
ldb
,
float
beta
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int32_t
*
bias
);
void
Sgemm
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
float
alpha
,
const
int8_t
*
A
,
int32_t
lda
,
const
int8_t
*
B
,
int32_t
ldb
,
float
beta
,
int8_t
*
C
,
int32_t
ldc
,
bool
relu
,
int32_t
*
bias
);
void
Sgemm_omp
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
float
alpha
,
const
int8_t
*
A
,
int32_t
lda
,
const
int8_t
*
B
,
int32_t
ldb
,
float
beta
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int32_t
*
bias
);
void
Sgemm
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
int8_t
alpha
,
const
int8_t
*
A
,
int32_t
lda
,
const
int8_t
*
B
,
int32_t
ldb
,
int8_t
beta
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int8_t
*
bias
);
void
Sgemm_omp
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
int8_t
alpha
,
const
int8_t
*
A
,
int32_t
lda
,
const
int8_t
*
B
,
int32_t
ldb
,
int8_t
beta
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int8_t
*
bias
);
// 8 bits int write back
// C = alpha * A * B + beta * C
void
WriteWithAlphaBeta
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
);
// C = A * B
void
WriteBasic
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
);
// C = A * B + bias, scale * relu(C)
void
WriteWithAddReluScale
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int8_t
*
C
,
int32_t
ldc
,
int32_t
*
bias
,
float
scale
);
// C = A * B + bias, scale * C
void
WriteWithAddScale
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int8_t
*
C
,
int32_t
ldc
,
int32_t
*
bias
,
float
scale
);
// C = A * B + C
void
WriteWithAdd
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
);
// C = A * B + bias
void
WriteWithAddV1
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
,
int8_t
*
bias
);
// C = A * B + C, relu(C)
void
WriteWithAddRelu
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
);
// C = A * B + bias, relu(C)
void
WriteWithAddReluV1
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
,
int8_t
*
bias
);
private:
int
MC
=
0
;
...
...
@@ -262,7 +254,7 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
// 8 bits int
int8_t
*
packedA_int8
;
int8_t
*
packedB_int8
;
int32_t
*
packedC_int
32
;
int32_t
*
packedC_int
8
;
int8_t
*
zero_int8
;
};
...
...
src/operators/math/gemm_int8.cpp
浏览文件 @
8884755c
此差异已折叠。
点击以展开。
src/operators/math/gemm_omp_int8.cpp
浏览文件 @
8884755c
...
...
@@ -28,10 +28,10 @@ namespace operators {
namespace
math
{
// 8 bits int matrix product (m*k x k*n)
void
Gemm
::
Sgemm_omp
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
floa
t
alpha
,
void
Gemm
::
Sgemm_omp
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
int8_
t
alpha
,
const
int8_t
*
A
,
int32_t
lda
,
const
int8_t
*
B
,
int32_t
ldb
,
floa
t
beta
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int
32
_t
*
bias
)
{
int8_
t
beta
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int
8
_t
*
bias
)
{
#ifdef _OPENMP
int32_t
max_threads
=
omp_get_max_threads
();
#else
...
...
@@ -39,11 +39,10 @@ void Gemm::Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha,
#endif
int32_t
L1
=
64
/
max_threads
*
1024
;
const
int32_t
k_complete
=
(
k
+
15
)
-
((
k
+
15
)
&
15
);
KC
=
k_complete
;
KC
=
k
;
zero_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
k
));
memset
(
static_cast
<
void
*>
(
zero_int8
),
0
,
sizeof
(
int8_t
)
*
k
);
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
KC
));
memset
(
static_cast
<
void
*>
(
zero_int8
),
0
,
sizeof
(
int8_t
)
*
KC
);
if
(
m
>
n
)
{
// 对 A 分块
MC
=
L1
/
(
KC
*
sizeof
(
int8_t
));
...
...
@@ -55,14 +54,14 @@ void Gemm::Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha,
MC
=
(
MC
+
MR_INT8
-
1
)
/
MR_INT8
*
MR_INT8
;
}
// 补齐 B
NC
=
(
n
+
NR
_INT8
-
1
)
/
NR_INT8
*
NR_INT8
;
NC
=
(
n
+
NR
-
1
)
/
NR
*
NR
;
packedB_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
KC
*
NC
));
#if __aarch64__
// TODO(wzzju)
#else
PackMatrixB_omp_
2c_16
(
k
,
n
,
n
%
NR_INT8
,
B
,
ldb
,
packedB_int8
);
PackMatrixB_omp_
8c
(
KC
,
n
,
n
%
NR
,
B
,
ldb
,
packedB_int8
);
#endif
packedA_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
MC
*
KC
*
max_threads
));
...
...
@@ -70,11 +69,11 @@ void Gemm::Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha,
// 对 B 分块
NC
=
L1
/
(
KC
*
sizeof
(
int8_t
));
if
(
NC
==
0
)
{
NC
=
NR
_INT8
;
NC
=
NR
;
}
else
{
int32_t
nblock_num
=
(
n
+
NC
-
1
)
/
NC
;
NC
=
(
n
+
nblock_num
-
1
)
/
nblock_num
;
NC
=
(
NC
+
NR
_INT8
-
1
)
/
NR_INT8
*
NR_INT8
;
NC
=
(
NC
+
NR
-
1
)
/
NR
*
NR
;
}
// 补齐 A
MC
=
(
m
+
MR_INT8
-
1
)
/
MR_INT8
*
MR_INT8
;
...
...
@@ -84,12 +83,12 @@ void Gemm::Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha,
#if __aarch64__
// TODO(wzzju)
#else
PackMatrixA_omp_4r
_16
(
m
,
k
,
m
%
MR_INT8
,
A
,
lda
,
packedA_int8
);
PackMatrixA_omp_4r
(
m
,
KC
,
m
%
MR_INT8
,
A
,
lda
,
packedA_int8
);
#endif
packedB_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
KC
*
NC
*
max_threads
));
}
packedC_int
32
=
static_cast
<
int32_t
*>
(
packedC_int
8
=
static_cast
<
int32_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int32_t
)
*
MC
*
NC
*
max_threads
));
if
(
m
>
n
)
{
...
...
@@ -104,19 +103,14 @@ void Gemm::Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha,
int32_t
mc
;
mc
=
s_min
(
m
-
i
,
MC
);
int8_t
*
local_A
=
packedA_int8
+
MC
*
KC
*
local_threads
;
int32_t
*
local_C
=
packedC_int
32
+
MC
*
NC
*
local_threads
;
int32_t
*
local_C
=
packedC_int
8
+
MC
*
NC
*
local_threads
;
#if __aarch64__
// TODO(wzzju)
#else
PackMatrixA_4r
_16
(
mc
,
k
,
mc
%
MR_INT8
,
&
A
(
i
,
0
),
lda
,
local_A
);
PackMatrixA_4r
(
mc
,
KC
,
mc
%
MR_INT8
,
&
A
(
i
,
0
),
lda
,
local_A
);
#endif
// InnerKernelWithBias(mc, n, alpha, local_A, packedB_int8, beta,
// local_C,
// &C(i, 0), ldc, relu, bias + i);
if
(
bias
==
nullptr
)
{
InnerKernel
(
mc
,
n
,
alpha
,
local_A
,
packedB_int8
,
beta
,
local_C
,
&
C
(
i
,
0
),
ldc
,
relu
);
}
InnerKernelWithBias
(
mc
,
n
,
alpha
,
local_A
,
packedB_int8
,
beta
,
local_C
,
&
C
(
i
,
0
),
ldc
,
relu
,
bias
+
i
);
}
}
else
{
#pragma omp parallel for
...
...
@@ -129,25 +123,20 @@ void Gemm::Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha,
int32_t
nc
;
nc
=
s_min
(
n
-
j
,
NC
);
int8_t
*
local_B
=
packedB_int8
+
KC
*
NC
*
local_threads
;
int32_t
*
local_C
=
packedC_int
32
+
MC
*
NC
*
local_threads
;
int32_t
*
local_C
=
packedC_int
8
+
MC
*
NC
*
local_threads
;
#if __aarch64__
// TODO(wzzju)
#else
PackMatrixB_
2c_16
(
k
,
nc
,
nc
%
NR_INT8
,
&
B
(
0
,
j
),
ldb
,
local_B
);
PackMatrixB_
8c
(
KC
,
nc
,
nc
%
NR
,
&
B
(
0
,
j
),
ldb
,
local_B
);
#endif
// InnerKernelWithBias(m, nc, alpha, packedA_int8, local_B, beta,
// local_C,
// &C(0, j), ldc, relu, bias);
if
(
bias
==
nullptr
)
{
InnerKernel
(
m
,
nc
,
alpha
,
packedA_int8
,
local_B
,
beta
,
local_C
,
&
C
(
0
,
j
),
ldc
,
relu
);
}
InnerKernelWithBias
(
m
,
nc
,
alpha
,
packedA_int8
,
local_B
,
beta
,
local_C
,
&
C
(
0
,
j
),
ldc
,
relu
,
bias
);
}
}
paddle_mobile
::
memory
::
Free
(
packedA_int8
);
paddle_mobile
::
memory
::
Free
(
packedB_int8
);
paddle_mobile
::
memory
::
Free
(
packedC_int
32
);
paddle_mobile
::
memory
::
Free
(
packedC_int
8
);
paddle_mobile
::
memory
::
Free
(
zero_int8
);
}
...
...
@@ -155,7 +144,7 @@ void Gemm::PackMatrixB_omp_8c(int32_t k, int32_t n, int32_t n_tail,
const
int8_t
*
B
,
int32_t
ldb
,
int8_t
*
buffer
)
{
const
int32_t
j_length
=
n
-
n_tail
;
#pragma omp parallel for
for
(
int32_t
j
=
0
;
j
<
j_length
;
j
+=
8
)
{
for
(
int32_t
j
=
0
;
j
<
j_length
;
j
+=
NR
)
{
int8_t
*
local_buffer
=
buffer
+
j
*
k
;
for
(
int32_t
i
=
0
;
i
<
k
;
++
i
)
{
const
int8_t
*
b0
=
&
B
(
i
,
j
);
...
...
@@ -190,7 +179,7 @@ void Gemm::PackMatrixB_omp_8c(int32_t k, int32_t n, int32_t n_tail,
for
(
int32_t
j
=
j_length
;
j
<
n
;
++
j
)
{
*
local_buffer
++
=
*
b0
++
;
}
for
(
int32_t
j
=
n
;
j
<
j_length
+
8
;
++
j
)
{
for
(
int32_t
j
=
n
;
j
<
j_length
+
NR
;
++
j
)
{
*
local_buffer
++
=
0
;
}
}
...
...
@@ -199,9 +188,9 @@ void Gemm::PackMatrixB_omp_8c(int32_t k, int32_t n, int32_t n_tail,
void
Gemm
::
PackMatrixA_omp_4r
(
int32_t
m
,
int32_t
k
,
int32_t
m_tail
,
const
int8_t
*
A
,
int32_t
lda
,
int8_t
*
buffer
)
{
const
int
32_t
i_length
=
m
-
m_tail
;
const
int
i_length
=
m
-
m_tail
;
#pragma omp parallel for
for
(
int32_t
i
=
0
;
i
<
i_length
;
i
+=
4
)
{
for
(
int32_t
i
=
0
;
i
<
i_length
;
i
+=
MR_INT8
)
{
const
int8_t
*
a0
=
A
+
i
*
lda
;
const
int8_t
*
a1
=
A
+
(
i
+
1
)
*
lda
;
const
int8_t
*
a2
=
A
+
(
i
+
2
)
*
lda
;
...
...
@@ -232,7 +221,7 @@ void Gemm::PackMatrixA_omp_4r(int32_t m, int32_t k, int32_t m_tail,
default:
break
;
}
for
(
int
32_t
j
=
0
;
j
<
k
;
++
j
)
{
for
(
int
j
=
0
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a0
++
;
*
local_buffer
++
=
*
a1
++
;
*
local_buffer
++
=
*
a2
++
;
...
...
@@ -241,232 +230,6 @@ void Gemm::PackMatrixA_omp_4r(int32_t m, int32_t k, int32_t m_tail,
}
}
// 8 bits int PackMatrixA_4r
void
Gemm
::
PackMatrixA_omp_4r_16
(
int32_t
m
,
int32_t
k
,
int32_t
m_tail
,
const
int8_t
*
A
,
int32_t
lda
,
int8_t
*
buffer
)
{
const
int32_t
i_length
=
m
-
m_tail
;
const
int32_t
k_count
=
k
>>
4
;
const
int32_t
k_tail
=
k
&
15
;
#pragma omp parallel for
for
(
int32_t
i
=
0
;
i
<
i_length
;
i
+=
4
)
{
const
int8_t
*
a0
=
A
+
i
*
lda
;
const
int8_t
*
a1
=
A
+
(
i
+
1
)
*
lda
;
const
int8_t
*
a2
=
A
+
(
i
+
2
)
*
lda
;
const
int8_t
*
a3
=
A
+
(
i
+
3
)
*
lda
;
int8_t
*
local_buffer
=
buffer
+
i
*
KC
;
for
(
int32_t
j
=
0
;
j
<
k_count
;
++
j
)
{
#if __ARM_NEON
#if __aarch64__
// TODO(wzzju)
#else
asm
volatile
(
"vld1.s8 {d0, d1}, [%[a0]]!
\n\t
"
"vld1.s8 {d2, d3}, [%[a1]]!
\n\t
"
"vld1.s8 {d4, d5}, [%[a2]]!
\n\t
"
"vld1.s8 {d6, d7}, [%[a3]]!
\n\t
"
"vst1.s8 {d0, d1}, [%[local_buffer]]!
\n\t
"
"vst1.s8 {d2, d3}, [%[local_buffer]]!
\n\t
"
"vst1.s8 {d4, d5}, [%[local_buffer]]!
\n\t
"
"vst1.s8 {d6, d7}, [%[local_buffer]]!
\n\t
"
:
[
local_buffer
]
"+r"
(
local_buffer
),
[
a0
]
"+r"
(
a0
),
[
a1
]
"+r"
(
a1
),
[
a2
]
"+r"
(
a2
),
[
a3
]
"+r"
(
a3
)
:
:
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
);
#endif // __aarch64__
#else
for
(
int32_t
l
=
0
;
l
<
16
;
++
l
)
{
*
local_buffer
++
=
*
a0
++
;
}
for
(
int32_t
l
=
0
;
l
<
16
;
++
l
)
{
*
local_buffer
++
=
*
a1
++
;
}
for
(
int32_t
l
=
0
;
l
<
16
;
++
l
)
{
*
local_buffer
++
=
*
a2
++
;
}
for
(
int32_t
l
=
0
;
l
<
16
;
++
l
)
{
*
local_buffer
++
=
*
a3
++
;
}
#endif // __ARM_NEON
}
if
(
k_tail
!=
0
)
{
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a0
++
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a1
++
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a2
++
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a3
++
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
}
}
if
(
m_tail
!=
0
)
{
const
int8_t
*
a0
=
&
A
(
i_length
,
0
);
const
int8_t
*
a1
=
a0
+
lda
;
const
int8_t
*
a2
=
a0
+
2
*
lda
;
const
int8_t
*
a3
=
a0
+
3
*
lda
;
int8_t
*
local_buffer
=
buffer
+
i_length
*
KC
;
switch
(
m_tail
)
{
case
1
:
a1
=
zero_int8
;
case
2
:
a2
=
zero_int8
;
case
3
:
a3
=
zero_int8
;
break
;
default:
break
;
}
for
(
int32_t
j
=
0
;
j
<
k_count
;
++
j
)
{
#if __ARM_NEON
#if __aarch64__
// TODO(wzzju)
#else
asm
volatile
(
"vld1.s8 {d0, d1}, [%[a0]]!
\n\t
"
"vld1.s8 {d2, d3}, [%[a1]]!
\n\t
"
"vld1.s8 {d4, d5}, [%[a2]]!
\n\t
"
"vld1.s8 {d6, d7}, [%[a3]]!
\n\t
"
"vst1.s8 {d0, d1}, [%[local_buffer]]!
\n\t
"
"vst1.s8 {d2, d3}, [%[local_buffer]]!
\n\t
"
"vst1.s8 {d4, d5}, [%[local_buffer]]!
\n\t
"
"vst1.s8 {d6, d7}, [%[local_buffer]]!
\n\t
"
:
[
local_buffer
]
"+r"
(
local_buffer
),
[
a0
]
"+r"
(
a0
),
[
a1
]
"+r"
(
a1
),
[
a2
]
"+r"
(
a2
),
[
a3
]
"+r"
(
a3
)
:
:
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
);
#endif // __aarch64__
#else
for
(
int32_t
l
=
0
;
l
<
16
;
++
l
)
{
*
local_buffer
++
=
*
a0
++
;
}
for
(
int32_t
l
=
0
;
l
<
16
;
++
l
)
{
*
local_buffer
++
=
*
a1
++
;
}
for
(
int32_t
l
=
0
;
l
<
16
;
++
l
)
{
*
local_buffer
++
=
*
a2
++
;
}
for
(
int32_t
l
=
0
;
l
<
16
;
++
l
)
{
*
local_buffer
++
=
*
a3
++
;
}
#endif // __ARM_NEON
}
if
(
k_tail
!=
0
)
{
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a0
++
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a1
++
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a2
++
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a3
++
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
}
}
}
// 8 bits int PackMatrixB
void
Gemm
::
PackMatrixB_omp_2c_16
(
int32_t
k
,
int32_t
n
,
int32_t
n_tail
,
const
int8_t
*
B
,
int32_t
ldb
,
int8_t
*
buffer
)
{
const
int32_t
j_length
=
n
-
n_tail
;
const
int32_t
k_count
=
k
>>
4
;
const
int32_t
k_tail
=
k
&
15
;
#pragma omp parallel for
for
(
int32_t
j
=
0
;
j
<
j_length
;
j
+=
2
)
{
int8_t
*
local_buffer
=
buffer
+
j
*
KC
;
for
(
int32_t
i
=
0
;
i
<
k_count
;
++
i
)
{
const
int8_t
*
b0
=
&
B
((
i
<<
4
),
j
);
const
int8_t
*
b1
=
&
B
((
i
<<
4
),
j
+
1
);
for
(
int
m
=
0
;
m
<
16
;
++
m
)
{
*
local_buffer
++
=
*
b0
;
b0
+=
ldb
;
}
for
(
int
m
=
0
;
m
<
16
;
++
m
)
{
*
local_buffer
++
=
*
b1
;
b1
+=
ldb
;
}
}
if
(
k_tail
!=
0
)
{
const
int8_t
*
b0
=
&
B
((
k_count
<<
4
),
j
);
const
int8_t
*
b1
=
&
B
((
k_count
<<
4
),
j
+
1
);
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
b0
;
b0
+=
ldb
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
b1
;
b1
+=
ldb
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
}
}
if
(
n_tail
!=
0
)
{
int8_t
*
local_buffer
=
buffer
+
j_length
*
KC
;
for
(
int32_t
i
=
0
;
i
<
k_count
;
++
i
)
{
const
int8_t
*
b0
=
&
B
((
i
<<
4
),
j_length
);
for
(
int
m
=
0
;
m
<
16
;
++
m
)
{
*
local_buffer
++
=
*
b0
;
b0
+=
ldb
;
}
for
(
int
m
=
0
;
m
<
16
;
++
m
)
{
*
local_buffer
++
=
0
;
}
}
if
(
k_tail
!=
0
)
{
const
int8_t
*
b0
=
&
B
((
k_count
<<
4
),
j_length
);
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
b0
;
b0
+=
ldb
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
for
(
int32_t
j
=
k_count
<<
4
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
}
}
}
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
src/operators/math/math_function.h
浏览文件 @
8884755c
...
...
@@ -28,12 +28,7 @@ template <typename T>
void
matmul
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
T
alpha
,
framework
::
Tensor
*
matrix_out
,
T
beta
,
bool
relu
=
false
,
float
*
bias
=
nullptr
);
void
matmul_int8
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
float
alpha
,
framework
::
Tensor
*
matrix_out
,
float
beta
,
bool
relu
=
false
,
int32_t
*
bias
=
nullptr
);
T
*
bias
=
nullptr
);
template
<
typename
T
>
void
matmulWithBn
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
...
...
src/operators/math/math_function_int8.cpp
浏览文件 @
8884755c
...
...
@@ -20,10 +20,11 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
void
matmul_int8
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
float
alpha
,
framework
::
Tensor
*
matrix_out
,
float
beta
,
bool
relu
,
int32_t
*
bias
)
{
template
<
>
void
matmul
<
int8_t
>
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
int8_t
alpha
,
framework
::
Tensor
*
matrix_out
,
int8_t
beta
,
bool
relu
,
int8_t
*
bias
)
{
auto
dim_a
=
matrix_a
.
dims
();
auto
dim_b
=
matrix_b
.
dims
();
auto
dim_out
=
matrix_out
->
dims
();
...
...
@@ -51,45 +52,21 @@ void matmul_int8(const framework::Tensor &matrix_a, bool trans_a,
}
#ifdef _OPENMP
if
(
bias
!=
nullptr
)
{
// TODO(wzzju): gemm.Sgemm_omp_with_bias, now use single thread instead.
gemm
.
Sgemm
(
M
,
N
,
K
,
alpha
,
a
,
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int8_t
>
(),
N
,
relu
,
bias
);
}
else
{
gemm
.
Sgemm_omp
(
M
,
N
,
K
,
alpha
,
a
,
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int32_t
>
(),
N
,
relu
,
bias
);
}
gemm
.
Sgemm_omp
(
M
,
N
,
K
,
alpha
,
a
,
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int32_t
>
(),
N
,
relu
,
bias
);
#else
if
(
bias
!=
nullptr
)
{
gemm
.
Sgemm
(
M
,
N
,
K
,
alpha
,
a
,
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int8_t
>
(),
N
,
relu
,
bias
);
}
else
{
gemm
.
Sgemm
(
M
,
N
,
K
,
alpha
,
a
,
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int32_t
>
(),
N
,
relu
,
bias
);
}
gemm
.
Sgemm
(
M
,
N
,
K
,
alpha
,
a
,
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int32_t
>
(),
N
,
relu
,
bias
);
#endif
}
else
{
#ifdef _OPENMP
if
(
bias
!=
nullptr
)
{
// TODO(wzzju): gemm.Sgemm_omp_with_bias, now use single thread instead.
gemm
.
Sgemm
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
int8_t
>
(),
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int8_t
>
(),
N
,
relu
,
bias
);
}
else
{
gemm
.
Sgemm_omp
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
int8_t
>
(),
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int32_t
>
(),
N
,
relu
,
bias
);
}
gemm
.
Sgemm_omp
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
int8_t
>
(),
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int32_t
>
(),
N
,
relu
,
bias
);
#else
if
(
bias
!=
nullptr
)
{
gemm
.
Sgemm
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
int8_t
>
(),
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int8_t
>
(),
N
,
relu
,
bias
);
}
else
{
gemm
.
Sgemm
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
int8_t
>
(),
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int32_t
>
(),
N
,
relu
,
bias
);
}
gemm
.
Sgemm
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
int8_t
>
(),
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int32_t
>
(),
N
,
relu
,
bias
);
#endif
}
}
...
...
src/operators/op_param.h
浏览文件 @
8884755c
...
...
@@ -1633,11 +1633,11 @@ class FusionFcParam : public OpParam {
y_num_col_dims_
=
GetAttr
<
int
>
(
"y_num_col_dims"
,
attrs
);
axis_
=
GetAttr
<
int
>
(
"axis"
,
attrs
);
}
const
GType
*
InputX
()
const
{
return
input_x_
;
}
GType
*
InputX
()
const
{
return
input_x_
;
}
const
RType
*
InputY
()
const
{
return
input_y_
;
}
RType
*
InputY
()
const
{
return
input_y_
;
}
const
RType
*
InputZ
()
const
{
return
input_z_
;
}
RType
*
InputZ
()
const
{
return
input_z_
;
}
GType
*
Out
()
const
{
return
out_
;
}
...
...
test/common/test_gemm_perf.cpp
浏览文件 @
8884755c
...
...
@@ -28,7 +28,7 @@ limitations under the License. */
int
main
()
{
paddle_mobile
::
PaddleMobile
<
paddle_mobile
::
CPU
>
paddle_mobile
;
paddle_mobile
.
SetThreadNum
(
4
);
paddle_mobile
.
SetThreadNum
(
8
);
Tensor
aa
,
bb
,
cc
;
auto
aaptr
=
aa
.
mutable_data
<
float
>
({
m
,
k
});
auto
bbptr
=
bb
.
mutable_data
<
float
>
({
k
,
n
});
...
...
@@ -44,12 +44,10 @@ int main() {
ccptr
[
i
]
=
2
;
}
Tensor
aa_int8
,
bb_int8
,
cc_int
32
,
cc_int
8
;
Tensor
aa_int8
,
bb_int8
,
cc_int8
;
auto
aaptr_int8
=
aa_int8
.
mutable_data
<
int8_t
>
({
m
,
k
});
auto
bbptr_int8
=
bb_int8
.
mutable_data
<
int8_t
>
({
k
,
n
});
auto
ccptr_int32
=
cc_int32
.
mutable_data
<
int32_t
>
({
m
,
n
});
auto
ccptr_int8
=
cc_int8
.
mutable_data
<
int8_t
>
({
m
,
n
});
int32_t
*
bias_data
=
new
int32_t
[
m
];
auto
ccptr_int8
=
cc_int8
.
mutable_data
<
int32_t
>
({
m
,
n
});
for
(
int
i
=
0
;
i
<
m
*
k
;
++
i
)
{
aaptr_int8
[
i
]
=
static_cast
<
int8_t
>
(
2
);
...
...
@@ -58,11 +56,7 @@ int main() {
bbptr_int8
[
i
]
=
static_cast
<
int8_t
>
(
2
);
}
for
(
int
i
=
0
;
i
<
m
*
n
;
++
i
)
{
ccptr_int32
[
i
]
=
static_cast
<
int32_t
>
(
2
);
}
for
(
int
i
=
0
;
i
<
m
;
++
i
)
{
bias_data
[
i
]
=
2
;
ccptr_int8
[
i
]
=
static_cast
<
int32_t
>
(
2
);
}
// float
...
...
@@ -82,41 +76,22 @@ int main() {
auto
time2
=
time
();
std
::
cout
<<
"float gemm cost :"
<<
time_diff
(
time1
,
time2
)
/
10
<<
"ms
\n
"
;
// int8_t
without bias
// int8_t
// warm-up 10 times
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul
_int8
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
float
>
(
1
),
&
cc_int32
,
static_cast
<
floa
t
>
(
0
),
false
,
nullptr
);
paddle_mobile
::
operators
::
math
::
matmul
<
int8_t
>
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
int8_t
>
(
1
),
&
cc_int8
,
static_cast
<
int8_
t
>
(
0
),
false
,
nullptr
);
}
auto
time3
=
time
();
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul
_int8
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
float
>
(
1
),
&
cc_int32
,
static_cast
<
floa
t
>
(
0
),
false
,
nullptr
);
paddle_mobile
::
operators
::
math
::
matmul
<
int8_t
>
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
int8_t
>
(
1
),
&
cc_int8
,
static_cast
<
int8_
t
>
(
0
),
false
,
nullptr
);
}
auto
time4
=
time
();
std
::
cout
<<
"int8_t gemm cost :"
<<
time_diff
(
time3
,
time4
)
/
10
<<
"ms
\n
"
;
// int8_t with bias&relu
// warm-up 10 times
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul_int8
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
float
>
(
1
),
&
cc_int8
,
static_cast
<
float
>
(
0
),
true
,
&
bias_data
[
0
]);
}
auto
time5
=
time
();
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul_int8
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
float
>
(
1
),
&
cc_int8
,
static_cast
<
float
>
(
0
),
true
,
&
bias_data
[
0
]);
}
auto
time6
=
time
();
std
::
cout
<<
"int8_t gemm_with_bias_relu cost :"
<<
time_diff
(
time5
,
time6
)
/
10
<<
"ms
\n
"
;
delete
[]
bias_data
;
return
0
;
}
test/fpga/test_resnet50.cpp
浏览文件 @
8884755c
...
...
@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include <iomanip>
#include <iostream>
#include "../test_include.h"
#ifdef PADDLE_MOBILE_FPGA_V1
...
...
@@ -87,26 +89,29 @@ int main() {
paddle_mobile
::
PaddleMobile
<
paddle_mobile
::
FPGA
>
paddle_mobile
;
if
(
paddle_mobile
.
Load
(
std
::
string
(
g_resnet50
),
true
))
{
Tensor
input_tensor
;
SetupTensor
<
float
>
(
&
input_tensor
,
{
1
,
3
,
224
,
224
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
SetupTensor
<
float
>
(
&
input_tensor
,
{
1
,
3
,
224
,
224
},
static_cast
<
float
>
(
2
),
static_cast
<
float
>
(
2
));
readStream
(
g_image_src_float
,
input_tensor
.
mutable_data
<
float
>
({
1
,
3
,
224
,
224
}));
paddle_mobile
.
FeedData
(
input_tensor
);
paddle_mobile
.
Predict_To
(
-
1
);
/*for(int i = 0; i < 73; i++)
{
for
(
int
i
=
0
;
i
<
73
;
i
++
)
{
auto
tensor_ptr
=
paddle_mobile
.
FetchResult
(
i
);
std::string saveName = "resnet50_result_" + std::to_string
(i);
std
::
string
saveName
=
"resnet50_result_"
+
std
::
to_string
(
i
);
paddle_mobile
::
fpga
::
fpga_invalidate
((
*
tensor_ptr
).
data
<
float
>
(),
tensor_ptr->numel()); dump_stride(saveName, (*tensor_ptr), 20);
//dump(saveName, (*tensor_ptr));
}*/
tensor_ptr
->
numel
()
*
sizeof
(
half
));
dump_stride
(
saveName
,
(
*
tensor_ptr
),
20
);
// dump(saveName, (*tensor_ptr));
}
/*
std::shared_ptr<Tensor> output_tensor = paddle_mobile.FetchResult(73);
(*output_tensor).dump<float>("resnet50_result_73");
std
::
shared_ptr
<
Tensor
>
output_tensor
=
paddle_mobile
.
FetchResult
(
73
);
//
(*output_tensor).dump<float>("resnet50_result_73");
output_tensor
=
paddle_mobile
.
FetchResult
(
74
);
(*output_tensor).dump<float>("resnet50_result_74");*/
std
::
shared_ptr
<
Tensor
>
output_tensor
=
paddle_mobile
.
FetchResult
(
74
);
//(*output_tensor).dump<float>("resnet50_result_74");
// std::shared_ptr<Tensor> output_tensor = paddle_mobile.FetchResult(74);
// output_tensor = paddle_mobile.FetchResult(74);
float
max
=
0
;
auto
data_ptr
=
output_tensor
->
data
<
float
>
();
int
maximumIdx
=
0
;
...
...
@@ -116,7 +121,7 @@ int main() {
max
=
data_ptr
[
i
];
}
}
std
::
cout
<<
"index : "
<<
maximumIdx
<<
", value : "
<<
max
std
::
cout
<<
"index : "
<<
std
::
dec
<<
maximumIdx
<<
", value : "
<<
max
<<
std
::
endl
;
std
::
cout
<<
"Computation done"
<<
std
::
endl
;
return
0
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录