提交 85ba3b69 编写于 作者: qnqinan's avatar qnqinan

Merge branch 'develop' of https://github.com/PaddlePaddle/paddle-mobile into develop

......@@ -78,6 +78,10 @@ void ConvAddBNReluKernel<CPU, float>::Compute(
case ConvParam<CPU>::EXEC_GEMM_FLOAT:
GemmConv<float, float>(param);
break;
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S1_FLOAT:
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S2_FLOAT:
SlidingwindowConv3x3<float, float>(param);
break;
default:
PADDLE_MOBILE_THROW_EXCEPTION("Invalid convolution execute mode %d",
param.ExecMode());
......
......@@ -32,10 +32,8 @@ template <>
void ConvAddKernel<CPU, float>::Compute(const FusionConvAddParam<CPU> &param) {
switch (param.ExecMode()) {
case ConvParam<CPU>::EXEC_DEPTHWISE3x3S1_FLOAT:
break;
case ConvParam<CPU>::EXEC_DEPTHWISE3x3S2_FLOAT:
math::DepthwiseConv3x3S2<float, float>(*param.Input(), *param.Filter(),
param.Paddings(), param.Output());
DepthwiseConv3x3<float, float>(param);
break;
case ConvParam<CPU>::EXEC_DEPTHWISE5x5_FLOAT:
DepthwiseConv5x5<float, float>(param);
......@@ -46,6 +44,10 @@ void ConvAddKernel<CPU, float>::Compute(const FusionConvAddParam<CPU> &param) {
case ConvParam<CPU>::EXEC_GEMM_FLOAT:
GemmConv<float, float>(param);
break;
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S1_FLOAT:
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S2_FLOAT:
SlidingwindowConv3x3<float, float>(param);
break;
default:
PADDLE_MOBILE_THROW_EXCEPTION("Invalid convolution execute mode %d",
param.ExecMode());
......
......@@ -45,6 +45,10 @@ void ConvAddReluKernel<CPU, float>::Compute(
case ConvParam<CPU>::EXEC_GEMM_FLOAT:
GemmConv<float, float>(param);
break;
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S1_FLOAT:
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S2_FLOAT:
SlidingwindowConv3x3<float, float>(param);
break;
default:
PADDLE_MOBILE_THROW_EXCEPTION("Invalid convolution execute mode %d",
param.ExecMode());
......
......@@ -76,6 +76,10 @@ void ConvBNAddReluKernel<CPU, float>::Compute(
case ConvParam<CPU>::EXEC_GEMM_FLOAT:
GemmConv<float, float>(param);
break;
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S1_FLOAT:
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S2_FLOAT:
SlidingwindowConv3x3<float, float>(param);
break;
default:
PADDLE_MOBILE_THROW_EXCEPTION("Invalid convolution execute mode %d",
param.ExecMode());
......
......@@ -75,6 +75,10 @@ void ConvBNReluKernel<CPU, float>::Compute(
case ConvParam<CPU>::EXEC_GEMM_FLOAT:
GemmConv<float, float>(param);
break;
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S1_FLOAT:
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S2_FLOAT:
SlidingwindowConv3x3<float, float>(param);
break;
default:
PADDLE_MOBILE_THROW_EXCEPTION("Invalid convolution execute mode %d",
param.ExecMode());
......
......@@ -57,8 +57,8 @@ void InitBaseConvKernel(ConvParam<CPU> *param) {
param->Dilations()[0] == param->Dilations()[1] &&
param->Strides()[0] == 1 && param->Dilations()[0] == 1
#if 1
&& (param->Input()->dims()[1] >= 4 ||
param->Output()->dims()[1] >= 16)
&& (param->Input()->dims()[1] >= 8 &&
param->Output()->dims()[1] >= 8)
#endif
) {
param->ExecMode() = ConvParam<CPU>::EXEC_WINOGRAD3X3_FLOAT;
......@@ -66,6 +66,26 @@ void InitBaseConvKernel(ConvParam<CPU> *param) {
param->transformed_filter_ = new framework::LoDTensor;
operators::math::winograd_transform_weight<8, 3>(
*param->Filter(), param->transformed_filter_);
} else if (conv3x3 && !depth3x3 &&
param->Strides()[0] == param->Strides()[1] &&
param->Dilations()[0] == param->Dilations()[1] &&
param->Strides()[0] == 1 && param->Dilations()[0] == 1
#if 1
&& (param->Input()->dims()[2] >= 48 &&
param->Output()->dims()[1] <= 24)
#endif
) {
param->ExecMode() = ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S1_FLOAT;
} else if (conv3x3 && !depth3x3 &&
param->Strides()[0] == param->Strides()[1] &&
param->Dilations()[0] == param->Dilations()[1] &&
param->Strides()[0] == 2 && param->Dilations()[0] == 1
#if 1
&& (param->Input()->dims()[2] >= 48 &&
param->Output()->dims()[1] <= 24)
#endif
) {
param->ExecMode() = ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S2_FLOAT;
} else {
param->ExecMode() = ConvParam<CPU>::EXEC_GEMM_FLOAT;
}
......
......@@ -54,6 +54,10 @@ void ConvKernel<CPU, float>::Compute(const ConvParam<CPU> &param) {
case ConvParam<CPU>::EXEC_GEMM_FLOAT:
GemmConv<float, float>(param);
break;
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S1_FLOAT:
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S2_FLOAT:
SlidingwindowConv3x3<float, float>(param);
break;
default:
PADDLE_MOBILE_THROW_EXCEPTION("Invalid convolution execute mode %d",
param.ExecMode());
......
......@@ -19,6 +19,7 @@ limitations under the License. */
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/pad.h"
#include "operators/math/slidingwindow_conv3x3.h"
#include "operators/math/vol2col.h"
#include "operators/math/winograd/winograd_transform.h"
#include "operators/op_param.h"
......@@ -232,10 +233,29 @@ void DepthwiseConv5x5(const ConvParam<CPU> &param) {
}
}
template <typename Itype, typename Otype>
void SlidingwindowConv3x3(const ConvParam<CPU> &param) {
const Tensor *input = param.Input();
const Tensor *filter = param.Filter();
const std::vector<int> &paddings = param.Paddings();
const std::vector<int> &strides = param.Strides();
Tensor *output = param.Output();
output->mutable_data<Otype>();
if (strides[0] == 1) {
math::SlidingwindowConv3x3s1<Itype, Otype>(input, filter, paddings, output);
} else if (strides[0] == 2) {
math::SlidingwindowConv3x3s2<Itype, Otype>(input, filter, paddings, output);
} else {
GemmConv<Itype, Otype>(param);
}
}
template void GemmConv<float, float>(const ConvParam<CPU> &param);
template void WinogradConv3x3<8, 3>(const ConvParam<CPU> &param);
template void DepthwiseConv3x3<float, float>(const ConvParam<CPU> &param);
template void DepthwiseConv5x5<float, float>(const ConvParam<CPU> &param);
template void SlidingwindowConv3x3<float, float>(const ConvParam<CPU> &param);
#ifndef __aarch64__
template void GemmConv<int8_t, int32_t>(const ConvParam<CPU> &param);
......
......@@ -41,6 +41,9 @@ void DepthwiseConv3x3(const ConvParam<CPU> &param);
template <typename Itype, typename Otype>
void DepthwiseConv5x5(const ConvParam<CPU> &param);
template <typename Itype, typename Otype>
void SlidingwindowConv3x3(const ConvParam<CPU> &param);
} // namespace operators
} // namespace paddle_mobile
......
......@@ -300,7 +300,7 @@ static inline T JaccardOverlap(const T *box1, const T *box2, bool normalized) {
template <class T>
static inline Tensor NMS(Tensor *bbox, Tensor *scores, T nms_threshold,
float eta) {
float eta, int post_nms_num = 100) {
int64_t num_boxes = bbox->dims()[0];
// 4: [xmin ymin xmax ymax]
int64_t box_size = bbox->dims()[1];
......@@ -314,7 +314,7 @@ static inline Tensor NMS(Tensor *bbox, Tensor *scores, T nms_threshold,
int selected_num = 0;
T adaptive_threshold = nms_threshold;
const T *bbox_data = bbox->data<T>();
while (sorted_indices.size() != 0) {
while ((sorted_indices.size() != 0) && (selected_num < post_nms_num)) {
int idx = sorted_indices.back().second;
bool flag = true;
for (int kept_idx : selected_indices) {
......@@ -397,17 +397,19 @@ std::pair<Tensor, Tensor> ProposalForOneImage(
return std::make_pair(bbox_sel, scores_filter);
}
Tensor keep_nms = NMS<T>(&bbox_sel, &scores_filter, nms_thresh, eta);
// Tensor keep_nms = NMS<T>(&bbox_sel, &scores_filter, nms_thresh, eta);
Tensor keep_nms =
NMS<T>(&bbox_sel, &scores_filter, nms_thresh, eta, post_nms_top_n);
if (post_nms_top_n > 0 && post_nms_top_n < keep_nms.numel()) {
keep_nms.Resize({post_nms_top_n});
}
// proposals.mutable_data<T>({keep_nms.numel(), 4});//original
// scores_sel.mutable_data<T>({keep_nms.numel(), 1});//original
proposals.mutable_data<T>({keep_nms.numel(), 4}); // original
scores_sel.mutable_data<T>({keep_nms.numel(), 1}); // original
proposals.mutable_data<T>({post_nms_top_n, 4}); // wong
scores_sel.mutable_data<T>({post_nms_top_n, 1}); // wong
// proposals.mutable_data<T>({post_nms_top_n, 4}); // wong
// scores_sel.mutable_data<T>({post_nms_top_n, 1}); // wong
CPUGather<T>(bbox_sel, keep_nms, &proposals);
CPUGather<T>(scores_filter, keep_nms, &scores_sel);
return std::make_pair(proposals, scores_sel);
......
......@@ -15,7 +15,6 @@ limitations under the License. */
#ifdef PSROI_POOL_OP
#include <cmath>
#include <memory>
#include <vector>
#include "operators/kernel/detection_kernel.h"
......@@ -72,16 +71,72 @@ bool PSRoiPoolKernel<FPGA, float>::Init(PSRoiPoolParam<FPGA>* param) {
return true;
}
/*
template <typename Dtype>
void PSROIPoolingForward(
const Dtype* bottom_data,
const int height, const int width, const int input_channel,
Dtype* top_data,
const int pooled_height, const int pooled_width, const int output_channel,
const Dtype* bottom_rois,
const Dtype Bin_size_h, const Dtype Bin_size_w, const Dtype roi_start_h,
const Dtype roi_start_w, const int pw, const int ph, const int roi_batch_ind)
{
int hstart = floor(static_cast<Dtype>(ph) * Bin_size_h + roi_start_h);
int wstart = floor(static_cast<Dtype>(pw)* Bin_size_w + roi_start_w);
int hend = ceil(static_cast<Dtype>(ph + 1) * Bin_size_h + roi_start_h);
int wend = ceil(static_cast<Dtype>(pw + 1) * Bin_size_w + roi_start_w);
hstart = std::min(std::max(hstart, 0), height);
hend = std::min(std::max(hend, 0), height);
wstart = std::min(std::max(wstart, 0), width);
wend = std::min(std::max(wend, 0), width);
bool is_empty = (hend <= hstart) || (wend <= wstart);
float32x4_t sum_pixels_low_c= vdupq_n_f32(0);
float32x4_t sum_pixels_high_c= vdupq_n_f32(0);
if(!is_empty){
Dtype bin_area = (hend - hstart) * (wend - wstart);
float rev_bin_area = 1 / bin_area;
float32x4_t q_bin_area = vdupq_n_f32(rev_bin_area);
//static_cast<float>(bin_area) float pixels_c[output_channel];
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
int pixel_offset = (h * width + w) * input_channel;
for(int output_c = 0; output_c < output_channel; output_c++){
int input_channel_offset = output_c * pooled_height *
pooled_width; int input_bias = pixel_offset + input_channel_offset + ph *
pooled_width + pw; pixels_c[output_c] = bottom_data[input_bias];
}
float32x4_t pixel_low_c = vld1q_f32(pixels_c);
float32x4_t pixel_high_c = vld1q_f32(pixels_c + 4);
sum_pixels_low_c = vaddq_f32(sum_pixels_low_c, pixel_low_c);
sum_pixels_high_c = vaddq_f32(sum_pixels_high_c, pixel_high_c);
}
}
sum_pixels_low_c = vmulq_f32(sum_pixels_low_c, q_bin_area);
sum_pixels_high_c = vmulq_f32(sum_pixels_high_c, q_bin_area);
}
int output_index_base = (ph * pooled_width + pw) * output_channel;
top_data += output_index_base;
vst1q_f32(top_data, sum_pixels_low_c);
top_data += 4;
vst1q_f32(top_data, sum_pixels_high_c);
}*/
template <typename Dtype>
void PSROIPooling(const Dtype* bottom_data, const int channels,
const int height, const int width, const int pooled_height,
const int pooled_width, const Dtype* bottom_rois,
const int output_dim, const int group_size, Dtype* top_data,
int index, int nid, const Dtype Bin_size_h,
const Dtype Bin_size_w, const Dtype roi_start_h,
const Dtype roi_start_w, const int ctop, const int ph,
const int roi_batch_ind) {
int pw = index;
void PSROIPoolingForward(const Dtype* bottom_data, const int height,
const int width, const int input_channel,
Dtype* top_data, const int pooled_height,
const int pooled_width, const int output_channel,
const Dtype* bottom_rois, const Dtype Bin_size_h,
const Dtype Bin_size_w, const Dtype roi_start_h,
const Dtype roi_start_w, const int pw, const int ph,
const int roi_batch_ind) {
int hstart = floor(static_cast<Dtype>(ph) * Bin_size_h + roi_start_h);
int wstart = floor(static_cast<Dtype>(pw) * Bin_size_w + roi_start_w);
int hend = ceil(static_cast<Dtype>(ph + 1) * Bin_size_h + roi_start_h);
......@@ -94,60 +149,35 @@ void PSROIPooling(const Dtype* bottom_data, const int channels,
wend = std::min(std::max(wend, 0), width);
bool is_empty = (hend <= hstart) || (wend <= wstart);
int c = (ctop * group_size + ph) * group_size + pw;
Dtype bin_area = (hend - hstart) * (wend - wstart);
bottom_data += (roi_batch_ind * channels + c) * height * width;
Dtype out_sum = 0;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
int bottom_index = h * width + w;
out_sum += bottom_data[bottom_index];
}
}
top_data[nid + index] = is_empty ? 0. : out_sum / bin_area;
}
void convert_to_chw(float** data_in, int channel, int height, int width,
int num) {
float* data_in_tmp = *data_in;
float* data_tmp = reinterpret_cast<float*>(
fpga::fpga_malloc(channel * height * width * sizeof(float))); // NOLINT
int64_t amount_per_side = width * height;
for (int n = 0; n < num; n++) {
for (int h = 0; h < height; h++) {
for (int w = 0; w < width; w++) {
for (int c = 0; c < channel; c++) {
*(data_tmp + n * height * width * channel + c * amount_per_side +
width * h + w) = *((*data_in)++);
float sum_pixels_c[output_channel] = {0};
float pixels_c[output_channel] = {0};
if (!is_empty) {
Dtype bin_area = (hend - hstart) * (wend - wstart);
float rec_bin_area = 1 / bin_area;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
int pixel_offset = (h * width + w) * input_channel;
for (int output_c = 0; output_c < output_channel; output_c++) {
int input_channel_offset = output_c * pooled_height * pooled_width;
int input_bias =
pixel_offset + input_channel_offset + ph * pooled_width + pw;
pixels_c[output_c] = bottom_data[input_bias];
}
}
}
}
*data_in = data_tmp;
fpga::fpga_free(data_in_tmp);
}
void convert_to_hwc(float** data_in, int channel, int height, int width,
int num) {
float* data_in_tmp = *data_in;
float* data_tmp = reinterpret_cast<float*>(
fpga::fpga_malloc(num * channel * height * width * sizeof(float)));
int64_t amount_per_row = width * channel;
for (int n = 0; n < num; n++) {
for (int c = 0; c < channel; c++) {
for (int h = 0; h < height; h++) {
int64_t offset_height = h * amount_per_row;
for (int w = 0; w < width; w++) {
*(data_tmp + n * channel * height * width + offset_height +
w * channel + c) = *((*data_in)++);
for (int output_c = 0; output_c < output_channel; output_c++) {
sum_pixels_c[output_c] += pixels_c[output_c];
}
}
}
for (int output_c = 0; output_c < output_channel; output_c++) {
sum_pixels_c[output_c] *= rec_bin_area;
}
}
*data_in = data_tmp;
fpga::fpga_free(data_in_tmp);
int output_index_base = (ph * pooled_width + pw) * output_channel;
top_data += output_index_base;
memcpy(top_data, sum_pixels_c, output_channel * 4);
}
template <>
......@@ -174,14 +204,15 @@ void PSRoiPoolKernel<FPGA, float>::Compute(const PSRoiPoolParam<FPGA>& param) {
int rois_num = rois->dims()[0];
auto data_nhwc = in->mutable_data<float>();
fpga::image::convert_to_chw(&data_nhwc, input_channels, height, width, 1);
// fpga::image::convert_to_chw(&data_nhwc, input_channels, height, width);
framework::DDim dims_out_new = framework::make_ddim(
{rois_num, (param.output_)->dims()[1], (((param.output_)->dims()[2])),
(param.output_)->dims()[3]});
(param.output_)->Resize(dims_out_new);
float* input_data = data_nhwc; // in->data<float>();
// shared_ptr<float> input_data(data_nhwc);
const float* input_data = data_nhwc; // in->data<float>();
framework::Tensor rois_batch_id_list;
rois_batch_id_list.Resize({rois_num});
auto rois_batch_id_data = rois_batch_id_list.mutable_data<int>();
......@@ -203,18 +234,19 @@ void PSRoiPoolKernel<FPGA, float>::Compute(const PSRoiPoolParam<FPGA>& param) {
"output_channels x pooled_height x pooled_width");
// calculate batch id index for each roi according to LoD
// for (int n = 0; n < rois_batch_size; ++n) {
// for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
// rois_batch_id_data[i] = n;
// }
//}
for (int n = 0; n < rois_batch_size; ++n) {
for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
rois_batch_id_data[i] = n;
}
}
auto output_data = out->mutable_data<float>();
auto input_rois = rois->data<float>();
// calculate psroipooling, parallel processing can be implemented per ROI
for (int n = 0; n < rois_num; ++n) {
// [start, end) interval for spatial sampling
auto offset_input_rois = input_rois + n * 4;
auto offset_output_data =
output_data + pooled_height * pooled_width * output_channels * n;
auto roi_start_w =
static_cast<float>(round(offset_input_rois[0])) * spatial_scale;
auto roi_start_h =
......@@ -232,27 +264,18 @@ void PSRoiPoolKernel<FPGA, float>::Compute(const PSRoiPoolParam<FPGA>& param) {
auto bin_size_h = roi_height / static_cast<float>(pooled_height);
auto bin_size_w = roi_width / static_cast<float>(pooled_width);
int roi_batch_ind = 0; // rois_batch_id_data[n];
// std::cout << "roi_batch_ind: " << roi_batch_ind << std::endl;
for (int c = 0; c < output_channels; ++c) {
for (int ph = 0; ph < pooled_height; ph++) {
int index = pooled_width;
int nid = n * output_channels * pooled_height * pooled_width +
c * pooled_width * pooled_height + ph * pooled_width;
for (int idx = 0; idx < index; idx++) {
PSROIPooling<float>(input_data, input_channels, height, width,
pooled_height, pooled_width, input_rois,
output_channels, pooled_height, output_data, idx,
nid, bin_size_h, bin_size_w, roi_start_h,
roi_start_w, c, ph, roi_batch_ind);
}
int roi_batch_ind = rois_batch_id_data[n];
for (int ph = 0; ph < pooled_height; ph++) {
for (int pw = 0; pw < pooled_width; pw++) {
PSROIPoolingForward<float>(input_data, height, width, input_channels,
offset_output_data, pooled_height,
pooled_width, output_channels, input_rois,
bin_size_h, bin_size_w, roi_start_h,
roi_start_w, pw, ph, roi_batch_ind);
}
}
}
fpga::fpga_free(input_data);
fpga::image::convert_to_hwc(&output_data, output_channels, pooled_height,
pooled_width, rois_num);
out->reset_data_ptr(output_data);
}
} // namespace operators
......
此差异已折叠。
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <vector>
#include "framework/tensor.h"
namespace paddle_mobile {
namespace operators {
namespace math {
template <typename Itype, typename Otype>
void SlidingwindowConv3x3s1(const framework::Tensor *input,
const framework::Tensor *filter,
const std::vector<int> &paddings,
framework::Tensor *output);
template <typename Itype, typename Otype>
void SlidingwindowConv3x3s2(const framework::Tensor *input,
const framework::Tensor *filter,
const std::vector<int> &paddings,
framework::Tensor *output);
} // namespace math
} // namespace operators
} // namespace paddle_mobile
......@@ -476,6 +476,8 @@ class ConvParam : public OpParam {
EXEC_GEMM_INT8,
EXEC_DEPTHWISE3x3_INT8,
EXEC_DEPTHWISE5x5_INT8,
EXEC_SLIDINGWINDOW3x3S1_FLOAT,
EXEC_SLIDINGWINDOW3x3S2_FLOAT,
};
ExecMode &ExecMode() const { return exec_mode_; }
......
......@@ -12,17 +12,29 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <iostream>
#ifndef PADDLE_MOBILE_FPGA
#define PADDLE_MOBILE_FPGA
#endif
#include "../test_helper.h"
#include "../test_include.h"
#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif
#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
#endif
#include <string>
#include <fstream>
#include <iostream>
#include "../../src/io/paddle_inference_api.h"
using namespace paddle_mobile; // NOLINT
using namespace paddle_mobile::fpga; // NOLINT
static const char *g_image = "../models/marker/marker1/image.bin";
static const char *g_model = "../models/marker/marker1/model";
static const char *g_param = "../models/marker/marker1/params";
void readStream(std::string filename, char *buf) {
std::ifstream in;
......@@ -36,132 +48,78 @@ void readStream(std::string filename, char *buf) {
auto length = in.tellg(); // report location (this is the length)
in.seekg(0, std::ios::beg); // go back to the beginning
in.read(buf, length);
DLOG << length;
in.close();
}
void convert_to_chw(int16_t **data_in, int channel, int height, int width,
int num, int16_t *data_tmp) {
int64_t amount_per_side = width * height;
for (int n = 0; n < num; n++) {
for (int h = 0; h < height; h++) {
for (int w = 0; w < width; w++) {
for (int c = 0; c < channel; c++) {
*(data_tmp + n * amount_per_side * channel + c * amount_per_side +
width * h + w) = *((*data_in)++);
}
}
}
}
PaddleMobileConfig GetConfig() {
PaddleMobileConfig config;
config.precision = PaddleMobileConfig::FP32;
config.device = PaddleMobileConfig::kFPGA;
config.prog_file = g_model;
config.param_file = g_param;
config.thread_num = 1;
config.batch_size = 1;
config.optimize = true;
config.lod_mode = true;
config.quantification = false;
return config;
}
void dump_stride_half(std::string filename, Tensor input_tensor,
const int dumpnum, bool use_chw) {
// bool use_chw = true;
if (input_tensor.dims().size() != 4) return;
int c = (input_tensor.dims())[1];
int h = (input_tensor.dims())[2];
int w = (input_tensor.dims())[3];
int n = (input_tensor.dims())[0];
auto data_ptr = input_tensor.get_data();
auto *data_ptr_16 = reinterpret_cast<half *>(data_ptr);
auto data_tmp = data_ptr_16;
if (use_chw) {
data_tmp =
reinterpret_cast<half *>(malloc(n * c * h * w * sizeof(int16_t)));
convert_to_chw(&data_ptr_16, c, h, w, n, data_tmp);
}
std::ofstream out(filename.c_str());
float result = 0;
int stride = input_tensor.numel() / dumpnum;
stride = stride > 0 ? stride : 1;
for (int i = 0; i < input_tensor.numel(); i += stride) {
result = paddle_mobile::fpga::fp16_2_fp32(data_tmp[i]);
out << result << std::endl;
}
out.close();
if (data_tmp != data_ptr_16) {
free(data_tmp);
int main() {
open_device();
PaddleMobileConfig config = GetConfig();
auto predictor =
CreatePaddlePredictor<PaddleMobileConfig,
PaddleEngineKind::kPaddleMobile>(config);
std::cout << "Finishing loading model" << std::endl;
float img_info[3] = {432, 1280, 1.0f};
int img_length = 432 * 1280 * 3;
auto img = reinterpret_cast<float *>(fpga_malloc(img_length * sizeof(float)));
readStream(g_image, reinterpret_cast<char *>(img));
std::cout << "Finishing initializing data" << std::endl;
struct PaddleTensor t_img_info, t_img;
t_img.dtypeid = typeid(float);
t_img_info.layout = LAYOUT_HWC;
t_img_info.shape = std::vector<int>({1, 3});
t_img_info.name = "Image information";
t_img_info.data.Reset(img_info, 3 * sizeof(float));
t_img.dtypeid = typeid(float);
t_img.layout = LAYOUT_HWC;
t_img.shape = std::vector<int>({1, 432, 1280, 3});
t_img.name = "Image information";
t_img.data.Reset(img, img_length * sizeof(float));
predictor->FeedPaddleTensors({t_img_info, t_img});
std::cout << "Finishing feeding data " << std::endl;
predictor->Predict_From_To(0, -1);
std::cout << "Finishing predicting " << std::endl;
std::vector<PaddleTensor> v; // No need to initialize v
predictor->FetchPaddleTensors(&v); // Old data in v will be cleared
for (int i = 0; i < v.size(); ++i) {
auto p = reinterpret_cast<float *>(v[i].data.data());
int len = v[i].data.length();
float result = 0.0f;
std::string str = "fetch" + std::to_string(i);
fpga::savefile<float>(str, p, len, result);
}
}
void dump_stride_float(std::string filename, Tensor input_tensor,
const int dumpnum) {
auto data_ptr = reinterpret_cast<float *>(input_tensor.get_data());
std::ofstream out(filename.c_str());
float result = 0;
int stride = input_tensor.numel() / dumpnum;
stride = stride > 0 ? stride : 1;
for (int i = 0; i < input_tensor.numel(); i += stride) {
result = data_ptr[i];
out << result << std::endl;
}
out.close();
}
std::cout << "Finish getting vector values" << std::endl;
void dump_stride(std::string filename, Tensor input_tensor, const int dumpnum,
bool use_chw) {
static int i = 0;
if (input_tensor.numel() == 0) {
return;
}
if (input_tensor.type() == typeid(float)) {
DLOG << "op: " << i++ << ", float data " << input_tensor.numel();
dump_stride_float(filename, input_tensor, dumpnum);
} else {
DLOG << "op: " << i++ << ", half data " << input_tensor.numel();
dump_stride_half(filename, input_tensor, dumpnum, use_chw);
}
DLOG << "dump input address: " << input_tensor.get_data();
}
////////////////////////////////////////////////////
static const char *g_marker_combine = "../models/marker/model";
static const char *g_image_src_float = "../models/marker/model/input_0.bin";
int main() {
paddle_mobile::fpga::open_device();
paddle_mobile::PaddleMobile<paddle_mobile::FPGA> paddle_mobile;
// if (paddle_mobile.Load(std::string(g_rfcn_combine) + "/model",
// std::string(g_rfcn_combine) + "/params", true, false,
// 1, true)) {
if (paddle_mobile.Load(std::string(g_marker_combine), true)) {
float img_info[3] = {720, 1280, 800.0f / 960.0f};
auto img = reinterpret_cast<float *>(
fpga::fpga_malloc(720 * 1280 * 3 * sizeof(float)));
readStream(g_image_src_float, reinterpret_cast<char *>(img));
std::vector<void *> v(3, nullptr);
paddle_mobile.FeedData({img});
paddle_mobile.Predict_To(-1);
for (int i = 47; i < 52; i++) {
auto tensor_ptr = paddle_mobile.FetchResult(i);
std::string saveName = "marker_" + std::to_string(i);
// if(i != 58)
paddle_mobile::fpga::fpga_invalidate((*tensor_ptr).get_data(),
tensor_ptr->numel() * sizeof(float));
// tensor_ptr->numel() * sizeof(float));
dump_stride(saveName, (*tensor_ptr), tensor_ptr->numel(),
true); // 20);//tensor_ptr->numel());
/* float result = 0;
std::string str = "softmax_input_data";
float* data =
static_cast<float*>(fpga::fpga_malloc(tensor_ptr->numel() *
sizeof(float))); str = "softmax_output_data"; auto output_ptr =
static_cast<half*>((*tensor_ptr).get_data()); for (int idx = 0; idx <
tensor_ptr->numel(); ++idx)
{
data[idx] = fpga::fp16_2_fp32(output_ptr[idx]);
}
fpga::savefile<float>(str,data, tensor_ptr->numel(), result ); */
}
// paddle_mobile.GetResults(&v);
DLOG << "Computation done";
fpga::fpga_free(img);
}
// PaddleTensor tensor;
// predictor->GetPaddleTensor("fetch2", &tensor);
// for (int i = 0; i < post_nms; i++) {
// auto p = reinterpret_cast<float *>(tensor.data.data());
// std::cout << p[+i] << std::endl;
// }
return 0;
}
......@@ -15,12 +15,15 @@ limitations under the License. */
#ifndef PADDLE_MOBILE_FPGA
#define PADDLE_MOBILE_FPGA
#endif
#include <sys/time.h>
#include <time.h>
#include <fstream>
#include <iomanip>
#include <iostream>
#include "../../src/io/paddle_inference_api.h"
using namespace paddle_mobile;
using namespace paddle_mobile::fpga;
using namespace paddle_mobile; // NOLINT
using namespace paddle_mobile::fpga; // NOLINT
static const char *g_image = "../models/marker/model/image.bin";
static const char *g_model = "../models/marker/model/model";
......@@ -136,44 +139,6 @@ PaddleMobileConfig GetConfig1() {
int main() {
open_device();
PaddleMobileConfig config1 = GetConfig1();
auto predictor1 =
CreatePaddlePredictor<PaddleMobileConfig,
PaddleEngineKind::kPaddleMobile>(config1);
std::cout << "Finishing loading model" << std::endl;
for (int i = 0; i < 1; ++i) {
int img_length1 = 144 * 14 * 14;
auto img1 =
reinterpret_cast<float *>(fpga_malloc(img_length1 * sizeof(float)));
readStream(g_image1, reinterpret_cast<char *>(img1));
std::cout << "Finishing initializing data" << std::endl;
struct PaddleTensor t_img1;
t_img1.dtypeid = typeid(float);
t_img1.layout = LAYOUT_HWC;
t_img1.shape = std::vector<int>({1, 14, 14, 144});
t_img1.name = "Image information";
t_img1.data.Reset(img1, img_length1 * sizeof(float));
predictor1->FeedPaddleTensors({t_img1});
std::cout << "Finishing feeding data " << std::endl;
predictor1->Predict_From_To(0, -1);
std::cout << "Finishing predicting " << std::endl;
std::vector<paddle_mobile::PaddleTensor> v1; // No need to initialize v
predictor1->FetchPaddleTensors(&v1); // Old data in v will be cleared
std::cout << "Output number is " << v1.size() << std::endl;
for (int fetchNum = 0; fetchNum < v1.size(); fetchNum++) {
std::string dumpName = "marker2_api_fetch_" + std::to_string(fetchNum);
dump_stride(dumpName, v1[fetchNum]);
}
}
/////////////////////////////////////
PaddleMobileConfig config = GetConfig();
auto predictor =
CreatePaddlePredictor<PaddleMobileConfig,
......@@ -207,7 +172,16 @@ int main() {
std::cout << "Finishing feeding data " << std::endl;
timeval start11, end11;
long dif_sec, dif_usec; // NOLINT
gettimeofday(&start11, NULL);
predictor->Predict_From_To(0, -1);
gettimeofday(&end11, NULL);
dif_sec = end11.tv_sec - start11.tv_sec;
dif_usec = end11.tv_usec - start11.tv_usec;
std::cout << "marker1 total"
<< " cost time: " << (dif_sec * 1000000 + dif_usec) << " us"
<< std::endl;
std::cout << "Finishing predicting " << std::endl;
std::vector<paddle_mobile::PaddleTensor> v; // No need to initialize v
......@@ -217,5 +191,48 @@ int main() {
std::string dumpName = "marker_api_fetch_" + std::to_string(fetchNum);
dump_stride(dumpName, v[fetchNum]);
}
PaddleMobileConfig config1 = GetConfig1();
auto predictor1 =
CreatePaddlePredictor<PaddleMobileConfig,
PaddleEngineKind::kPaddleMobile>(config1);
std::cout << "Finishing loading model" << std::endl;
for (int i = 0; i < 1; ++i) {
int img_length1 = 144 * 14 * 14;
auto img1 =
reinterpret_cast<float *>(fpga_malloc(img_length1 * sizeof(float)));
readStream(g_image1, reinterpret_cast<char *>(img1));
std::cout << "Finishing initializing data" << std::endl;
struct PaddleTensor t_img1;
t_img1.dtypeid = typeid(float);
t_img1.layout = LAYOUT_HWC;
t_img1.shape = std::vector<int>({1, 14, 14, 144});
t_img1.name = "Image information";
t_img1.data.Reset(img1, img_length1 * sizeof(float));
predictor1->FeedPaddleTensors({t_img1});
std::cout << "Finishing feeding data " << std::endl;
gettimeofday(&start11, NULL);
predictor1->Predict_From_To(0, -1);
gettimeofday(&end11, NULL);
dif_sec = end11.tv_sec - start11.tv_sec;
dif_usec = end11.tv_usec - start11.tv_usec;
std::cout << "marker2 total"
<< " cost time: " << (dif_sec * 1000000 + dif_usec) << " us"
<< std::endl;
std::cout << "Finishing predicting " << std::endl;
std::vector<paddle_mobile::PaddleTensor> v1; // No need to initialize v
predictor1->FetchPaddleTensors(&v1); // Old data in v will be cleared
std::cout << "Output number is " << v1.size() << std::endl;
for (int fetchNum = 0; fetchNum < v1.size(); fetchNum++) {
std::string dumpName = "marker2_api_fetch_" + std::to_string(fetchNum);
dump_stride(dumpName, v1[fetchNum]);
}
}
return 0;
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册