Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
777e7fd4
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
777e7fd4
编写于
11月 23, 2018
作者:
X
xiebaiyuan
提交者:
GitHub
11月 23, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1307 from yangfei963158659/develop
imp mobilenetssd
上级
76c60710
8a5cd68c
变更
15
隐藏空白更改
内联
并排
Showing
15 changed file
with
858 addition
and
109 deletion
+858
-109
src/framework/cl/cl_image.cpp
src/framework/cl/cl_image.cpp
+86
-6
src/framework/cl/cl_image.h
src/framework/cl/cl_image.h
+4
-4
src/io/paddle_mobile.cpp
src/io/paddle_mobile.cpp
+49
-19
src/operators/kernel/cl/box_coder_kernel.cpp
src/operators/kernel/cl/box_coder_kernel.cpp
+46
-2
src/operators/kernel/cl/cl_kernel/box_coder_kernel.cl
src/operators/kernel/cl/cl_kernel/box_coder_kernel.cl
+147
-0
src/operators/kernel/cl/cl_kernel/feed_kernel.cl
src/operators/kernel/cl/cl_kernel/feed_kernel.cl
+46
-22
src/operators/kernel/cl/cl_kernel/prior_box_kernel.cl
src/operators/kernel/cl/cl_kernel/prior_box_kernel.cl
+2
-0
src/operators/kernel/cl/cl_kernel/softmax.cl
src/operators/kernel/cl/cl_kernel/softmax.cl
+29
-18
src/operators/kernel/cl/cl_kernel/transpose_kernel.cl
src/operators/kernel/cl/cl_kernel/transpose_kernel.cl
+41
-1
src/operators/kernel/cl/feed_kernel.cpp
src/operators/kernel/cl/feed_kernel.cpp
+21
-13
src/operators/kernel/cl/fetch_kernel.cpp
src/operators/kernel/cl/fetch_kernel.cpp
+1
-0
src/operators/kernel/cl/multiclass_nms_kernel.cpp
src/operators/kernel/cl/multiclass_nms_kernel.cpp
+307
-3
src/operators/kernel/cl/softmax_kernel.cpp
src/operators/kernel/cl/softmax_kernel.cpp
+12
-19
src/operators/kernel/cl/transpose_kernel.cpp
src/operators/kernel/cl/transpose_kernel.cpp
+65
-0
src/operators/op_param.h
src/operators/op_param.h
+2
-2
未找到文件。
src/framework/cl/cl_image.cpp
浏览文件 @
777e7fd4
...
...
@@ -13,18 +13,98 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "framework/cl/cl_image.h"
#include "framework/cl/cl_tensor.h"
namespace
paddle_mobile
{
namespace
framework
{
void
CLImageToTensor
(
CLImage
*
cl_image
,
Tensor
*
tensor
,
cl_command_queue
commandQueue
)
{
// TODO(yangfei): need imp
void
CLImageToTensor
(
CLImage
*
cl_image
,
Tensor
*
tensor
,
cl_context
context
,
cl_command_queue
commandQueue
,
cl_kernel
kernel
)
{
tensor
->
mutable_data
<
float
>
();
const
auto
&
dim
=
cl_image
->
dims
();
size_t
new_dims
[]
=
{
1
,
1
,
1
,
1
};
for
(
int
j
=
0
;
j
<
dim
.
size
();
++
j
)
{
new_dims
[
4
-
dim
.
size
()
+
j
]
=
dim
[
j
];
}
size_t
C
,
in_height
,
in_width
;
C
=
new_dims
[
1
];
in_height
=
new_dims
[
2
];
in_width
=
new_dims
[
3
];
CLTensor
out_cl_tensor
(
context
,
commandQueue
);
out_cl_tensor
.
Resize
(
tensor
->
dims
());
cl_mem
outBuffer
=
out_cl_tensor
.
mutable_data
<
float
>
();
auto
input_image
=
cl_image
->
GetCLImage
();
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
in_height
);
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
in_width
);
clSetKernelArg
(
kernel
,
2
,
sizeof
(
cl_mem
),
&
input_image
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
outBuffer
);
int
size_ch
=
in_height
*
in_width
;
int
size_block
=
size_ch
*
4
;
int
size_batch
=
size_ch
*
C
;
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
&
size_ch
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
int
),
&
size_block
);
clSetKernelArg
(
kernel
,
6
,
sizeof
(
int
),
&
size_batch
);
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
C
);
size_t
global_work_size
[
3
]
=
{(
new_dims
[
1
]
+
3
)
/
4
,
new_dims
[
3
],
new_dims
[
0
]
*
new_dims
[
2
]};
clEnqueueNDRangeKernel
(
commandQueue
,
kernel
,
3
,
NULL
,
global_work_size
,
NULL
,
0
,
NULL
,
NULL
);
memcpy
(
tensor
->
data
<
float
>
(),
out_cl_tensor
.
Data
<
float
>
(),
tensor
->
memory_size
());
}
void
TensorToCLImage
(
const
Tensor
*
tensor
,
CLImage
*
cl_image
,
cl_command_queue
commandQueue
)
{
// TODO(yangfei): need imp
void
TensorToCLImage
(
Tensor
*
tensor
,
CLImage
*
cl_image
,
cl_context
context
,
cl_command_queue
commandQueue
,
cl_kernel
kernel
)
{
const
auto
&
dim
=
cl_image
->
dims
();
size_t
new_dims
[]
=
{
1
,
1
,
1
,
1
};
for
(
int
j
=
0
;
j
<
dim
.
size
();
++
j
)
{
new_dims
[
4
-
dim
.
size
()
+
j
]
=
dim
[
j
];
}
cl_int
status
;
auto
output
=
cl_image
;
const
Tensor
*
input
=
tensor
;
const
float
*
input_data
=
input
->
data
<
float
>
();
auto
output_image
=
output
->
GetCLImage
();
const
int
out_C
=
new_dims
[
1
];
const
int
out_H
=
new_dims
[
2
];
const
int
out_W
=
new_dims
[
3
];
const
int
Stride2
=
out_C
*
out_H
*
out_W
;
const
int
Stride1
=
out_H
*
out_W
;
const
int
Stride0
=
out_W
;
DLOG
<<
out_C
;
DLOG
<<
out_H
;
DLOG
<<
out_W
;
CLTensor
input_cl_tensor
(
context
,
commandQueue
);
input_cl_tensor
.
Resize
(
input
->
dims
());
cl_mem
inputBuffer
=
input_cl_tensor
.
mutable_with_data
<
float
>
(
input_data
);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
inputBuffer
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
output_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
cl_int
),
&
out_H
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_int
),
&
out_W
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_int
),
&
out_C
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_int
),
&
Stride0
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_int
),
&
Stride1
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_int
),
&
Stride2
);
CL_CHECK_ERRORS
(
status
);
size_t
global_work_size
[
3
]
=
{(
new_dims
[
1
]
+
3
)
/
4
,
new_dims
[
3
],
new_dims
[
0
]
*
new_dims
[
2
]};
status
=
clEnqueueNDRangeKernel
(
commandQueue
,
kernel
,
3
,
NULL
,
global_work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
#ifdef PADDLE_MOBILE_DEBUG
...
...
src/framework/cl/cl_image.h
浏览文件 @
777e7fd4
...
...
@@ -222,11 +222,11 @@ class CLImage {
CLImageConverterBase
*
image_converter_
=
nullptr
;
};
void
TensorToCLImage
(
Tensor
*
tensor
,
CLImage
*
image
,
cl_command_queue
commandQueue
);
void
TensorToCLImage
(
Tensor
*
tensor
,
CLImage
*
image
,
cl_context
context
,
cl_command_queue
commandQueue
,
cl_kernel
kernel
);
void
CLImageToTensor
(
CLImage
*
image
,
Tensor
*
tensor
,
cl_command_queue
commandQueue
);
void
CLImageToTensor
(
CLImage
*
image
,
Tensor
*
tensor
,
cl_context
context
,
cl_command_queue
commandQueue
,
cl_kernel
kernel
);
#ifdef PADDLE_MOBILE_DEBUG
Print
&
operator
<<
(
Print
&
printer
,
const
CLImage
&
image
);
...
...
src/io/paddle_mobile.cpp
浏览文件 @
777e7fd4
...
...
@@ -143,10 +143,12 @@ double PaddleMobile<CPU, Precision::FP32>::GetPredictTime() {
int
t1
=
1
;
int
t2
=
1
;
for
(
int
i
=
0
;
i
<
m
*
k
;
++
i
)
{
a
[
i
]
=
t1
+
rand
()
%
t2
;
unsigned
int
seed
=
100
;
a
[
i
]
=
t1
+
rand_r
(
&
seed
)
%
t2
;
}
for
(
int
i
=
0
;
i
<
k
*
n
;
++
i
)
{
b
[
i
]
=
t1
+
rand
()
%
t2
;
unsigned
int
seed
=
200
;
b
[
i
]
=
t1
+
rand_r
(
&
seed
)
%
t2
;
}
paddle_mobile
::
operators
::
math
::
Gemm
gemm
;
auto
time1
=
paddle_mobile
::
time
();
...
...
@@ -215,13 +217,13 @@ double PaddleMobile<GPU_CL, Precision::FP32>::GetPredictTime() {
cl_int
status
;
cl_uint
nPlatform
;
clGetPlatformIDs
(
0
,
NULL
,
&
nPlatform
);
cl_platform_id
*
listPlatform
=
(
cl_platform_id
*
)
malloc
(
nPlatform
*
sizeof
(
cl_platform_id
));
cl_platform_id
*
listPlatform
=
reinterpret_cast
<
cl_platform_id
*>
(
malloc
(
nPlatform
*
sizeof
(
cl_platform_id
)
));
clGetPlatformIDs
(
nPlatform
,
listPlatform
,
NULL
);
cl_uint
nDevice
=
0
;
clGetDeviceIDs
(
listPlatform
[
0
],
CL_DEVICE_TYPE_GPU
,
0
,
NULL
,
&
nDevice
);
cl_device_id
*
listDevice
=
(
cl_device_id
*
)
malloc
(
nDevice
*
sizeof
(
cl_device_id
));
reinterpret_cast
<
cl_device_id
*>
(
malloc
(
nDevice
*
sizeof
(
cl_device_id
)
));
clGetDeviceIDs
(
listPlatform
[
0
],
CL_DEVICE_TYPE_GPU
,
nDevice
,
listDevice
,
NULL
);
cl_context
context
=
...
...
@@ -277,41 +279,66 @@ double PaddleMobile<GPU_CL, Precision::FP32>::GetPredictTime() {
clBuildProgram
(
program
,
0
,
0
,
path1
.
c_str
(),
NULL
,
NULL
);
cl_kernel
kernel
=
clCreateKernel
(
program
,
"feed"
,
&
status
);
int
out_H
=
224
;
int
out_W
=
224
;
int
out_C
=
3
;
int
Stride2
=
out_C
*
out_H
*
out_W
;
int
Stride1
=
out_H
*
out_W
;
int
Stride0
=
out_W
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
inputBuffer
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
cl_input_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
cl_int
),
&
input_w
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
cl_int
),
&
out_H
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_int
),
&
input_h
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_int
),
&
out_W
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_int
),
&
c
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_int
),
&
out_C
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_int
),
&
Stride0
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_int
),
&
Stride1
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_int
),
&
Stride2
);
CL_CHECK_ERRORS
(
status
);
size_t
global_work_size
[
2
]
=
{
input_w
,
input_h
};
size_t
global_work_size
[
3
]
=
{
1
,
224
,
224
};
// cl_event out_event = param.Out()->GetClEvent();
status
=
clEnqueueNDRangeKernel
(
queue
,
kernel
,
2
,
NULL
,
global_work_size
,
status
=
clEnqueueNDRangeKernel
(
queue
,
kernel
,
3
,
NULL
,
global_work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
out_H
=
3
;
out_W
=
3
;
out_C
=
3
;
Stride2
=
out_C
*
out_H
*
out_W
;
Stride1
=
out_H
*
out_W
;
Stride0
=
out_W
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
filterBuffer
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
cl_filter_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
cl_int
),
&
filter_w
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
cl_int
),
&
out_H
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_int
),
&
out_W
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_int
),
&
filter_h
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_int
),
&
out_C
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_int
),
&
c
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_int
),
&
Stride0
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_int
),
&
Stride1
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_int
),
&
Stride2
);
CL_CHECK_ERRORS
(
status
);
size_t
global_work_size1
[
2
]
=
{
filter_w
,
filter_h
};
size_t
global_work_size1
[
3
]
=
{
1
,
3
,
96
};
// cl_event out_event = param.Out()->GetClEvent();
status
=
clEnqueueNDRangeKernel
(
queue
,
kernel
,
2
,
NULL
,
global_work_size1
,
status
=
clEnqueueNDRangeKernel
(
queue
,
kernel
,
3
,
NULL
,
global_work_size1
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
...
...
@@ -378,13 +405,16 @@ double PaddleMobile<GPU_CL, Precision::FP32>::GetPredictTime() {
auto
time2
=
paddle_mobile
::
time
();
paddle_mobile
::
memory
::
Free
(
input
);
paddle_mobile
::
memory
::
Free
(
filter
);
return
paddle_mobile
::
time_diff
(
time1
,
time2
);
if
(
status
==
CL_SUCCESS
)
{
return
paddle_mobile
::
time_diff
(
time1
,
time2
);
}
else
{
return
-
1
;
}
}
template
<
typename
Dtype
,
Precision
P
>
int
PaddleMobile
<
Dtype
,
P
>::
readText
(
const
char
*
kernelPath
,
char
**
pcode
)
// 读取文本文件放入 pcode,返回字符串长度
{
char
**
pcode
)
{
// 读取文本文件放入 pcode,返回字符串长度
FILE
*
fp
;
int
size
;
// printf("<readText> File: %s\n", kernelPath);
...
...
@@ -402,7 +432,7 @@ int PaddleMobile<Dtype, P>::readText(
return
-
1
;
}
rewind
(
fp
);
if
((
*
pcode
=
(
char
*
)
malloc
(
size
+
1
))
==
NULL
)
{
if
((
*
pcode
=
reinterpret_cast
<
char
*>
(
malloc
(
size
+
1
)
))
==
NULL
)
{
printf
(
"<readText> Allocate space failed
\n
"
);
return
-
1
;
}
...
...
src/operators/kernel/cl/box_coder_kernel.cpp
浏览文件 @
777e7fd4
...
...
@@ -20,13 +20,57 @@ namespace paddle_mobile {
namespace
operators
{
template
<
>
bool
BoxCoderKernel
<
GPU_CL
,
float
>::
Init
(
BoxCoderParam
<
GPU_CL
>
*
param
)
{
bool
BoxCoderKernel
<
GPU_CL
,
float
>::
Init
(
BoxCoderParam
<
GPU_CL
>*
param
)
{
if
(
param
->
CodeType
()
==
"decode_center_size"
)
{
this
->
cl_helper_
.
AddKernel
(
"box_decoder"
,
"box_coder_kernel.cl"
);
}
return
true
;
}
template
<
>
void
BoxCoderKernel
<
GPU_CL
,
float
>::
Compute
(
const
BoxCoderParam
<
GPU_CL
>
&
param
)
{}
const
BoxCoderParam
<
GPU_CL
>&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
OutputBox
());
const
auto
*
input_priorbox
=
param
.
InputPriorBox
();
const
auto
*
input_priorboxvar
=
param
.
InputPriorBoxVar
();
const
auto
*
input_targetbox
=
param
.
InputTargetBox
();
const
auto
&
code_type
=
param
.
CodeType
();
if
(
code_type
==
"decode_center_size"
)
{
auto
prior_box_image
=
input_priorbox
->
GetCLImage
();
auto
prior_box_var_image
=
input_priorboxvar
->
GetCLImage
();
auto
target_box_image
=
input_targetbox
->
GetCLImage
();
auto
output_image
=
param
.
OutputBox
()
->
GetCLImage
();
auto
&
outputDim
=
param
.
OutputBox
()
->
dims
();
int
new_dims
[
4
]
=
{
1
,
1
,
1
,
1
};
for
(
int
i
=
0
;
i
<
outputDim
.
size
();
i
++
)
{
new_dims
[
4
-
outputDim
.
size
()
+
i
]
=
outputDim
[
i
];
}
int
out_C
=
new_dims
[
1
];
int
out_H
=
new_dims
[
2
];
DLOG
<<
"out_C="
<<
out_C
;
DLOG
<<
"out_H="
<<
out_H
;
DLOG
<<
"default_work_size="
<<
default_work_size
;
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
prior_box_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
prior_box_var_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
cl_mem
),
&
target_box_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
output_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
&
out_C
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
int
),
&
out_H
);
CL_CHECK_ERRORS
(
status
);
size_t
global_work_size
[
2
]
=
{
default_work_size
[
0
],
default_work_size
[
2
]};
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
global_work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
}
}
// namespace operators
}
// namespace paddle_mobile
...
...
src/operators/kernel/cl/cl_kernel/box_coder_kernel.cl
0 → 100644
浏览文件 @
777e7fd4
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
__kernel
void
box_decoder
(
__read_only
image2d_t
prior_box_image,
__read_only
image2d_t
prior_box_var_image,
__read_only
image2d_t
target_box_image,
__write_only
image2d_t
output_image,
__private
const
int
out_C,
__private
const
int
out_H
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_nh
=
get_global_id
(
1
)
;
const
int
out_h
=
out_nh%out_H
;
const
int
out_n
=
1
;
const
int
prior_box_n
=
1
;
const
int
prior_box_c
=
0
;
const
int
prior_box_h
=
out_h
;
const
int
prior_box_var_n
=
1
;
const
int
prior_box_var_c
=
0
;
const
int
prior_box_var_h
=
out_h
;
const
int
target_box_n
=
1
;
const
int
target_box_c
=
out_c
;
const
int
target_box_h
=
out_h
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
int2
prior_box_pos
;
int2
prior_box_var_pos
;
int2
target_box_pos
;
int2
output_pos
;
prior_box_pos.x
=
prior_box_c
*
4
;
prior_box_pos.y
=
prior_box_n
*
prior_box_h
;
prior_box_var_pos.x
=
prior_box_var_c
*
4
;
prior_box_var_pos.y
=
prior_box_var_n
*
prior_box_var_h
;
target_box_pos.x
=
target_box_c
*
4
;
target_box_pos.y
=
target_box_n
*
target_box_h
;
output_pos.x
=
out_c
*
4
;
output_pos.y
=
out_n
*
out_h
;
half4
prior_box_input[4]
;
half4
prior_box_var_input[4]
;
half4
target_box_input[4]
;
prior_box_input[0]
=
read_imageh
(
prior_box_image,
sampler,
(
int2
)(
prior_box_pos.x
+
0
,
prior_box_pos.y
))
;
prior_box_input[1]
=
read_imageh
(
prior_box_image,
sampler,
(
int2
)(
prior_box_pos.x
+
1
,
prior_box_pos.y
))
;
prior_box_input[2]
=
read_imageh
(
prior_box_image,
sampler,
(
int2
)(
prior_box_pos.x
+
2
,
prior_box_pos.y
))
;
prior_box_input[3]
=
read_imageh
(
prior_box_image,
sampler,
(
int2
)(
prior_box_pos.x
+
3
,
prior_box_pos.y
))
;
prior_box_var_input[0]
=
read_imageh
(
prior_box_var_image,
sampler,
(
int2
)(
prior_box_var_pos.x
+
0
,
prior_box_var_pos.y
))
;
prior_box_var_input[1]
=
read_imageh
(
prior_box_var_image,
sampler,
(
int2
)(
prior_box_var_pos.x
+
1
,
prior_box_var_pos.y
))
;
prior_box_var_input[2]
=
read_imageh
(
prior_box_var_image,
sampler,
(
int2
)(
prior_box_var_pos.x
+
2
,
prior_box_var_pos.y
))
;
prior_box_var_input[3]
=
read_imageh
(
prior_box_var_image,
sampler,
(
int2
)(
prior_box_var_pos.x
+
3
,
prior_box_var_pos.y
))
;
target_box_input[0]
=
read_imageh
(
target_box_image,
sampler,
(
int2
)(
target_box_pos.x
+
0
,
target_box_pos.y
))
;
target_box_input[1]
=
read_imageh
(
target_box_image,
sampler,
(
int2
)(
target_box_pos.x
+
1
,
target_box_pos.y
))
;
target_box_input[2]
=
read_imageh
(
target_box_image,
sampler,
(
int2
)(
target_box_pos.x
+
2
,
target_box_pos.y
))
;
target_box_input[3]
=
read_imageh
(
target_box_image,
sampler,
(
int2
)(
target_box_pos.x
+
3
,
target_box_pos.y
))
;
half
prior_box_width
=
prior_box_input[2].x
-
prior_box_input[0].x
;
half
prior_box_height
=
prior_box_input[3].x
-
prior_box_input[1].x
;
half
prior_box_center_x
=
(
prior_box_input[2].x
+
prior_box_input[0].x
)
/
(
half
)
2
;
half
prior_box_center_y
=
(
prior_box_input[3].x
+
prior_box_input[1].x
)
/
(
half
)
2
;
half4
target_box_center_x
;
half4
target_box_center_y
;
half4
target_box_width
;
half4
target_box_height
;
half4
output[4]
;
output[0]
=
0.0f
;
output[1]
=
0.0f
;
output[2]
=
0.0f
;
output[3]
=
0.0f
;
target_box_center_x.x
=
prior_box_var_input[0].x
*
target_box_input[0].x
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y.x
=
prior_box_var_input[1].x
*
target_box_input[1].x
*
prior_box_height
+
prior_box_center_y
;
target_box_width.x
=
exp
(
prior_box_var_input[2].x
*
target_box_input[2].x
)
*
prior_box_width
;
target_box_height.x
=
exp
(
prior_box_var_input[3].x
*
target_box_input[3].x
)
*
prior_box_height
;
output[0].x
=
target_box_center_x.x
-
target_box_width.x/
(
half
)
2
;
output[1].x
=
target_box_center_y.x
-
target_box_height.x/
(
half
)
2
;
output[2].x
=
target_box_center_x.x
+
target_box_width.x/
(
half
)
2
;
output[3].x
=
target_box_center_y.x
+
target_box_height.x/
(
half
)
2
;
if
(
out_C
-
out_c
*
4
>=
2
)
{
target_box_center_x.y
=
prior_box_var_input[0].x
*
target_box_input[0].y
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y.y
=
prior_box_var_input[1].x
*
target_box_input[1].y
*
prior_box_height
+
prior_box_center_y
;
target_box_width.y
=
exp
(
prior_box_var_input[2].x
*
target_box_input[2].y
)
*
prior_box_width
;
target_box_height.y
=
exp
(
prior_box_var_input[3].x
*
target_box_input[3].y
)
*
prior_box_height
;
output[0].y
=
target_box_center_x.y
-
target_box_width.y/
(
half
)
2
;
output[1].y
=
target_box_center_y.y
-
target_box_height.y/
(
half
)
2
;
output[2].y
=
target_box_center_x.y
+
target_box_width.y/
(
half
)
2
;
output[3].y
=
target_box_center_y.y
+
target_box_height.y/
(
half
)
2
;
}
if
(
out_C
-
out_c
*
4
>=
3
)
{
target_box_center_x.z
=
prior_box_var_input[0].x
*
target_box_input[0].z
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y.z
=
prior_box_var_input[1].x
*
target_box_input[1].z
*
prior_box_height
+
prior_box_center_y
;
target_box_width.z
=
exp
(
prior_box_var_input[2].x
*
target_box_input[2].z
)
*
prior_box_width
;
target_box_height.z
=
exp
(
prior_box_var_input[3].x
*
target_box_input[3].z
)
*
prior_box_height
;
output[0].z
=
target_box_center_x.z
-
target_box_width.z/
(
half
)
2
;
output[1].z
=
target_box_center_y.z
-
target_box_height.z/
(
half
)
2
;
output[2].z
=
target_box_center_x.z
+
target_box_width.z/
(
half
)
2
;
output[3].z
=
target_box_center_y.z
+
target_box_height.z/
(
half
)
2
;
}
if
(
out_C
-
out_c
*
4
>=
4
)
{
target_box_center_x.w
=
prior_box_var_input[0].x
*
target_box_input[0].w
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y.w
=
prior_box_var_input[1].x
*
target_box_input[1].w
*
prior_box_height
+
prior_box_center_y
;
target_box_width.w
=
exp
(
prior_box_var_input[2].x
*
target_box_input[2].w
)
*
prior_box_width
;
target_box_height.w
=
exp
(
prior_box_var_input[3].x
*
target_box_input[3].w
)
*
prior_box_height
;
output[0].w
=
target_box_center_x.w
-
target_box_width.w/
(
half
)
2
;
output[1].w
=
target_box_center_y.w
-
target_box_height.w/
(
half
)
2
;
output[2].w
=
target_box_center_x.w
+
target_box_width.w/
(
half
)
2
;
output[3].w
=
target_box_center_y.w
+
target_box_height.w/
(
half
)
2
;
}
write_imageh
(
output_image,
(
int2
)(
output_pos.x
+
0
,
output_pos.y
)
,
output[0]
)
;
write_imageh
(
output_image,
(
int2
)(
output_pos.x
+
1
,
output_pos.y
)
,
output[1]
)
;
write_imageh
(
output_image,
(
int2
)(
output_pos.x
+
2
,
output_pos.y
)
,
output[2]
)
;
write_imageh
(
output_image,
(
int2
)(
output_pos.x
+
3
,
output_pos.y
)
,
output[3]
)
;
}
\ No newline at end of file
src/operators/kernel/cl/cl_kernel/feed_kernel.cl
浏览文件 @
777e7fd4
...
...
@@ -13,26 +13,50 @@ See the License for the specific language governing permissions and
limitations
under
the
License.
*/
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
__kernel
void
feed
(
__global
float
*in,
__write_only
image2d_t
outputImage,int
h,int
w,int
c
)
{
int
i
=
get_global_id
(
0
)
;
int
j
=
get_global_id
(
1
)
;
half4
pixel
;
pixel.x
=
convert_half
(
in[
(
i
*
w
+
j
)
]
)
;
if
(
c>=2
)
{
pixel.y
=
convert_half
(
in[h
*
w
+
(
i
*
w
+
j
)
]
)
;
}else{
pixel.y
=
0.0
;
}
if
(
c>=3
)
{
pixel.z
=
convert_half
(
in[2
*
h
*
w
+
(
i
*
w
+
j
)
]
)
;
}else{
pixel.z
=
0.0
;
}
pixel.w
=
0.0
;
int2
coords
;
coords.x
=
j
;
coords.y
=
i
;
write_imageh
(
outputImage,coords,pixel
)
;
__kernel
void
feed
(
__global
float
*in,
__write_only
image2d_t
output_image,
__private
const
int
out_H,
__private
const
int
out_W,
__private
const
int
out_C,
__private
const
int
Stride0,
__private
const
int
Stride1,
__private
const
int
Stride2
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
const
int
out_n
=
out_nh/out_H
;
const
int
out_h
=
out_nh%out_H
;
const
int
in_n
=
out_n
;
const
int
in_c0
=
out_c
*
4
+
0
;
const
int
in_c1
=
out_c
*
4
+
1
;
const
int
in_c2
=
out_c
*
4
+
2
;
const
int
in_c3
=
out_c
*
4
+
3
;
const
int
in_h
=
out_h
;
const
int
in_w
=
out_w
;
int
input_pos0
=
in_n
*
Stride2
+
in_c0
*
Stride1
+
in_h
*
Stride0
+
in_w
;
int
input_pos1
=
in_n
*
Stride2
+
in_c1
*
Stride1
+
in_h
*
Stride0
+
in_w
;
int
input_pos2
=
in_n
*
Stride2
+
in_c2
*
Stride1
+
in_h
*
Stride0
+
in_w
;
int
input_pos3
=
in_n
*
Stride2
+
in_c3
*
Stride1
+
in_h
*
Stride0
+
in_w
;
int2
output_pos
;
output_pos.x
=
out_c
*
out_W
+
out_w
;
output_pos.y
=
out_nh
;
half4
output
=
(
half4
)
0.0f
;
output.x
=
convert_half
(
in[input_pos0]
)
;
if
(
out_C
-
4
*
out_c>=2
)
{
output.y
=
convert_half
(
in[input_pos1]
)
;
}
if
(
out_C
-
4
*
out_c>=3
)
{
output.z
=
convert_half
(
in[input_pos2]
)
;
}
if
(
out_C
-
4
*
out_c>=4
)
{
output.w
=
convert_half
(
in[input_pos3]
)
;
}
write_imageh
(
output_image,
output_pos,
output
)
;
}
src/operators/kernel/cl/cl_kernel/prior_box_kernel.cl
浏览文件 @
777e7fd4
...
...
@@ -107,11 +107,13 @@ __kernel void prior_box(__private const int global_size_dim0,
output[2]
=
min
(
max
((
half4
)(
0.0f,
0.0f,
0.0f,
0.0f
)
,
output[2]
)
,
(
half4
)(
1.0f,
1.0f,
1.0f,
1.0f
))
;
output[3]
=
min
(
max
((
half4
)(
0.0f,
0.0f,
0.0f,
0.0f
)
,
output[3]
)
,
(
half4
)(
1.0f,
1.0f,
1.0f,
1.0f
))
;
}
/*
if
(
output_pos.x
==
0
&&
output_pos.y
==
1
)
{
float4
out
=
(
float4
)(
output[0].x,
output[1].x,
output[2].x,
output[3].x
)
;
printf
(
"output = %v4hlf \n"
,
out
)
;
}
*/
write_imageh
(
output_boxes,
(
int2
)(
output_pos.x
+
0
,
output_pos.y
)
,
output[0]
)
;
write_imageh
(
output_boxes,
(
int2
)(
output_pos.x
+
1
,
output_pos.y
)
,
output[1]
)
;
...
...
src/operators/kernel/cl/cl_kernel/softmax.cl
浏览文件 @
777e7fd4
...
...
@@ -16,35 +16,46 @@ limitations under the License. */
__kernel
void
softmax
(
__read_only
image2d_t
input_image,
__write_only
image2d_t
output_image,
__private
const
int
group
__private
const
int
out_W
)
{
const
int
out_c
=
get_global_id
(
0
)
; // block index
const
int
out_w
=
get_global_id
(
1
)
; // index in one block
const
int
out_nh
=
get_global_id
(
2
)
;
const
int
in_c
=
out_c
;
const
int
in_w
=
out_w
;
const
int
in_nh
=
out_nh
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
int2
input_pos
;
int2
output_pos
;
half
maxv
=
0.0f
;
for
(
int
i
=
0
; i < group; ++i) {
half4
temp
=
read_imageh
(
input_image,
sampler,
(
int2
)(
i,
0
))
;
maxv
=
max
(
maxv,
max
(
temp.x,
max
(
temp.y,
max
(
temp.z,
temp.w
))))
;
}
input_pos.x
=
in_c
*
out_W
+
in_w
;
input_pos.y
=
in_nh
;
output_pos.x
=
out_c
*
out_W
+
out_w
;
output_pos.y
=
out_nh
;
half4
rsum
=
(
half4
)(
0.0f
)
;
for
(
int
i
=
0
; i < group; ++i) {
half4
r
=
read_imageh
(
input_image,
sampler,
(
int2
)(
i,
0
))
;
rsum
+=
convert_half4
(
exp
(
convert_float4
(
r
-
maxv
)))
;
}
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
half4
input_max
=
0.0f
;
half4
input_tmp
;
for
(
int
i=0
;i<out_W;i++){
input_tmp
=
read_imageh
(
input_image,
sampler,
(
int2
)(
in_c
*
out_W
+
i,in_nh
))
;
input_max
=
max
(
input_max,input_tmp
)
;
}
half4
sum
=
(
half4
)
0.0f
;
for
(
int
i=0
;i<out_W;i++){
input_tmp
=
read_imageh
(
input_image,
sampler,
(
int2
)(
in_c
*
out_W
+
i,in_nh
))
;
sum
+=
exp
(
input_tmp
-
input_max
)
;
}
float
sum
=
rsum.x
+
rsum.y
+
rsum.z
+
rsum.w
;
half4
input
=
read_imageh
(
input_image,
sampler,input_pos
)
;
half4
output
=
exp
(
input
-
input_max
)
/sum
;
write_imageh
(
output_image,
output_pos,
output
)
;
half4
rr
=
read_imageh
(
input_image,
sampler,
(
int2
)(
out_w,
out_nh
))
;
half4
result
=
convert_half4
(
exp
(
convert_float4
(
rr
-
maxv
))
/
sum
)
;
write_imageh
(
output_image,
(
int2
)(
out_w,
out_nh
)
,
result
)
;
}
/*
...
...
src/operators/kernel/cl/cl_kernel/transpose_kernel.cl
浏览文件 @
777e7fd4
...
...
@@ -101,7 +101,7 @@ __kernel void transpose_4d( __read_only image2d_t input_image,
if
(
out_w%4==0
)
{
output.z
=
input2.x
;
}else
if
(
out_w%4==1
)
{
output.z
=
input
1
.y
;
output.z
=
input
2
.y
;
}else
if
(
out_w%4==2
)
{
output.z
=
input2.z
;
}else{
...
...
@@ -126,4 +126,44 @@ __kernel void transpose_4d( __read_only image2d_t input_image,
output.w
=
0.0f
;
}
write_imageh
(
output_image,
output_pos,
output
)
;
}
__kernel
void
transpose
(
__read_only
image2d_t
input_image,
__write_only
image2d_t
output_image,
__private
const
int
out_C,
__private
const
int
out_H,
__private
const
int
out_W,
__private
const
int
in_W
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
const
int
out_n
=
1
;
const
int
out_h
=
out_nh%out_H
;
const
int
in_n
=
1
;
const
int
in_c
=
out_c
;
const
int
in_w
=
out_h
;
const
int
in_h
=
out_w
;
int2
input_pos
;
int2
output_pos
;
input_pos.x
=
in_c
*
in_W
+
in_w
;
input_pos.y
=
in_n
*
in_h
;
output_pos.x
=
out_c
*
out_W
+
out_w
;
output_pos.y
=
out_n
*
out_h
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
half4
input
;
half4
output
;
input
=
read_imageh
(
input_image,
sampler,input_pos
)
;
output
=
input
;
write_imageh
(
output_image,
output_pos,
output
)
;
}
\ No newline at end of file
src/operators/kernel/cl/feed_kernel.cpp
浏览文件 @
777e7fd4
...
...
@@ -27,6 +27,7 @@ bool FeedKernel<GPU_CL, float>::Init(FeedParam<GPU_CL> *param) {
template
<
>
void
FeedKernel
<
GPU_CL
,
float
>::
Compute
(
const
FeedParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
(
param
.
Out
()));
cl_int
status
;
param
.
Out
()
->
InitEmptyImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
(),
param
.
Out
()
->
dims
());
...
...
@@ -35,10 +36,13 @@ void FeedKernel<GPU_CL, float>::Compute(const FeedParam<GPU_CL> ¶m) {
// DLOG << *input;
const
float
*
input_data
=
input
->
data
<
float
>
();
int
numel
=
input
->
numel
();
cl_mem
cl_image
=
output
->
GetCLImage
();
int
c
=
input
->
dims
()[
1
];
int
height
=
output
->
dims
()[
2
];
int
width
=
output
->
dims
()[
3
];
cl_mem
output_image
=
output
->
GetCLImage
();
const
int
out_C
=
output
->
dims
()[
1
];
const
int
out_H
=
output
->
dims
()[
2
];
const
int
out_W
=
output
->
dims
()[
3
];
const
int
Stride2
=
out_C
*
out_H
*
out_W
;
const
int
Stride1
=
out_H
*
out_W
;
const
int
Stride0
=
out_W
;
CLTensor
input_cl_tensor
(
this
->
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
());
input_cl_tensor
.
Resize
(
input
->
dims
());
...
...
@@ -46,21 +50,25 @@ void FeedKernel<GPU_CL, float>::Compute(const FeedParam<GPU_CL> ¶m) {
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
inputBuffer
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
cl
_image
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
output
_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
cl_int
),
&
width
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
cl_int
),
&
out_H
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_int
),
&
height
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_int
),
&
out_W
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_int
),
&
c
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_int
),
&
out_C
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_int
),
&
Stride0
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_int
),
&
Stride1
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_int
),
&
Stride2
);
CL_CHECK_ERRORS
(
status
);
s
ize_t
global_work_size
[
2
]
=
{
width
,
height
};
// cl_event out_event = param.Out()->GetClEvent(
);
s
tatus
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
global_work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
...
...
src/operators/kernel/cl/fetch_kernel.cpp
浏览文件 @
777e7fd4
...
...
@@ -37,6 +37,7 @@ void FetchKernel<GPU_CL, float>::Compute(const FetchParam<GPU_CL> ¶m) {
auto
input
=
param
.
InputX
()
->
GetCLImage
();
auto
*
out
=
param
.
Out
();
out
->
Resize
(
param
.
InputX
()
->
dims
());
out
->
mutable_data
<
float
>
();
const
auto
&
dim
=
param
.
InputX
()
->
dims
();
size_t
new_dims
[]
=
{
1
,
1
,
1
,
1
};
...
...
src/operators/kernel/cl/multiclass_nms_kernel.cpp
浏览文件 @
777e7fd4
...
...
@@ -15,19 +15,323 @@ limitations under the License. */
#ifdef MULTICLASSNMS_OP
#include "operators/kernel/multiclass_nms_kernel.h"
#include "operators/math/poly_util.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
MultiClassNMSKernel
<
GPU_CL
,
float
>::
Init
(
MultiClassNMSParam
<
GPU_CL
>
*
param
)
{
MultiClassNMSParam
<
GPU_CL
>*
param
)
{
this
->
cl_helper_
.
AddKernel
(
"fetch"
,
"fetch_kernel.cl"
);
this
->
cl_helper_
.
AddKernel
(
"feed"
,
"feed_kernel.cl"
);
return
true
;
}
template
<
class
T
>
bool
SortScorePairDescend
(
const
std
::
pair
<
float
,
T
>&
pair1
,
const
std
::
pair
<
float
,
T
>&
pair2
)
{
return
pair1
.
first
>
pair2
.
first
;
}
template
<
class
T
>
static
inline
void
GetMaxScoreIndex
(
const
std
::
vector
<
T
>&
scores
,
const
T
threshold
,
int
top_k
,
std
::
vector
<
std
::
pair
<
T
,
int
>>*
sorted_indices
)
{
for
(
size_t
i
=
0
;
i
<
scores
.
size
();
++
i
)
{
if
(
scores
[
i
]
>
threshold
)
{
sorted_indices
->
push_back
(
std
::
make_pair
(
scores
[
i
],
i
));
}
}
// Sort the score pair according to the scores in descending order
std
::
stable_sort
(
sorted_indices
->
begin
(),
sorted_indices
->
end
(),
SortScorePairDescend
<
int
>
);
// Keep top_k scores if needed.
if
(
top_k
>
-
1
&&
top_k
<
static_cast
<
int
>
(
sorted_indices
->
size
()))
{
sorted_indices
->
resize
(
top_k
);
}
}
template
<
class
T
>
static
inline
T
BBoxArea
(
const
T
*
box
,
const
bool
normalized
)
{
if
(
box
[
2
]
<
box
[
0
]
||
box
[
3
]
<
box
[
1
])
{
// If coordinate values are is invalid
// (e.g. xmax < xmin or ymax < ymin), return 0.
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
w
=
box
[
2
]
-
box
[
0
];
const
T
h
=
box
[
3
]
-
box
[
1
];
if
(
normalized
)
{
return
w
*
h
;
}
else
{
// If coordinate values are not within range [0, 1].
return
(
w
+
1
)
*
(
h
+
1
);
}
}
}
template
<
class
T
>
static
inline
T
JaccardOverlap
(
const
T
*
box1
,
const
T
*
box2
,
const
bool
normalized
)
{
if
(
box2
[
0
]
>
box1
[
2
]
||
box2
[
2
]
<
box1
[
0
]
||
box2
[
1
]
>
box1
[
3
]
||
box2
[
3
]
<
box1
[
1
])
{
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
inter_xmin
=
std
::
max
(
box1
[
0
],
box2
[
0
]);
const
T
inter_ymin
=
std
::
max
(
box1
[
1
],
box2
[
1
]);
const
T
inter_xmax
=
std
::
min
(
box1
[
2
],
box2
[
2
]);
const
T
inter_ymax
=
std
::
min
(
box1
[
3
],
box2
[
3
]);
const
T
inter_w
=
inter_xmax
-
inter_xmin
;
const
T
inter_h
=
inter_ymax
-
inter_ymin
;
const
T
inter_area
=
inter_w
*
inter_h
;
const
T
bbox1_area
=
BBoxArea
<
T
>
(
box1
,
normalized
);
const
T
bbox2_area
=
BBoxArea
<
T
>
(
box2
,
normalized
);
return
inter_area
/
(
bbox1_area
+
bbox2_area
-
inter_area
);
}
}
template
<
class
T
>
static
inline
T
PolyIoU
(
const
T
*
box1
,
const
T
*
box2
,
const
size_t
box_size
,
const
bool
normalized
)
{
T
bbox1_area
=
math
::
PolyArea
<
T
>
(
box1
,
box_size
,
normalized
);
T
bbox2_area
=
math
::
PolyArea
<
T
>
(
box2
,
box_size
,
normalized
);
T
inter_area
=
math
::
PolyOverlapArea
<
T
>
(
box1
,
box2
,
box_size
,
normalized
);
if
(
bbox1_area
==
0
||
bbox2_area
==
0
||
inter_area
==
0
)
{
// If coordinate values are is invalid
// if area size <= 0, return 0.
return
static_cast
<
T
>
(
0.
);
}
else
{
return
inter_area
/
(
bbox1_area
+
bbox2_area
-
inter_area
);
}
}
template
<
typename
T
>
static
inline
void
NMSFast
(
const
framework
::
Tensor
&
bbox
,
const
framework
::
Tensor
&
scores
,
const
T
score_threshold
,
const
T
nms_threshold
,
const
T
eta
,
const
int64_t
top_k
,
std
::
vector
<
int
>*
selected_indices
)
{
// The total boxes for each instance.
int64_t
num_boxes
=
bbox
.
dims
()[
0
];
// 4: [xmin ymin xmax ymax]
int64_t
box_size
=
bbox
.
dims
()[
1
];
std
::
vector
<
T
>
scores_data
(
num_boxes
);
std
::
copy_n
(
scores
.
data
<
T
>
(),
num_boxes
,
scores_data
.
begin
());
std
::
vector
<
std
::
pair
<
T
,
int
>>
sorted_indices
;
GetMaxScoreIndex
(
scores_data
,
score_threshold
,
top_k
,
&
sorted_indices
);
selected_indices
->
clear
();
T
adaptive_threshold
=
nms_threshold
;
const
T
*
bbox_data
=
bbox
.
data
<
T
>
();
while
(
sorted_indices
.
size
()
!=
0
)
{
const
int
idx
=
sorted_indices
.
front
().
second
;
bool
keep
=
true
;
for
(
size_t
k
=
0
;
k
<
selected_indices
->
size
();
++
k
)
{
if
(
keep
)
{
const
int
kept_idx
=
(
*
selected_indices
)[
k
];
T
overlap
=
T
(
0.
);
if
(
box_size
==
4
)
{
overlap
=
JaccardOverlap
<
T
>
(
bbox_data
+
idx
*
box_size
,
bbox_data
+
kept_idx
*
box_size
,
true
);
}
else
{
overlap
=
PolyIoU
<
T
>
(
bbox_data
+
idx
*
box_size
,
bbox_data
+
kept_idx
*
box_size
,
box_size
,
true
);
}
keep
=
overlap
<=
adaptive_threshold
;
}
else
{
break
;
}
}
if
(
keep
)
{
selected_indices
->
push_back
(
idx
);
}
sorted_indices
.
erase
(
sorted_indices
.
begin
());
if
(
keep
&&
eta
<
1
&&
adaptive_threshold
>
0.5
)
{
adaptive_threshold
*=
eta
;
}
}
}
template
<
typename
T
>
void
MultiClassNMS
(
const
framework
::
Tensor
&
scores
,
const
framework
::
Tensor
&
bboxes
,
std
::
map
<
int
,
std
::
vector
<
int
>>*
indices
,
int
*
num_nmsed_out
,
const
int
&
background_label
,
const
int
&
nms_top_k
,
const
int
&
keep_top_k
,
const
T
&
nms_threshold
,
const
T
&
nms_eta
,
const
T
&
score_threshold
)
{
int64_t
class_num
=
scores
.
dims
()[
0
];
int64_t
predict_dim
=
scores
.
dims
()[
1
];
int
num_det
=
0
;
for
(
int64_t
c
=
0
;
c
<
class_num
;
++
c
)
{
if
(
c
==
background_label
)
continue
;
framework
::
Tensor
score
=
scores
.
Slice
(
c
,
c
+
1
);
/// [c] is key
NMSFast
<
float
>
(
bboxes
,
score
,
score_threshold
,
nms_threshold
,
nms_eta
,
nms_top_k
,
&
((
*
indices
)[
c
]));
num_det
+=
(
*
indices
)[
c
].
size
();
}
*
num_nmsed_out
=
num_det
;
const
T
*
scores_data
=
scores
.
data
<
T
>
();
if
(
keep_top_k
>
-
1
&&
num_det
>
keep_top_k
)
{
std
::
vector
<
std
::
pair
<
float
,
std
::
pair
<
int
,
int
>>>
score_index_pairs
;
for
(
const
auto
&
it
:
*
indices
)
{
int
label
=
it
.
first
;
const
T
*
sdata
=
scores_data
+
label
*
predict_dim
;
const
std
::
vector
<
int
>&
label_indices
=
it
.
second
;
for
(
size_t
j
=
0
;
j
<
label_indices
.
size
();
++
j
)
{
int
idx
=
label_indices
[
j
];
// PADDLE_ENFORCE_LT(idx, predict_dim);
score_index_pairs
.
push_back
(
std
::
make_pair
(
sdata
[
idx
],
std
::
make_pair
(
label
,
idx
)));
}
}
// Keep top k results per image.
std
::
stable_sort
(
score_index_pairs
.
begin
(),
score_index_pairs
.
end
(),
SortScorePairDescend
<
std
::
pair
<
int
,
int
>>
);
score_index_pairs
.
resize
(
keep_top_k
);
// Store the new indices.
std
::
map
<
int
,
std
::
vector
<
int
>>
new_indices
;
for
(
size_t
j
=
0
;
j
<
score_index_pairs
.
size
();
++
j
)
{
int
label
=
score_index_pairs
[
j
].
second
.
first
;
int
idx
=
score_index_pairs
[
j
].
second
.
second
;
new_indices
[
label
].
push_back
(
idx
);
}
new_indices
.
swap
(
*
indices
);
*
num_nmsed_out
=
keep_top_k
;
}
}
template
<
typename
T
>
void
MultiClassOutput
(
const
framework
::
Tensor
&
scores
,
const
framework
::
Tensor
&
bboxes
,
const
std
::
map
<
int
,
std
::
vector
<
int
>>&
selected_indices
,
framework
::
Tensor
*
outs
)
{
int
predict_dim
=
scores
.
dims
()[
1
];
int
box_size
=
bboxes
.
dims
()[
1
];
int
out_dim
=
bboxes
.
dims
()[
1
]
+
2
;
auto
*
scores_data
=
scores
.
data
<
T
>
();
auto
*
bboxes_data
=
bboxes
.
data
<
T
>
();
auto
*
odata
=
outs
->
data
<
T
>
();
int
count
=
0
;
for
(
const
auto
&
it
:
selected_indices
)
{
/// one batch
int
label
=
it
.
first
;
const
T
*
sdata
=
scores_data
+
label
*
predict_dim
;
const
std
::
vector
<
int
>&
indices
=
it
.
second
;
for
(
size_t
j
=
0
;
j
<
indices
.
size
();
++
j
)
{
int
idx
=
indices
[
j
];
const
T
*
bdata
=
bboxes_data
+
idx
*
box_size
;
odata
[
count
*
out_dim
]
=
label
;
// label
odata
[
count
*
out_dim
+
1
]
=
sdata
[
idx
];
// score
// xmin, ymin, xmax, ymax
std
::
memcpy
(
odata
+
count
*
out_dim
+
2
,
bdata
,
box_size
*
sizeof
(
T
));
count
++
;
}
}
}
template
<
typename
P
>
void
MultiClassNMSCompute
(
const
MultiClassNMSParam
<
GPU_CL
>&
param
,
cl_context
context
,
cl_command_queue
commandQueue
,
cl_kernel
kernel0
,
cl_kernel
kernel1
)
{
auto
*
input_bboxes_image
=
param
.
InputBBoxes
();
auto
&
input_bboxes_dims
=
input_bboxes_image
->
dims
();
Tensor
*
input_bboxes
=
new
Tensor
();
input_bboxes
->
Resize
(
input_bboxes_dims
);
input_bboxes
->
mutable_data
<
float
>
();
DLOG
<<
"yangfei20"
;
framework
::
CLImageToTensor
(
input_bboxes_image
,
input_bboxes
,
context
,
commandQueue
,
kernel0
);
DLOG
<<
"yangfei20"
;
auto
*
input_scores_image
=
param
.
InputScores
();
auto
&
input_scores_dims
=
input_scores_image
->
dims
();
Tensor
*
input_scores
=
new
Tensor
();
input_scores
->
Resize
(
input_scores_dims
);
input_scores
->
mutable_data
<
float
>
();
framework
::
CLImageToTensor
(
input_scores_image
,
input_scores
,
context
,
commandQueue
,
kernel0
);
DLOG
<<
"yangfei20"
;
auto
outs_image
=
param
.
Out
();
Tensor
*
outs
=
new
Tensor
();
outs
->
Resize
(
outs_image
->
dims
());
outs
->
mutable_data
<
float
>
();
DLOG
<<
*
input_bboxes
;
DLOG
<<
*
input_scores
;
DLOG
<<
*
outs
;
auto
background_label
=
param
.
BackGroundLabel
();
auto
nms_top_k
=
param
.
NMSTopK
();
auto
keep_top_k
=
param
.
KeepTopK
();
auto
nms_threshold
=
param
.
NMSThreshold
();
auto
nms_eta
=
param
.
NMSEta
();
auto
score_threshold
=
param
.
ScoreThreshold
();
int64_t
batch_size
=
input_scores_dims
[
0
];
int64_t
class_num
=
input_scores_dims
[
1
];
int64_t
predict_dim
=
input_scores_dims
[
2
];
int64_t
box_dim
=
input_bboxes_dims
[
2
];
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
int
>>>
all_indices
;
std
::
vector
<
size_t
>
batch_starts
=
{
0
};
for
(
int64_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
framework
::
Tensor
ins_score
=
input_scores
->
Slice
(
i
,
i
+
1
);
ins_score
.
Resize
({
class_num
,
predict_dim
});
framework
::
Tensor
ins_boxes
=
input_bboxes
->
Slice
(
i
,
i
+
1
);
ins_boxes
.
Resize
({
predict_dim
,
box_dim
});
std
::
map
<
int
,
std
::
vector
<
int
>>
indices
;
int
num_nmsed_out
=
0
;
MultiClassNMS
<
float
>
(
ins_score
,
ins_boxes
,
&
indices
,
&
num_nmsed_out
,
background_label
,
nms_top_k
,
keep_top_k
,
nms_threshold
,
nms_eta
,
score_threshold
);
all_indices
.
push_back
(
indices
);
batch_starts
.
push_back
(
batch_starts
.
back
()
+
num_nmsed_out
);
}
int
num_kept
=
batch_starts
.
back
();
if
(
num_kept
==
0
)
{
float
*
od
=
outs
->
mutable_data
<
float
>
({
1
});
od
[
0
]
=
-
1
;
}
else
{
int64_t
out_dim
=
box_dim
+
2
;
outs
->
mutable_data
<
float
>
({
num_kept
,
out_dim
});
for
(
int64_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
framework
::
Tensor
ins_score
=
input_scores
->
Slice
(
i
,
i
+
1
);
ins_score
.
Resize
({
class_num
,
predict_dim
});
framework
::
Tensor
ins_boxes
=
input_bboxes
->
Slice
(
i
,
i
+
1
);
ins_boxes
.
Resize
({
predict_dim
,
box_dim
});
int64_t
s
=
batch_starts
[
i
];
int64_t
e
=
batch_starts
[
i
+
1
];
if
(
e
>
s
)
{
framework
::
Tensor
out
=
outs
->
Slice
(
s
,
e
);
MultiClassOutput
<
float
>
(
ins_score
,
ins_boxes
,
all_indices
[
i
],
&
out
);
}
}
}
DLOG
<<
"yangfei20"
;
outs_image
->
InitEmptyImage
(
context
,
commandQueue
,
outs
->
dims
());
framework
::
TensorToCLImage
(
outs
,
outs_image
,
context
,
commandQueue
,
kernel1
);
DLOG
<<
*
outs
;
delete
(
input_bboxes
);
delete
(
input_scores
);
delete
(
outs
);
DLOG
<<
"yangfei20"
;
}
template
<
>
void
MultiClassNMSKernel
<
GPU_CL
,
float
>::
Compute
(
const
MultiClassNMSParam
<
GPU_CL
>
&
param
)
{}
const
MultiClassNMSParam
<
GPU_CL
>&
param
)
{
auto
kernel0
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
kernel1
=
this
->
cl_helper_
.
KernelAt
(
1
);
MultiClassNMSCompute
<
float
>
(
param
,
this
->
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
(),
kernel0
,
kernel1
);
}
}
// namespace operators
}
// namespace paddle_mobile
...
...
src/operators/kernel/cl/softmax_kernel.cpp
浏览文件 @
777e7fd4
...
...
@@ -33,31 +33,24 @@ void SoftmaxKernel<GPU_CL, float>::Compute(const SoftmaxParam<GPU_CL> ¶m) {
auto
*
output
=
param
.
Out
();
auto
inputImage
=
input
->
GetCLImage
();
auto
outputImage
=
output
->
GetCLImage
();
const
auto
&
outputDim
=
output
->
dims
();
int
group
=
output
->
ImageWidth
();
int
dims
[
4
]
=
{
1
,
1
,
1
,
1
};
for
(
int
i
=
0
;
i
<
outputDim
.
size
();
i
++
)
{
dims
[
4
-
outputDim
.
size
()
+
i
]
=
outputDim
[
i
];
}
const
int
out_W
=
dims
[
3
];
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
inputImage
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
outputImage
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
group
);
// const auto &inputDim = input->dims();
//
// int dims[4] = {1, 1, 1, 1};
//
// for (int i = 0; i < inputDim.size(); i++) {
// dims[4 - inputDim.size() + i] = inputDim[i];
// }
//
// clSetKernelArg(kernel, 2, sizeof(int), &dims);
// clSetKernelArg(kernel, 3, sizeof(int), &dims[1]);
// clSetKernelArg(kernel, 4, sizeof(int), &dims[2]);
// clSetKernelArg(kernel, 5, sizeof(int), &dims[3]);
// cl_event out_event = param.Out()->GetClEvent();
// cl_event wait_event = param.InputX()->GetClEvent();
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
out_W
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
...
...
src/operators/kernel/cl/transpose_kernel.cpp
浏览文件 @
777e7fd4
...
...
@@ -22,6 +22,8 @@ template <>
bool
TransposeKernel
<
GPU_CL
,
float
>::
Init
(
TransposeParam
<
GPU_CL
>
*
param
)
{
if
(
param
->
Out
()
->
dims
().
size
()
==
4
)
{
this
->
cl_helper_
.
AddKernel
(
"transpose_4d"
,
"transpose_kernel.cl"
);
}
else
if
(
param
->
Out
()
->
dims
().
size
()
<
4
)
{
this
->
cl_helper_
.
AddKernel
(
"transpose"
,
"transpose_kernel.cl"
);
}
return
true
;
}
...
...
@@ -60,6 +62,69 @@ void TransposeKernel<GPU_CL, float>::Compute(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
else
if
(
param
.
Out
()
->
dims
().
size
()
==
3
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Out
());
int
out_C
=
param
.
Out
()
->
dims
()[
0
];
int
out_H
=
param
.
Out
()
->
dims
()[
1
];
int
out_W
=
param
.
Out
()
->
dims
()[
2
];
int
in_W
=
param
.
InputX
()
->
dims
()[
2
];
auto
output_image
=
param
.
Out
()
->
GetCLImage
();
auto
input_image
=
param
.
InputX
()
->
GetCLImage
();
DLOG
<<
"out_C="
<<
out_C
;
DLOG
<<
"out_H="
<<
out_H
;
DLOG
<<
"out_W="
<<
out_W
;
DLOG
<<
"in_C="
<<
in_W
;
DLOG
<<
"default_work_size="
<<
default_work_size
;
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
input_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
output_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
out_C
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
int
),
&
out_H
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
&
out_W
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
int
),
&
in_W
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
else
if
(
param
.
Out
()
->
dims
().
size
()
==
2
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Out
());
int
out_C
=
1
;
int
out_H
=
param
.
Out
()
->
dims
()[
0
];
int
out_W
=
param
.
Out
()
->
dims
()[
1
];
int
in_W
=
param
.
InputX
()
->
dims
()[
1
];
auto
output_image
=
param
.
Out
()
->
GetCLImage
();
auto
input_image
=
param
.
InputX
()
->
GetCLImage
();
DLOG
<<
"out_C="
<<
out_C
;
DLOG
<<
"out_H="
<<
out_H
;
DLOG
<<
"out_W="
<<
out_W
;
DLOG
<<
"in_C="
<<
in_W
;
DLOG
<<
"default_work_size="
<<
default_work_size
;
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
input_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
output_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
out_C
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
int
),
&
out_H
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
&
out_W
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
int
),
&
in_W
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
}
...
...
src/operators/op_param.h
浏览文件 @
777e7fd4
...
...
@@ -1018,9 +1018,9 @@ class MultiClassNMSParam : public OpParam {
score_threshold_
=
GetAttr
<
float
>
(
"score_threshold"
,
attrs
);
}
const
RType
*
InputBBoxes
()
const
{
return
input_bboxes_
;
}
RType
*
InputBBoxes
()
const
{
return
input_bboxes_
;
}
const
RType
*
InputScores
()
const
{
return
input_scores_
;
}
RType
*
InputScores
()
const
{
return
input_scores_
;
}
RType
*
Out
()
const
{
return
out_
;
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录