提交 87271863 编写于 作者: C cen.li

* all pass ok

* fix code_style test=develop
上级 38b7e29f
......@@ -74,3 +74,6 @@ else()
add_library(bmcpu SHARED IMPORTED GLOBAL)
set_property(TARGET bmcpu PROPERTY IMPORTED_LOCATION ${BM_SDK_CPU_LIB})
endif()
set(bm_runtime_libs bmrt bmlib bmcompiler bmcpu CACHE INTERNAL "bm runtime libs")
set(bm_builder_libs bmrt bmlib bmcompiler bmcpu CACHE INTERNAL "bm builder libs")
......@@ -143,6 +143,10 @@ if (LITE_WITH_FPGA)
add_definitions("-DLITE_WITH_FPGA")
endif()
if (LITE_WITH_BM)
add_definitions("-DLITE_WITH_BM")
endif()
if (LITE_WITH_PROFILE)
add_definitions("-DLITE_WITH_PROFILE")
if (LITE_WITH_PRECISION_PROFILE)
......
......@@ -107,7 +107,7 @@ void TestModel(const std::vector<Place>& valid_places) {
TEST(ResNet50, test_bm) {
std::vector<Place> valid_places({
Place{TARGET(kBM), PRECISION(kInt8)}
Place{TARGET(kBM), PRECISION(kFloat)}
});
TestModel(valid_places);
......
......@@ -2,4 +2,4 @@ if (NOT LITE_WITH_BM)
return()
endif()
lite_cc_library(target_wrapper_bm SRCS target_wrapper.cc)
lite_cc_library(target_wrapper_bm SRCS target_wrapper.cc DEPS ${bm_runtime_libs})
......@@ -6,7 +6,8 @@ lite_cc_library(target_wrapper SRCS target_wrapper.cc
X86_DEPS target_wrapper_x86
CUDA_DEPS target_wrapper_cuda
CL_DEPS cl_target_wrapper
FPGA_DEPS fpga_target_wrapper)
FPGA_DEPS fpga_target_wrapper
BM_DEPS target_wrapper_bm)
lite_cc_library(memory SRCS memory.cc DEPS target_wrapper CL_DEPS cl_target_wrapper)
......
......@@ -97,9 +97,8 @@ class Context<TargetType::kBM> {
explicit Context(const BMContext& ctx);
// NOTE: InitOnce should only be used by ContextScheduler
void InitOnce() {}
void CopySharedTo(NPUContext* ctx) {}
void CopySharedTo(BMContext* ctx) {}
BMContext& operator=(const BMContext& ctx) {}
std::string name() const { return "BMContext"; }
};
#endif
......@@ -340,6 +339,8 @@ class ContextScheduler {
std::unique_ptr<KernelContext> NewContext(TargetType target) {
std::unique_ptr<KernelContext> ctx(new KernelContext);
LOG(INFO) << "aaaaaaaaaaaaaaaaaaaaaaaaaaaaa " << int(target) << " " << int(TARGET(kBM));
switch (target) {
case TARGET(kHost):
kernel_contexts_[TargetType::kHost].As<HostContext>().CopySharedTo(
......@@ -410,7 +411,6 @@ class ContextScheduler {
void InitContext() {
kernel_contexts_[Type].As<ContextT>().InitOnce();
}
ContextScheduler() {
InitContext<TargetType::kHost, HostContext>();
#ifdef LITE_WITH_X86
......
......@@ -57,8 +57,9 @@ class Optimizer {
InitTargetTypeTransformPass();
if (passes.empty()) {
RunPasses(std::vector<std::string>{
{"lite_quant_dequant_fuse_pass", //
#if 0
{
#if 0
"lite_quant_dequant_fuse_pass", //
"lite_conv_elementwise_fuse_pass", // conv-elemwise-bn
"lite_conv_bn_fuse_pass", //
"lite_conv_elementwise_fuse_pass", // conv-bn-elemwise
......@@ -75,8 +76,9 @@ class Optimizer {
"identity_scale_eliminate_pass", //
#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
"lite_elementwise_add_activation_fuse_pass", //
#endif
"static_kernel_pick_pass", // pick original kernel from graph
#endif
#endif
"static_kernel_pick_pass", // pick original kernel from graph
"variable_place_inference_pass", // inference arg/var's
// info(target/precision/layout/device)
// using kernel info
......@@ -115,7 +117,6 @@ class Optimizer {
"memory_optimize_pass",
#endif
"argument_type_display_pass"
#endif
}});
} else {
RunPasses(passes);
......
......@@ -2,8 +2,16 @@ if(NOT LITE_WITH_BM)
return ()
endif()
add_kernel(conv_2d_bm BM basic SRCS conv_compute.cc DEPS ${lite_kernel_deps})
add_kernel(conv_compute_bm BM basic SRCS conv_compute.cc DEPS ${lite_kernel_deps})
add_kernel(calib_compute_bm BM basic SRCS calib_compute.cc DEPS ${lite_kernel_deps})
add_kernel(pool_compute_bm BM basic SRCS pool_compute.cc DEPS ${lite_kernel_deps})
add_kernel(elementwise_compute_bm BM basic SRCS elementwise_compute.cc DEPS ${lite_kernel_deps})
add_kernel(relu_compute_bm BM basic SRCS relu_compute.cc DEPS ${lite_kernel_deps})
add_kernel(softmax_compute_bm BM basic SRCS softmax_compute.cc DEPS ${lite_kernel_deps})
add_kernel(batch_norm_compute_bm BM basic SRCS batch_norm_compute.cc DEPS ${lite_kernel_deps})
add_kernel(scale_compute_bm BM basic SRCS scale_compute.cc DEPS ${lite_kernel_deps})
add_kernel(mul_compute_bm BM basic SRCS mul_compute.cc DEPS ${lite_kernel_deps})
add_kernel(io_copy_compute_bm BM basic SRCS io_copy_compute.cc DEPS ${lite_kernel_deps})
message(STATUS "compile with lite BM kernels")
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/bm/batch_norm_compute.h"
#include <string>
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace bm {
void BatchNormCompute::PrepareForRun() {
return;
}
void BatchNormCompute::Run() {
return;
}
template <PrecisionType Ptype_out>
void BatchNormComputeInt8<Ptype_out>::PrepareForRun() {
return;
}
template <PrecisionType Ptype_out>
void BatchNormComputeInt8<Ptype_out>::Run() {
return;
}
} // namespace bm
} // namespace kernels
} // namespace lite
} // namespace paddle
REGISTER_LITE_KERNEL(
batch_norm, kBM, kFloat, kNCHW, paddle::lite::kernels::bm::BatchNormCompute, def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kBM))})
.BindInput("Scale", {LiteType::GetTensorTy(TARGET(kBM))})
.BindInput("Bias", {LiteType::GetTensorTy(TARGET(kBM))})
.BindInput("Mean", {LiteType::GetTensorTy(TARGET(kBM))})
.BindInput("Variance", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("Y", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("MeanOut", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("VarianceOut", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("SavedMean", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("SavedVariance", {LiteType::GetTensorTy(TARGET(kBM))})
.Finalize();
REGISTER_LITE_KERNEL(
batch_norm, kBM, kInt8, kNCHW, paddle::lite::kernels::bm::BatchNormComputeInt8<PRECISION(kInt8)>, def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kBM))})
.BindInput("Scale", {LiteType::GetTensorTy(TARGET(kBM))})
.BindInput("Bias", {LiteType::GetTensorTy(TARGET(kBM))})
.BindInput("Mean", {LiteType::GetTensorTy(TARGET(kBM))})
.BindInput("Variance", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("Y", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("MeanOut", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("VarianceOut", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("SavedMean", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("SavedVariance", {LiteType::GetTensorTy(TARGET(kBM))})
.Finalize();
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include "lite/core/kernel.h"
#include "lite/operators/batch_norm_op.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace bm {
class BatchNormCompute : public KernelLite<TARGET(kBM), PRECISION(kFloat)> {
public:
using param_t = operators::BatchNormParam;
void PrepareForRun() override;
void Run() override;
virtual ~BatchNormCompute() = default;
};
template <PrecisionType Ptype_out>
class BatchNormComputeInt8 : public KernelLite<TARGET(kBM), PRECISION(kInt8)> {
public:
using param_t = operators::BatchNormParam;
void PrepareForRun() override;
void Run() override;
virtual ~BatchNormComputeInt8() = default;
};
} // namespace bm
} // namespace kernels
} // namespace lite
} // namespace paddle
......@@ -23,7 +23,6 @@ namespace kernels {
namespace bm {
void CalibComputeFp32ToInt8::Run() {
return;
}
void CalibComputeInt8ToFp32::Run() {
......
......@@ -66,6 +66,6 @@ REGISTER_LITE_KERNEL(
DATALAYOUT(kNCHW))})
.BindOutput("Output",
{LiteType::GetTensorTy(TARGET(kBM),
PRECISION(kInt8),
PRECISION(kFloat),
DATALAYOUT(kNCHW))})
.Finalize();
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/bm/elementwise_compute.h"
#include <string>
#include <vector>
namespace paddle {
namespace lite {
namespace kernels {
namespace bm {
void ElementwiseAddCompute::Run() {
}
template <PrecisionType Ptype_out>
void ElementwiseAddComputeInt8<Ptype_out>::Run() {
}
} // namespace bm
} // namespace kernels
} // namespace lite
} // namespace paddle
REGISTER_LITE_KERNEL(elementwise_add,
kBM,
kFloat,
kNCHW,
paddle::lite::kernels::bm::ElementwiseAddCompute,
def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kBM))})
.BindInput("Y", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kBM))})
.Finalize();
REGISTER_LITE_KERNEL(elementwise_add,
kBM,
kInt8,
kNCHW,
paddle::lite::kernels::bm::ElementwiseAddComputeInt8<PRECISION(kInt8)>,
def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kBM))})
.BindInput("Y", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kBM))})
.Finalize();
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace bm {
class ElementwiseAddCompute
: public KernelLite<TARGET(kBM), PRECISION(kFloat)> {
public:
void Run() override;
virtual ~ElementwiseAddCompute() = default;
};
template <PrecisionType Ptype_out>
class ElementwiseAddComputeInt8
: public KernelLite<TARGET(kBM), PRECISION(kInt8)> {
public:
void Run() override;
virtual ~ElementwiseAddComputeInt8() = default;
};
} // namespace bm
} // namespace kernels
} // namespace lite
} // namespace paddle
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/backends/bm/target_wrapper.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace bm {
using TargetW = TargetWrapper<TARGET(kBM)>;
// Host to BM memory.
void CopyFromHostSync(void* target, const void* source, size_t size) {
TargetW::MemcpySync(target, source, size, IoDirection::HtoD);
}
void CopyFromHostAsync(void* target,
const void* source,
size_t size,
TargetW::stream_t stream) {
TargetW::MemcpyAsync(target, source, size, IoDirection::HtoD, stream);
}
// Host to Host memory.
void CopyToHostSync(void* target, const void* source, size_t size) {
TargetW::MemcpySync(target, source, size, IoDirection::DtoH);
}
/*
* This kernel copies a tensor from host to BM space.
*/
class IoCopyHostToBMCompute
: public KernelLite<TARGET(kBM), PRECISION(kAny), DATALAYOUT(kAny)> {
public:
void Run() override {
auto& param = Param<operators::IoCopyParam>();
CHECK(param.x->target() == TARGET(kHost) ||
param.x->target() == TARGET(kX86));
auto mem_size = param.x->memory_size();
VLOG(4) << "copy size " << mem_size;
auto* data = param.y->mutable_data(TARGET(kBM), mem_size);
CopyFromHostSync(data, param.x->raw_data(), mem_size);
}
std::unique_ptr<type_infer_handler_t> GetTypeInferHandler() override {
std::unique_ptr<type_infer_handler_t> res(new type_infer_handler_t);
*res = [](const std::map<std::string, const Type*>& inputs,
const std::string& out) -> const Type* {
CHECK(!inputs.empty());
auto* type = inputs.at("Input");
CHECK(type->target() == TARGET(kHost));
auto out_place = type->place();
out_place.target = TARGET(kBM);
auto* out_type = Type::Get(type->id(),
out_place.target,
out_place.precision,
out_place.layout,
out_place.device);
return out_type;
};
return res;
}
std::string doc() const override { return "Copy IO from HOST to BM"; }
};
/*
* This kernel copies a tensor from BM to host space.
*/
class IoCopyBMToHostCompute
: public KernelLite<TARGET(kBM), PRECISION(kAny), DATALAYOUT(kAny)> {
public:
void Run() override {
auto& param = Param<operators::IoCopyParam>();
CHECK(param.x->target() == TARGET(kBM));
auto mem_size = param.x->memory_size();
VLOG(4) << "io copy bm to host " << mem_size;
auto* data = param.y->mutable_data(TARGET(kHost), mem_size);
CopyToHostSync(data, param.x->raw_data(), mem_size);
}
std::string doc() const override { return "Copy IO from BM to HOST"; }
};
} // namespace bm
} // namespace kernels
} // namespace lite
} // namespace paddle
REGISTER_LITE_KERNEL(io_copy,
kBM,
kAny,
kAny,
paddle::lite::kernels::bm::IoCopyHostToBMCompute,
host_to_device)
.BindInput("Input",
{LiteType::GetTensorTy(TARGET(kHost),
PRECISION(kAny),
DATALAYOUT(kAny))})
.BindOutput("Out",
{LiteType::GetTensorTy(TARGET(kBM),
PRECISION(kAny),
DATALAYOUT(kAny))})
.Finalize();
REGISTER_LITE_KERNEL(io_copy,
kBM,
kAny,
kAny,
paddle::lite::kernels::bm::IoCopyBMToHostCompute,
device_to_host)
.BindInput("Input",
{LiteType::GetTensorTy(TARGET(kBM),
PRECISION(kAny),
DATALAYOUT(kAny))})
.BindOutput("Out",
{LiteType::GetTensorTy(TARGET(kHost),
PRECISION(kAny),
DATALAYOUT(kAny))})
.Finalize();
REGISTER_LITE_KERNEL(io_copy_once,
kBM,
kAny,
kAny,
paddle::lite::kernels::bm::IoCopyHostToBMCompute,
host_to_device)
.BindInput("Input",
{LiteType::GetTensorTy(TARGET(kHost),
PRECISION(kAny),
DATALAYOUT(kAny))})
.BindOutput("Out",
{LiteType::GetTensorTy(TARGET(kBM),
PRECISION(kAny),
DATALAYOUT(kAny))})
.Finalize();
REGISTER_LITE_KERNEL(io_copy_once,
kBM,
kAny,
kAny,
paddle::lite::kernels::bm::IoCopyBMToHostCompute,
device_to_host)
.BindInput("Input",
{LiteType::GetTensorTy(TARGET(kBM),
PRECISION(kAny),
DATALAYOUT(kAny))})
.BindOutput("Out",
{LiteType::GetTensorTy(TARGET(kHost),
PRECISION(kAny),
DATALAYOUT(kAny))})
.Finalize();
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/bm/mul_compute.h"
#include <string>
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace bm {
void MulCompute::PrepareForRun() {
return;
}
void MulCompute::Run() {
return;
}
template <PrecisionType Ptype_out>
void MulComputeInt8<Ptype_out>::PrepareForRun() {
return;
}
template <PrecisionType Ptype_out>
void MulComputeInt8<Ptype_out>::Run() {
return;
}
} // namespace bm
} // namespace kernels
} // namespace lite
} // namespace paddle
REGISTER_LITE_KERNEL(
mul, kBM, kFloat, kNCHW, paddle::lite::kernels::bm::MulCompute, def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kBM))})
.BindInput("Y", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kBM))})
.Finalize();
REGISTER_LITE_KERNEL(
mul, kBM, kInt8, kNCHW, paddle::lite::kernels::bm::MulComputeInt8<PRECISION(kInt8)>, def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kBM))})
.BindInput("Y", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kBM))})
.Finalize();
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include "lite/core/kernel.h"
#include "lite/operators/mul_op.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace bm {
class MulCompute : public KernelLite<TARGET(kBM), PRECISION(kFloat)> {
public:
using param_t = operators::MulParam;
void PrepareForRun() override;
void Run() override;
virtual ~MulCompute() = default;
};
template <PrecisionType Ptype_out>
class MulComputeInt8 : public KernelLite<TARGET(kBM), PRECISION(kInt8)> {
public:
using param_t = operators::MulParam;
void PrepareForRun() override;
void Run() override;
virtual ~MulComputeInt8() = default;
};
} // namespace bm
} // namespace kernels
} // namespace lite
} // namespace paddle
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/bm/pool_compute.h"
#include <string>
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace bm {
void PoolCompute::PrepareForRun() {
return;
}
void PoolCompute::Run() {
return;
}
template <PrecisionType Ptype_out>
void PoolComputeInt8<Ptype_out>::PrepareForRun() {
return;
}
template <PrecisionType Ptype_out>
void PoolComputeInt8<Ptype_out>::Run() {
return;
}
} // namespace bm
} // namespace kernels
} // namespace lite
} // namespace paddle
REGISTER_LITE_KERNEL(
pool2d, kBM, kFloat, kNCHW, paddle::lite::kernels::bm::PoolCompute, def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kBM))})
.Finalize();
REGISTER_LITE_KERNEL(
pool2d, kBM, kInt8, kNCHW, paddle::lite::kernels::bm::PoolComputeInt8<PRECISION(kInt8)>, def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kBM))})
.Finalize();
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include "lite/core/kernel.h"
#include "lite/operators/pool_op.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace bm {
class PoolCompute : public KernelLite<TARGET(kBM), PRECISION(kFloat)> {
public:
using param_t = operators::PoolParam;
void PrepareForRun() override;
void Run() override;
virtual ~PoolCompute() = default;
};
template <PrecisionType Ptype_out>
class PoolComputeInt8 : public KernelLite<TARGET(kBM), PRECISION(kInt8)> {
public:
using param_t = operators::PoolParam;
void PrepareForRun() override;
void Run() override;
virtual ~PoolComputeInt8() = default;
};
} // namespace bm
} // namespace kernels
} // namespace lite
} // namespace paddle
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/bm/relu_compute.h"
#include <string>
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace bm {
void ReluCompute::PrepareForRun() {
return;
}
void ReluCompute::Run() {
return;
}
template <PrecisionType Ptype_out>
void ReluComputeInt8<Ptype_out>::PrepareForRun() {
return;
}
template <PrecisionType Ptype_out>
void ReluComputeInt8<Ptype_out>::Run() {
return;
}
} // namespace bm
} // namespace kernels
} // namespace lite
} // namespace paddle
REGISTER_LITE_KERNEL(
relu, kBM, kFloat, kNCHW, paddle::lite::kernels::bm::ReluCompute, def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kBM))})
.Finalize();
REGISTER_LITE_KERNEL(
relu, kBM, kInt8, kNCHW, paddle::lite::kernels::bm::ReluComputeInt8<PRECISION(kInt8)>, def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kBM))})
.Finalize();
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include "lite/core/kernel.h"
#include "lite/operators/relu_op.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace bm {
class ReluCompute : public KernelLite<TARGET(kBM), PRECISION(kFloat)> {
public:
using param_t = operators::ActivationParam;
void PrepareForRun() override;
void Run() override;
virtual ~ReluCompute() = default;
};
template <PrecisionType Ptype_out>
class ReluComputeInt8 : public KernelLite<TARGET(kBM), PRECISION(kInt8)> {
public:
using param_t = operators::ActivationParam;
void PrepareForRun() override;
void Run() override;
virtual ~ReluComputeInt8() = default;
};
} // namespace bm
} // namespace kernels
} // namespace lite
} // namespace paddle
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/bm/scale_compute.h"
#include <string>
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace bm {
void ScaleCompute::PrepareForRun() {
return;
}
void ScaleCompute::Run() {
return;
}
template <PrecisionType Ptype_out>
void ScaleComputeInt8<Ptype_out>::PrepareForRun() {
return;
}
template <PrecisionType Ptype_out>
void ScaleComputeInt8<Ptype_out>::Run() {
return;
}
} // namespace bm
} // namespace kernels
} // namespace lite
} // namespace paddle
REGISTER_LITE_KERNEL(
scale, kBM, kFloat, kNCHW, paddle::lite::kernels::bm::ScaleCompute, def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kBM))})
.Finalize();
REGISTER_LITE_KERNEL(
scale, kBM, kInt8, kNCHW, paddle::lite::kernels::bm::ScaleComputeInt8<PRECISION(kInt8)>, def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kBM))})
.Finalize();
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include "lite/core/kernel.h"
#include "lite/operators/scale_op.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace bm {
class ScaleCompute : public KernelLite<TARGET(kBM), PRECISION(kFloat)> {
public:
using param_t = operators::ScaleParam;
void PrepareForRun() override;
void Run() override;
virtual ~ScaleCompute() = default;
};
template <PrecisionType Ptype_out>
class ScaleComputeInt8 : public KernelLite<TARGET(kBM), PRECISION(kInt8)> {
public:
using param_t = operators::ScaleParam;
void PrepareForRun() override;
void Run() override;
virtual ~ScaleComputeInt8() = default;
};
} // namespace bm
} // namespace kernels
} // namespace lite
} // namespace paddle
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/bm/softmax_compute.h"
#include <string>
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace bm {
void SoftmaxCompute::PrepareForRun() {
return;
}
void SoftmaxCompute::Run() {
return;
}
template <PrecisionType Ptype_out>
void SoftmaxComputeInt8<Ptype_out>::PrepareForRun() {
return;
}
template <PrecisionType Ptype_out>
void SoftmaxComputeInt8<Ptype_out>::Run() {
return;
}
} // namespace bm
} // namespace kernels
} // namespace lite
} // namespace paddle
REGISTER_LITE_KERNEL(
softmax, kBM, kFloat, kNCHW, paddle::lite::kernels::bm::SoftmaxCompute, def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kBM))})
.Finalize();
REGISTER_LITE_KERNEL(
softmax, kBM, kInt8, kNCHW, paddle::lite::kernels::bm::SoftmaxComputeInt8<PRECISION(kInt8)>, def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kBM))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kBM))})
.Finalize();
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include "lite/core/kernel.h"
#include "lite/operators/softmax_op.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace bm {
class SoftmaxCompute : public KernelLite<TARGET(kBM), PRECISION(kFloat)> {
public:
using param_t = operators::SoftmaxParam;
void PrepareForRun() override;
void Run() override;
virtual ~SoftmaxCompute() = default;
};
template <PrecisionType Ptype_out>
class SoftmaxComputeInt8 : public KernelLite<TARGET(kBM), PRECISION(kInt8)> {
public:
using param_t = operators::SoftmaxParam;
void PrepareForRun() override;
void Run() override;
virtual ~SoftmaxComputeInt8() = default;
};
} // namespace bm
} // namespace kernels
} // namespace lite
} // namespace paddle
......@@ -112,7 +112,9 @@ class ConvOpLite : public OpLite {
return true;
}
void AttachKernel(KernelBase* kernel) override { kernel->SetParam(param_); }
void AttachKernel(KernelBase* kernel) override {
kernel->SetParam(param_);
}
std::string DebugString() const override { return "conv2d"; }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册