Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
835dd0d5
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
835dd0d5
编写于
10月 30, 2018
作者:
R
Ray Liu
提交者:
GitHub
10月 30, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1222 from Eclipsess/develop
fix
#1221
temp fix dw3x3 w!=h
上级
ac06a518
8a821627
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
76 addition
and
67 deletion
+76
-67
src/operators/kernel/central-arm-func/conv_add_arm_func.h
src/operators/kernel/central-arm-func/conv_add_arm_func.h
+2
-1
src/operators/kernel/central-arm-func/conv_add_bn_relu_arm_func.h
...ators/kernel/central-arm-func/conv_add_bn_relu_arm_func.h
+4
-2
src/operators/kernel/central-arm-func/conv_arm_func.h
src/operators/kernel/central-arm-func/conv_arm_func.h
+2
-1
src/operators/kernel/central-arm-func/conv_bn_add_relu_arm_func.h
...ators/kernel/central-arm-func/conv_bn_add_relu_arm_func.h
+4
-2
src/operators/kernel/central-arm-func/conv_bn_relu_arm_func.h
...operators/kernel/central-arm-func/conv_bn_relu_arm_func.h
+4
-2
src/operators/kernel/central-arm-func/depthwise_conv_arm_func.h
...erators/kernel/central-arm-func/depthwise_conv_arm_func.h
+2
-1
src/operators/kernel/central-arm-func/dwconv_bn_relu_arm_func.h
...erators/kernel/central-arm-func/dwconv_bn_relu_arm_func.h
+4
-2
src/operators/math/depthwise_conv_3x3.cpp
src/operators/math/depthwise_conv_3x3.cpp
+54
-56
未找到文件。
src/operators/kernel/central-arm-func/conv_add_arm_func.h
浏览文件 @
835dd0d5
...
...
@@ -124,7 +124,8 @@ void ConvAddCompute(const FusionConvAddParam<CPU> ¶m) {
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
// math::DepthwiseConv3x3(param.Input(), param.Strides(),
// param.Paddings(),
// param.Filter(), param.Bias(),
...
...
src/operators/kernel/central-arm-func/conv_add_bn_relu_arm_func.h
浏览文件 @
835dd0d5
...
...
@@ -118,14 +118,16 @@ void ConvAddBNReluCompute(const FusionConvAddBNReluParam<CPU> ¶m) {
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
)
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
math
::
DepthwiseConvAddBNRelu3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
NewScale
(),
param
.
NewBias
(),
true
);
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
// math::DepthwiseConvAddBNRelu3x3s2p1(param.Input(), param.Filter(),
// param.Output(), param.NewScale(),
// param.NewBias(), 1);
...
...
src/operators/kernel/central-arm-func/conv_arm_func.h
浏览文件 @
835dd0d5
...
...
@@ -130,7 +130,8 @@ void ConvCompute(const ConvParam<CPU> ¶m) {
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
)
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
math
::
DepthwiseConv3x3
(
param
.
Input
(),
param
.
Strides
(),
param
.
Paddings
(),
param
.
Filter
(),
nullptr
,
param
.
Output
(),
false
);
}
else
{
...
...
src/operators/kernel/central-arm-func/conv_bn_add_relu_arm_func.h
浏览文件 @
835dd0d5
...
...
@@ -122,14 +122,16 @@ void ConvBNAddReluCompute(const FusionConvBNAddReluParam<CPU> ¶m) {
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
)
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
math
::
DepthwiseConvAddBNRelu3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
NewScale
(),
param
.
NewBias
(),
true
);
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
// math::DepthwiseConvAddBNRelu3x3s2p1(param.Input(), param.Filter(),
// param.Output(), param.NewScale(),
// param.NewBias(), 1);
...
...
src/operators/kernel/central-arm-func/conv_bn_relu_arm_func.h
浏览文件 @
835dd0d5
...
...
@@ -117,14 +117,16 @@ void ConvBNReluCompute(const FusionConvBNReluParam<CPU> ¶m) {
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
)
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
math
::
DepthwiseConvAddBNRelu3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
NewScale
(),
param
.
NewBias
(),
true
);
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
// math::DepthwiseConvAddBNRelu3x3s2p1(param.Input(), param.Filter(),
// param.Output(), param.NewScale(),
// param.NewBias(), 1);
...
...
src/operators/kernel/central-arm-func/depthwise_conv_arm_func.h
浏览文件 @
835dd0d5
...
...
@@ -36,7 +36,8 @@ void DepthwiseConvCompute(const ConvParam<CPU> ¶m) {
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
// math::DepthwiseConv3x3(param.Input(), param.Strides(),
// param.Paddings(),
// param.Filter(), &Bias, param.Output(), false);
...
...
src/operators/kernel/central-arm-func/dwconv_bn_relu_arm_func.h
浏览文件 @
835dd0d5
...
...
@@ -115,14 +115,16 @@ void DWConvBNReluCompute(const FusionDWConvBNReluParam<CPU> ¶m) {
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
)
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
math
::
DepthwiseConvAddBNRelu3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
NewScale
(),
param
.
NewBias
(),
true
);
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
// math::DepthwiseConvAddBNRelu3x3s2p1(param.Input(), param.Filter(),
// param.Output(), param.NewScale(),
// param.NewBias(), 1);
...
...
src/operators/math/depthwise_conv_3x3.cpp
浏览文件 @
835dd0d5
...
...
@@ -257,8 +257,7 @@ void DepthwiseConv3x3s1p1(const Tensor *input, const Tensor *filter,
const
int
h
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
l
=
h
;
// const int l = h;
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
c
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
int
hxw
=
h
*
w
;
...
...
@@ -271,7 +270,7 @@ void DepthwiseConv3x3s1p1(const Tensor *input, const Tensor *filter,
vbias
=
vdupq_n_f32
(
bias_data
[
j
]);
}
int
l_mid
=
l
-
2
;
// l=1->l_mid=-1,l=2->l_mid=0
int
w_mid
=
w
-
2
;
// l=1->l_mid=-1,l=2->l_mid=0
float
w00
=
filter_data_tmp
[
0
];
float
w01
=
filter_data_tmp
[
1
];
float
w02
=
filter_data_tmp
[
2
];
...
...
@@ -283,39 +282,38 @@ void DepthwiseConv3x3s1p1(const Tensor *input, const Tensor *filter,
float
w22
=
filter_data_tmp
[
8
];
output_data
[
0
]
=
w11
*
input_data
[
0
]
+
w12
*
input_data
[
1
]
+
w21
*
input_data
[
l
]
+
w22
*
input_data
[
l
+
1
];
output_data
[
l
-
1
]
=
w10
*
input_data
[
l
-
2
]
+
w11
*
input_data
[
l
-
1
]
+
w20
*
input_data
[
2
*
l
-
2
]
+
w21
*
input_data
[
2
*
l
-
1
];
output_data
[(
l
-
1
)
*
l
]
=
w01
*
input_data
[(
l
-
2
)
*
l
]
+
w02
*
input_data
[(
l
-
2
)
*
l
+
1
]
+
w11
*
input_data
[(
l
-
1
)
*
l
]
+
w12
*
input_data
[(
l
-
1
)
*
l
+
1
];
output_data
[
l
*
l
-
1
]
=
w00
*
input_data
[(
l
-
2
)
*
(
l
+
1
)]
+
w01
*
input_data
[(
l
-
2
)
*
(
l
+
1
)
+
1
]
+
w10
*
input_data
[
l
*
l
-
2
]
+
w11
*
input_data
[
l
*
l
-
1
];
w21
*
input_data
[
w
]
+
w22
*
input_data
[
w
+
1
];
output_data
[
w
-
1
]
=
w10
*
input_data
[
w
-
2
]
+
w11
*
input_data
[
w
-
1
]
+
w20
*
input_data
[
2
*
w
-
2
]
+
w21
*
input_data
[
2
*
w
-
1
];
output_data
[(
h
-
1
)
*
w
]
=
w01
*
input_data
[(
h
-
2
)
*
w
]
+
w02
*
input_data
[(
h
-
2
)
*
w
+
1
]
+
w11
*
input_data
[(
h
-
1
)
*
w
]
+
w12
*
input_data
[(
h
-
1
)
*
w
+
1
];
output_data
[
h
*
w
-
1
]
=
w00
*
input_data
[
h
*
w
-
w
-
2
]
+
w01
*
input_data
[
h
*
w
-
w
-
1
]
+
w10
*
input_data
[
h
*
w
-
2
]
+
w11
*
input_data
[
h
*
w
-
1
];
if
(
if_bias
)
{
output_data
[
0
]
+=
bias_data
[
j
];
output_data
[
l
-
1
]
+=
bias_data
[
j
];
output_data
[(
l
-
1
)
*
l
]
+=
bias_data
[
j
];
output_data
[
l
*
l
-
1
]
+=
bias_data
[
j
];
output_data
[
w
-
1
]
+=
bias_data
[
j
];
output_data
[(
h
-
1
)
*
w
]
+=
bias_data
[
j
];
output_data
[
h
*
w
-
1
]
+=
bias_data
[
j
];
}
for
(
int
i
=
1
;
i
<
l
-
1
;
++
i
)
{
output_data
[
i
*
l
]
=
w01
*
input_data
[
i
*
l
-
l
]
+
w02
*
input_data
[
i
*
l
-
l
+
1
]
+
w11
*
input_data
[
i
*
l
]
+
w12
*
input_data
[
i
*
l
+
1
]
+
w21
*
input_data
[
i
*
l
+
l
]
+
w22
*
input_data
[
i
*
l
+
l
+
1
];
output_data
[
i
*
l
+
l
-
1
]
=
w00
*
input_data
[
i
*
l
+
l
-
1
-
l
-
1
]
+
w01
*
input_data
[
i
*
l
+
l
-
1
-
l
]
+
w10
*
input_data
[
i
*
l
+
l
-
1
-
1
]
+
w11
*
input_data
[
i
*
l
+
l
-
1
]
+
w20
*
input_data
[
i
*
l
+
l
-
1
+
l
-
1
]
+
w21
*
input_data
[
i
*
l
+
l
-
1
+
l
];
for
(
int
i
=
1
;
i
<
h
-
1
;
++
i
)
{
output_data
[
i
*
w
]
=
w01
*
input_data
[
i
*
w
-
w
]
+
w02
*
input_data
[
i
*
w
-
w
+
1
]
+
w11
*
input_data
[
i
*
w
]
+
w12
*
input_data
[
i
*
w
+
w
]
+
w21
*
input_data
[
i
*
w
+
w
]
+
w22
*
input_data
[
i
*
w
+
w
+
1
];
output_data
[
i
*
w
+
w
-
1
]
=
w00
*
input_data
[
i
*
w
+
w
-
1
-
w
-
1
]
+
w01
*
input_data
[
i
*
w
+
w
-
1
-
w
]
+
w10
*
input_data
[
i
*
w
+
w
-
1
-
1
]
+
w11
*
input_data
[
i
*
w
+
w
-
1
]
+
w20
*
input_data
[
i
*
w
+
w
-
1
+
w
-
1
]
+
w21
*
input_data
[
i
*
w
+
w
-
1
+
w
];
if
(
if_bias
)
{
output_data
[
i
*
l
]
+=
bias_data
[
j
];
output_data
[
i
*
l
+
l
-
1
]
+=
bias_data
[
j
];
output_data
[
i
*
w
]
+=
bias_data
[
j
];
output_data
[
i
*
w
+
w
-
1
]
+=
bias_data
[
j
];
}
}
...
...
@@ -325,15 +323,15 @@ void DepthwiseConv3x3s1p1(const Tensor *input, const Tensor *filter,
float32x4_t
in0
,
in1
,
in2
,
in3
,
in4
,
in5
,
in6
,
in7
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
tmp4
,
tmp5
,
out0
;
in0
=
vld1q_f32
(
input_tmp
);
in2
=
vld1q_f32
(
input_tmp
+
l
);
const
float
*
input_tmp_end
=
input_tmp
+
(
l
-
2
)
*
l
;
in2
=
vld1q_f32
(
input_tmp
+
w
);
const
float
*
input_tmp_end
=
input_tmp
+
(
h
-
2
)
*
w
;
in4
=
vld1q_f32
(
input_tmp_end
);
in6
=
vld1q_f32
(
input_tmp_end
+
l
);
int
c_mid
=
l
_mid
;
in6
=
vld1q_f32
(
input_tmp_end
+
w
);
int
c_mid
=
w
_mid
;
auto
output_ptr
=
output_data
+
1
;
for
(;
c_mid
>
3
;
c_mid
-=
4
)
{
in1
=
vld1q_f32
(
input_tmp
+
4
);
in3
=
vld1q_f32
(
input_tmp
+
l
+
4
);
in3
=
vld1q_f32
(
input_tmp
+
w
+
4
);
tmp0
=
vextq_f32
(
in0
,
in1
,
1
);
tmp1
=
vextq_f32
(
in0
,
in1
,
2
);
...
...
@@ -352,7 +350,7 @@ void DepthwiseConv3x3s1p1(const Tensor *input, const Tensor *filter,
vst1q_f32
(
output_ptr
,
out0
);
in5
=
vld1q_f32
(
input_tmp_end
+
4
);
in7
=
vld1q_f32
(
input_tmp_end
+
l
+
4
);
in7
=
vld1q_f32
(
input_tmp_end
+
w
+
4
);
tmp0
=
vextq_f32
(
in4
,
in5
,
1
);
tmp1
=
vextq_f32
(
in4
,
in5
,
2
);
...
...
@@ -367,7 +365,7 @@ void DepthwiseConv3x3s1p1(const Tensor *input, const Tensor *filter,
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vaddq_f32
(
out0
,
vbias
);
vst1q_f32
(
output_ptr
+
(
l
-
1
)
*
l
,
out0
);
vst1q_f32
(
output_ptr
+
(
h
-
1
)
*
w
,
out0
);
// can optimize to each 8 stride.
input_tmp
+=
4
;
...
...
@@ -380,8 +378,8 @@ void DepthwiseConv3x3s1p1(const Tensor *input, const Tensor *filter,
}
// top right pad
float32x4_t
pad0
=
vdupq_n_f32
(
input_data
[
l
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_data
[
2
*
l
-
1
]);
float32x4_t
pad0
=
vdupq_n_f32
(
input_data
[
w
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_data
[
2
*
w
-
1
]);
tmp0
=
vextq_f32
(
in0
,
pad0
,
1
);
tmp1
=
vextq_f32
(
in0
,
pad0
,
2
);
...
...
@@ -409,8 +407,8 @@ void DepthwiseConv3x3s1p1(const Tensor *input, const Tensor *filter,
}
// bottom right pad
float32x4_t
pad2
=
vdupq_n_f32
(
input_data
[
l
*
l
-
1
-
l
]);
float32x4_t
pad3
=
vdupq_n_f32
(
input_data
[
l
*
l
-
1
]);
float32x4_t
pad2
=
vdupq_n_f32
(
input_data
[
h
*
w
-
1
-
w
]);
float32x4_t
pad3
=
vdupq_n_f32
(
input_data
[
h
*
w
-
1
]);
tmp0
=
vextq_f32
(
in4
,
pad2
,
1
);
tmp1
=
vextq_f32
(
in4
,
pad2
,
2
);
...
...
@@ -427,28 +425,28 @@ void DepthwiseConv3x3s1p1(const Tensor *input, const Tensor *filter,
for
(
int
i
=
0
;
i
<
c_mid
;
++
i
)
{
if
(
i
==
0
)
{
vst1q_lane_f32
(
output_ptr
+
(
l
-
1
)
*
l
+
i
,
out0
,
0
);
vst1q_lane_f32
(
output_ptr
+
(
h
-
1
)
*
w
+
i
,
out0
,
0
);
}
if
(
i
==
1
)
{
vst1q_lane_f32
(
output_ptr
+
(
l
-
1
)
*
l
+
i
,
out0
,
1
);
vst1q_lane_f32
(
output_ptr
+
(
h
-
1
)
*
w
+
i
,
out0
,
1
);
}
if
(
i
==
2
)
{
vst1q_lane_f32
(
output_ptr
+
(
l
-
1
)
*
l
+
i
,
out0
,
2
);
vst1q_lane_f32
(
output_ptr
+
(
h
-
1
)
*
w
+
i
,
out0
,
2
);
}
}
// mid
for
(
int
i
=
0
;
i
<
l
-
2
;
++
i
)
{
auto
output_ptr
=
output_data
+
(
i
+
1
)
*
l
+
1
;
input_tmp
=
input_data
+
i
*
l
;
for
(
int
i
=
0
;
i
<
h
-
2
;
++
i
)
{
auto
output_ptr
=
output_data
+
(
i
+
1
)
*
w
+
1
;
input_tmp
=
input_data
+
i
*
w
;
auto
in0_tmp
=
vld1q_f32
(
input_tmp
);
auto
in2_tmp
=
vld1q_f32
(
input_tmp
+
l
);
auto
in4_tmp
=
vld1q_f32
(
input_tmp
+
l
+
l
);
c_mid
=
l
_mid
;
auto
in2_tmp
=
vld1q_f32
(
input_tmp
+
w
);
auto
in4_tmp
=
vld1q_f32
(
input_tmp
+
w
+
w
);
c_mid
=
w
_mid
;
for
(;
c_mid
>
3
;
c_mid
-=
4
)
{
auto
in1_tmp
=
vld1q_f32
(
input_tmp
+
4
);
auto
in3_tmp
=
vld1q_f32
(
input_tmp
+
l
+
4
);
auto
in5_tmp
=
vld1q_f32
(
input_tmp
+
l
+
l
+
4
);
auto
in3_tmp
=
vld1q_f32
(
input_tmp
+
w
+
4
);
auto
in5_tmp
=
vld1q_f32
(
input_tmp
+
w
+
w
+
4
);
tmp0
=
vextq_f32
(
in0_tmp
,
in1_tmp
,
1
);
tmp1
=
vextq_f32
(
in0_tmp
,
in1_tmp
,
2
);
...
...
@@ -477,9 +475,9 @@ void DepthwiseConv3x3s1p1(const Tensor *input, const Tensor *filter,
in4_tmp
=
in5_tmp
;
}
float32x4_t
pad0
=
vdupq_n_f32
(
input_data
[
i
*
l
+
l
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_data
[
i
*
l
+
l
-
1
+
l
]);
float32x4_t
pad2
=
vdupq_n_f32
(
input_data
[
i
*
l
+
l
-
1
+
l
+
l
]);
float32x4_t
pad0
=
vdupq_n_f32
(
input_data
[
i
*
w
+
w
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_data
[
i
*
w
+
w
-
1
+
w
]);
float32x4_t
pad2
=
vdupq_n_f32
(
input_data
[
i
*
w
+
w
-
1
+
w
+
w
]);
tmp0
=
vextq_f32
(
in0_tmp
,
pad0
,
1
);
tmp1
=
vextq_f32
(
in0_tmp
,
pad0
,
2
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录