Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
769c8083
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
769c8083
编写于
4月 22, 2019
作者:
J
jameswu2014
提交者:
GitHub
4月 22, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1571 from qnqinan/develop
update some files related with static quantization in FPGA V2 track fixed#1570
上级
3f1e8f7d
c72044e0
变更
19
隐藏空白更改
内联
并排
Showing
19 changed file
with
159 addition
and
93 deletion
+159
-93
src/operators/kernel/fpga/V2/conv_add_bn_kernel.cpp
src/operators/kernel/fpga/V2/conv_add_bn_kernel.cpp
+7
-2
src/operators/kernel/fpga/V2/conv_add_bn_relu_kernel.cpp
src/operators/kernel/fpga/V2/conv_add_bn_relu_kernel.cpp
+12
-4
src/operators/kernel/fpga/V2/conv_add_kernel.cpp
src/operators/kernel/fpga/V2/conv_add_kernel.cpp
+7
-2
src/operators/kernel/fpga/V2/conv_add_relu_kernel.cpp
src/operators/kernel/fpga/V2/conv_add_relu_kernel.cpp
+7
-2
src/operators/kernel/fpga/V2/conv_transpose_kernel.cpp
src/operators/kernel/fpga/V2/conv_transpose_kernel.cpp
+11
-0
src/operators/kernel/fpga/V2/deconv_add_bn_kernel.cpp
src/operators/kernel/fpga/V2/deconv_add_bn_kernel.cpp
+11
-1
src/operators/kernel/fpga/V2/deconv_add_bn_relu_kernel.cpp
src/operators/kernel/fpga/V2/deconv_add_bn_relu_kernel.cpp
+11
-1
src/operators/kernel/fpga/V2/deconv_add_kernel.cpp
src/operators/kernel/fpga/V2/deconv_add_kernel.cpp
+11
-1
src/operators/kernel/fpga/V2/deconv_add_relu_kernel.cpp
src/operators/kernel/fpga/V2/deconv_add_relu_kernel.cpp
+11
-1
src/operators/kernel/fpga/V2/deconv_bn_relu_kernel.cpp
src/operators/kernel/fpga/V2/deconv_bn_relu_kernel.cpp
+18
-5
src/operators/kernel/fpga/V2/elementwise_add_kernel.cpp
src/operators/kernel/fpga/V2/elementwise_add_kernel.cpp
+6
-2
src/operators/kernel/fpga/V2/elementwise_add_relu_kernel.cpp
src/operators/kernel/fpga/V2/elementwise_add_relu_kernel.cpp
+5
-1
src/operators/kernel/fpga/V2/fusion_fc_kernel.cpp
src/operators/kernel/fpga/V2/fusion_fc_kernel.cpp
+7
-2
src/operators/kernel/fpga/V2/fusion_fc_relu_kernel.cpp
src/operators/kernel/fpga/V2/fusion_fc_relu_kernel.cpp
+7
-2
src/operators/kernel/fpga/V2/pad2d_kernel.cpp
src/operators/kernel/fpga/V2/pad2d_kernel.cpp
+0
-61
src/operators/kernel/fpga/V2/pool_kernel.cpp
src/operators/kernel/fpga/V2/pool_kernel.cpp
+4
-2
src/operators/kernel/fpga/V2/psroi_pool_kernel.cpp
src/operators/kernel/fpga/V2/psroi_pool_kernel.cpp
+2
-2
src/operators/kernel/fpga/V2/roialign_pool_kernel.cpp
src/operators/kernel/fpga/V2/roialign_pool_kernel.cpp
+2
-2
tools/op.cmake
tools/op.cmake
+20
-0
未找到文件。
src/operators/kernel/fpga/V2/conv_add_bn_kernel.cpp
浏览文件 @
769c8083
...
...
@@ -33,6 +33,9 @@ bool ConvAddBNKernel<FPGA, float>::Init(FusionConvAddBNParam<FPGA> *param) {
auto
filter
=
const_cast
<
LoDTensor
*>
(
param
->
Filter
());
auto
out
=
param
->
Output
();
float
Si
=
input
->
scale
[
0
];
float
So
=
out
->
scale
[
0
];
float
Sf
=
fpga
::
filter_find_max
(
filter
);
auto
bn_mean_ptr
=
param
->
InputMean
()
->
data
<
float
>
();
auto
bn_var_ptr
=
param
->
InputVariance
()
->
data
<
float
>
();
...
...
@@ -56,8 +59,10 @@ bool ConvAddBNKernel<FPGA, float>::Init(FusionConvAddBNParam<FPGA> *param) {
static_cast
<
float
>
(
pow
((
bn_var_ptr
[
i
]
+
epsilon
),
0.5
));
new_bias_ptr
[
i
]
=
bn_bias_ptr
[
i
]
+
(
bias_ptr
[
i
]
-
bn_mean_ptr
[
i
])
*
new_scale_ptr
[
i
];
bs_ptr
[
i
+
channel
]
=
new_scale_ptr
[
i
];
bs_ptr
[
i
]
=
new_bias_ptr
[
i
];
// bs_ptr[i + channel] = new_scale_ptr[i];
// bs_ptr[i] = new_bias_ptr[i];
bs_ptr
[
i
+
channel
]
=
new_scale_ptr
[
i
]
*
Si
/
So
*
Sf
/
127.0
;
bs_ptr
[
i
]
=
new_bias_ptr
[
i
]
*
127.0
/
So
;
}
fpga
::
format_conv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
());
...
...
src/operators/kernel/fpga/V2/conv_add_bn_relu_kernel.cpp
浏览文件 @
769c8083
...
...
@@ -32,7 +32,10 @@ bool ConvAddBNReluKernel<FPGA, float>::Init(
auto
bias_ptr
=
bias
->
data
<
float
>
();
auto
filter
=
const_cast
<
LoDTensor
*>
(
param
->
Filter
());
auto
out
=
param
->
Output
();
const
int
groups
=
param
->
Groups
();
float
Si
=
input
->
scale
[
0
];
float
So
=
out
->
scale
[
0
];
float
Sf
=
fpga
::
filter_find_max
(
filter
);
vector
<
int
>
paddings
=
param
->
Paddings
();
vector
<
int
>
strides
=
param
->
Strides
();
auto
bn_mean_ptr
=
param
->
InputMean
()
->
data
<
float
>
();
...
...
@@ -57,11 +60,16 @@ bool ConvAddBNReluKernel<FPGA, float>::Init(
static_cast
<
float
>
(
pow
((
bn_var_ptr
[
i
]
+
epsilon
),
0.5
));
new_bias_ptr
[
i
]
=
bn_bias_ptr
[
i
]
+
(
bias_ptr
[
i
]
-
bn_mean_ptr
[
i
])
*
new_scale_ptr
[
i
];
bs_ptr
[
i
+
channel
]
=
new_scale_ptr
[
i
];
bs_ptr
[
i
]
=
new_bias_ptr
[
i
];
// bs_ptr[i + channel] = new_scale_ptr[i];
// bs_ptr[i] = new_bias_ptr[i];
bs_ptr
[
i
+
channel
]
=
new_scale_ptr
[
i
]
*
Si
/
So
*
Sf
/
127.0
;
bs_ptr
[
i
]
=
new_bias_ptr
[
i
]
*
127.0
/
So
;
if
(
groups
==
channel
)
{
new_scale_ptr
[
i
]
=
new_scale_ptr
[
i
]
*
Si
/
So
;
new_bias_ptr
[
i
]
=
new_bias_ptr
[
i
]
*
127.0
f
/
So
;
}
}
const
int
groups
=
param
->
Groups
();
if
(
groups
==
channel
)
{
fpga
::
format_dwconv_data
(
filter
,
out
,
new_scale_ptr
,
&
new_bias_ptr
);
fpga
::
DWconvArgs
dwconv_arg
=
{
0
};
...
...
src/operators/kernel/fpga/V2/conv_add_kernel.cpp
浏览文件 @
769c8083
...
...
@@ -30,6 +30,9 @@ bool ConvAddKernel<FPGA, float>::Init(FusionConvAddParam<FPGA> *param) {
auto
bias_ptr
=
bias
->
data
<
float
>
();
auto
filter
=
const_cast
<
LoDTensor
*>
(
param
->
Filter
());
auto
out
=
param
->
Output
();
float
Si
=
input
->
scale
[
0
];
float
So
=
out
->
scale
[
0
];
float
Sf
=
fpga
::
filter_find_max
(
filter
);
PADDLE_MOBILE_ENFORCE
(
out
->
dims
()[
1
]
==
bias
->
dims
()[
0
],
"Output channel should be equal to bias number"
);
...
...
@@ -37,8 +40,10 @@ bool ConvAddKernel<FPGA, float>::Init(FusionConvAddParam<FPGA> *param) {
auto
bs_ptr
=
(
float
*
)
fpga
::
fpga_malloc
(
2
*
channel
*
sizeof
(
float
));
// NOLINT
for
(
int
i
=
0
;
i
<
channel
;
i
++
)
{
bs_ptr
[
i
+
channel
]
=
1
;
bs_ptr
[
i
]
=
bias_ptr
[
i
];
// bs_ptr[i + channel] = 1;
// bs_ptr[i] = bias_ptr[i];
bs_ptr
[
i
+
channel
]
=
Si
/
So
*
Sf
/
127.0
;
bs_ptr
[
i
]
=
bias_ptr
[
i
]
*
127.0
/
So
;
}
fpga
::
format_conv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
());
...
...
src/operators/kernel/fpga/V2/conv_add_relu_kernel.cpp
浏览文件 @
769c8083
...
...
@@ -30,6 +30,9 @@ bool ConvAddReluKernel<FPGA, float>::Init(FusionConvAddReluParam<FPGA> *param) {
auto
bias_ptr
=
bias
->
data
<
float
>
();
auto
filter
=
const_cast
<
LoDTensor
*>
(
param
->
Filter
());
auto
out
=
param
->
Output
();
float
Si
=
input
->
scale
[
0
];
float
So
=
out
->
scale
[
0
];
float
Sf
=
fpga
::
filter_find_max
(
filter
);
PADDLE_MOBILE_ENFORCE
(
out
->
dims
()[
1
]
==
bias
->
dims
()[
0
],
"Output channel should be equal to bias number"
);
...
...
@@ -37,8 +40,10 @@ bool ConvAddReluKernel<FPGA, float>::Init(FusionConvAddReluParam<FPGA> *param) {
auto
bs_ptr
=
(
float
*
)
fpga
::
fpga_malloc
(
2
*
channel
*
sizeof
(
float
));
// NOLINT
for
(
int
i
=
0
;
i
<
channel
;
i
++
)
{
bs_ptr
[
i
+
channel
]
=
1
;
bs_ptr
[
i
]
=
bias_ptr
[
i
];
// bs_ptr[i + channel] = 1;
// bs_ptr[i] = bias_ptr[i];
bs_ptr
[
i
+
channel
]
=
Si
/
So
*
Sf
/
127.0
;
bs_ptr
[
i
]
=
bias_ptr
[
i
]
*
127.0
/
So
;
}
fpga
::
format_conv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
());
...
...
src/operators/kernel/fpga/V2/conv_transpose_kernel.cpp
浏览文件 @
769c8083
...
...
@@ -32,6 +32,9 @@ bool ConvTransposeKernel<FPGA, float>::Init(ConvTransposeParam<FPGA> *param) {
// auto bias_ptr = bias->data<float>();
auto
filter
=
const_cast
<
LoDTensor
*>
(
param
->
Filter
());
auto
out
=
param
->
Output
();
float
Si
=
input
->
scale
[
0
];
float
So
=
out
->
scale
[
0
];
float
Sf
=
fpga
::
filter_find_max
(
filter
);
// PADDLE_MOBILE_ENFORCE(out->dims()[1] == bias->dims()[0],
// "Output channel should be equal to bias number");
...
...
@@ -53,6 +56,10 @@ bool ConvTransposeKernel<FPGA, float>::Init(ConvTransposeParam<FPGA> *param) {
PADDLE_MOBILE_ENFORCE
(((
filter
->
dims
()[
2
]
%
param
->
Strides
()[
0
])
==
0
),
"filter axis should be the multiple of stride axis "
);
if
(
param
->
Groups
()
==
channel
)
{
for
(
int
i
=
0
;
i
<
channel
*
sub_conv_n
;
i
++
)
{
bs_ptr
[
i
+
sub_conv_n
*
channel
]
=
Si
/
So
;
bs_ptr
[
i
]
=
0
;
// bias_ptr[i % (channel)];
}
fpga
::
format_DWDeconv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
(),
sub_conv_n
);
fpga
::
DWDeconvArgs
DWDeconv_arg
=
{
0
};
...
...
@@ -62,6 +69,10 @@ bool ConvTransposeKernel<FPGA, float>::Init(ConvTransposeParam<FPGA> *param) {
param
->
Paddings
()[
0
],
param
->
Paddings
()[
1
],
bs_ptr
);
param
->
SetFpgaArgs
(
DWDeconv_arg
);
}
else
{
for
(
int
i
=
0
;
i
<
channel
*
sub_conv_n
;
i
++
)
{
bs_ptr
[
i
+
sub_conv_n
*
channel
]
=
Si
/
So
*
Sf
/
127.0
f
;
bs_ptr
[
i
]
=
0
;
// bias_ptr[i % (channel)];
}
fpga
::
format_deconv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
(),
sub_conv_n
);
fpga
::
DeconvArgs
deconv_arg
=
{
0
};
fpga
::
fill_deconv_arg
(
&
deconv_arg
,
input
,
out
,
filter
,
activation_enable
,
...
...
src/operators/kernel/fpga/V2/deconv_add_bn_kernel.cpp
浏览文件 @
769c8083
...
...
@@ -32,7 +32,9 @@ bool DeconvAddBNKernel<FPGA, float>::Init(FusionDeconvAddBNParam<FPGA> *param) {
auto
bias_ptr
=
bias
->
data
<
float
>
();
auto
filter
=
const_cast
<
LoDTensor
*>
(
param
->
Filter
());
auto
out
=
param
->
Output
();
float
Si
=
input
->
scale
[
0
];
float
So
=
out
->
scale
[
0
];
float
Sf
=
fpga
::
filter_find_max
(
filter
);
PADDLE_MOBILE_ENFORCE
(
out
->
dims
()[
1
]
==
bias
->
dims
()[
0
],
"Output channel should be equal to bias number"
);
int
channel
=
out
->
dims
()[
1
];
...
...
@@ -53,6 +55,10 @@ bool DeconvAddBNKernel<FPGA, float>::Init(FusionDeconvAddBNParam<FPGA> *param) {
PADDLE_MOBILE_ENFORCE
(((
filter
->
dims
()[
2
]
%
param
->
Strides
()[
0
])
==
0
),
"filter axis should be the multiple of stride axis "
);
if
(
param
->
Groups
()
==
channel
)
{
for
(
int
i
=
0
;
i
<
channel
*
sub_conv_n
;
i
++
)
{
bs_ptr
[
i
+
sub_conv_n
*
channel
]
=
Si
/
So
;
bs_ptr
[
i
]
=
bias_ptr
[
i
%
(
channel
)]
*
127.0
f
/
So
;
}
fpga
::
format_DWDeconv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
(),
sub_conv_n
);
fpga
::
DWDeconvArgs
DWDeconv_arg
=
{
0
};
...
...
@@ -62,6 +68,10 @@ bool DeconvAddBNKernel<FPGA, float>::Init(FusionDeconvAddBNParam<FPGA> *param) {
param
->
Paddings
()[
0
],
param
->
Paddings
()[
1
],
bs_ptr
);
param
->
SetFpgaArgs
(
DWDeconv_arg
);
}
else
{
for
(
int
i
=
0
;
i
<
channel
*
sub_conv_n
;
i
++
)
{
bs_ptr
[
i
+
sub_conv_n
*
channel
]
=
Si
/
So
*
Sf
/
127.0
f
;
bs_ptr
[
i
]
=
bias_ptr
[
i
%
(
channel
)]
*
127.0
f
/
So
;
}
fpga
::
format_deconv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
(),
sub_conv_n
);
fpga
::
DeconvArgs
deconv_arg
=
{
0
};
fpga
::
fill_deconv_arg
(
&
deconv_arg
,
input
,
out
,
filter
,
activation_enable
,
...
...
src/operators/kernel/fpga/V2/deconv_add_bn_relu_kernel.cpp
浏览文件 @
769c8083
...
...
@@ -33,7 +33,9 @@ bool DeconvAddBNReluKernel<FPGA, float>::Init(
auto
bias_ptr
=
bias
->
data
<
float
>
();
auto
filter
=
const_cast
<
LoDTensor
*>
(
param
->
Filter
());
auto
out
=
param
->
Output
();
float
Si
=
input
->
scale
[
0
];
float
So
=
out
->
scale
[
0
];
float
Sf
=
fpga
::
filter_find_max
(
filter
);
PADDLE_MOBILE_ENFORCE
(
out
->
dims
()[
1
]
==
bias
->
dims
()[
0
],
"Output channel should be equal to bias number"
);
int
channel
=
out
->
dims
()[
1
];
...
...
@@ -54,6 +56,10 @@ bool DeconvAddBNReluKernel<FPGA, float>::Init(
PADDLE_MOBILE_ENFORCE
(((
filter
->
dims
()[
2
]
%
param
->
Strides
()[
0
])
==
0
),
"filter axis should be the multiple of stride axis "
);
if
(
param
->
Groups
()
==
channel
)
{
for
(
int
i
=
0
;
i
<
channel
*
sub_conv_n
;
i
++
)
{
bs_ptr
[
i
+
sub_conv_n
*
channel
]
=
Si
/
So
;
bs_ptr
[
i
]
=
bias_ptr
[
i
%
(
channel
)]
*
127.0
f
/
So
;
}
fpga
::
format_DWDeconv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
(),
sub_conv_n
);
fpga
::
DWDeconvArgs
DWDeconv_arg
=
{
0
};
...
...
@@ -63,6 +69,10 @@ bool DeconvAddBNReluKernel<FPGA, float>::Init(
param
->
Paddings
()[
0
],
param
->
Paddings
()[
1
],
bs_ptr
);
param
->
SetFpgaArgs
(
DWDeconv_arg
);
}
else
{
for
(
int
i
=
0
;
i
<
channel
*
sub_conv_n
;
i
++
)
{
bs_ptr
[
i
+
sub_conv_n
*
channel
]
=
Si
/
So
*
Sf
/
127.0
f
;
bs_ptr
[
i
]
=
bias_ptr
[
i
%
(
channel
)]
*
127.0
f
/
So
;
}
fpga
::
format_deconv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
(),
sub_conv_n
);
fpga
::
DeconvArgs
deconv_arg
=
{
0
};
fpga
::
fill_deconv_arg
(
&
deconv_arg
,
input
,
out
,
filter
,
activation_enable
,
...
...
src/operators/kernel/fpga/V2/deconv_add_kernel.cpp
浏览文件 @
769c8083
...
...
@@ -32,7 +32,9 @@ bool DeconvAddKernel<FPGA, float>::Init(FusionDeconvAddParam<FPGA> *param) {
auto
bias_ptr
=
bias
->
data
<
float
>
();
auto
filter
=
const_cast
<
LoDTensor
*>
(
param
->
Filter
());
auto
out
=
param
->
Output
();
float
Si
=
input
->
scale
[
0
];
float
So
=
out
->
scale
[
0
];
float
Sf
=
fpga
::
filter_find_max
(
filter
);
PADDLE_MOBILE_ENFORCE
(
out
->
dims
()[
1
]
==
bias
->
dims
()[
0
],
"Output channel should be equal to bias number"
);
int
channel
=
out
->
dims
()[
1
];
...
...
@@ -53,6 +55,10 @@ bool DeconvAddKernel<FPGA, float>::Init(FusionDeconvAddParam<FPGA> *param) {
PADDLE_MOBILE_ENFORCE
(((
filter
->
dims
()[
2
]
%
param
->
Strides
()[
0
])
==
0
),
"filter axis should be the multiple of stride axis "
);
if
(
param
->
Groups
()
==
channel
)
{
for
(
int
i
=
0
;
i
<
channel
*
sub_conv_n
;
i
++
)
{
bs_ptr
[
i
+
sub_conv_n
*
channel
]
=
Si
/
So
;
bs_ptr
[
i
]
=
bias_ptr
[
i
%
(
channel
)]
*
127.0
f
/
So
;
}
fpga
::
format_DWDeconv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
(),
sub_conv_n
);
fpga
::
DWDeconvArgs
DWDeconv_arg
=
{
0
};
...
...
@@ -62,6 +68,10 @@ bool DeconvAddKernel<FPGA, float>::Init(FusionDeconvAddParam<FPGA> *param) {
param
->
Paddings
()[
0
],
param
->
Paddings
()[
1
],
bs_ptr
);
param
->
SetFpgaArgs
(
DWDeconv_arg
);
}
else
{
for
(
int
i
=
0
;
i
<
channel
*
sub_conv_n
;
i
++
)
{
bs_ptr
[
i
+
sub_conv_n
*
channel
]
=
Si
/
So
*
Sf
/
127.0
f
;
bs_ptr
[
i
]
=
bias_ptr
[
i
%
(
channel
)]
*
127.0
f
/
So
;
}
fpga
::
format_deconv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
(),
sub_conv_n
);
fpga
::
DeconvArgs
deconv_arg
=
{
0
};
fpga
::
fill_deconv_arg
(
&
deconv_arg
,
input
,
out
,
filter
,
activation_enable
,
...
...
src/operators/kernel/fpga/V2/deconv_add_relu_kernel.cpp
浏览文件 @
769c8083
...
...
@@ -33,7 +33,9 @@ bool DeconvAddReluKernel<FPGA, float>::Init(
auto
bias_ptr
=
bias
->
data
<
float
>
();
auto
filter
=
const_cast
<
LoDTensor
*>
(
param
->
Filter
());
auto
out
=
param
->
Output
();
float
Si
=
input
->
scale
[
0
];
float
So
=
out
->
scale
[
0
];
float
Sf
=
fpga
::
filter_find_max
(
filter
);
PADDLE_MOBILE_ENFORCE
(
out
->
dims
()[
1
]
==
bias
->
dims
()[
0
],
"Output channel should be equal to bias number"
);
int
channel
=
out
->
dims
()[
1
];
...
...
@@ -54,6 +56,10 @@ bool DeconvAddReluKernel<FPGA, float>::Init(
PADDLE_MOBILE_ENFORCE
(((
filter
->
dims
()[
2
]
%
param
->
Strides
()[
0
])
==
0
),
"filter axis should be the multiple of stride axis "
);
if
(
param
->
Groups
()
==
channel
)
{
for
(
int
i
=
0
;
i
<
channel
*
sub_conv_n
;
i
++
)
{
bs_ptr
[
i
+
sub_conv_n
*
channel
]
=
Si
/
So
;
bs_ptr
[
i
]
=
bias_ptr
[
i
%
(
channel
)]
*
127.0
f
/
So
;
}
fpga
::
format_DWDeconv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
(),
sub_conv_n
);
fpga
::
DWDeconvArgs
DWDeconv_arg
=
{
0
};
...
...
@@ -63,6 +69,10 @@ bool DeconvAddReluKernel<FPGA, float>::Init(
param
->
Paddings
()[
0
],
param
->
Paddings
()[
1
],
bs_ptr
);
param
->
SetFpgaArgs
(
DWDeconv_arg
);
}
else
{
for
(
int
i
=
0
;
i
<
channel
*
sub_conv_n
;
i
++
)
{
bs_ptr
[
i
+
sub_conv_n
*
channel
]
=
Si
/
So
*
Sf
/
127.0
f
;
bs_ptr
[
i
]
=
bias_ptr
[
i
%
(
channel
)]
*
127.0
f
/
So
;
}
fpga
::
format_deconv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
(),
sub_conv_n
);
fpga
::
DeconvArgs
deconv_arg
=
{
0
};
fpga
::
fill_deconv_arg
(
&
deconv_arg
,
input
,
out
,
filter
,
activation_enable
,
...
...
src/operators/kernel/fpga/V2/deconv_bn_relu_kernel.cpp
浏览文件 @
769c8083
...
...
@@ -34,6 +34,9 @@ bool DeconvBNReluKernel<FPGA, float>::Init(
auto
bias_ptr
=
bias
->
data
<
float
>
();
auto
filter
=
const_cast
<
LoDTensor
*>
(
param
->
Filter
());
auto
out
=
param
->
Output
();
float
Si
=
input
->
scale
[
0
];
float
So
=
out
->
scale
[
0
];
float
Sf
=
fpga
::
filter_find_max
(
filter
);
auto
bn_mean_ptr
=
param
->
InputMean
()
->
data
<
float
>
();
auto
bn_var_ptr
=
param
->
InputVariance
()
->
data
<
float
>
();
auto
bn_scale_ptr
=
param
->
InputScale
()
->
data
<
float
>
();
...
...
@@ -56,12 +59,22 @@ bool DeconvBNReluKernel<FPGA, float>::Init(
int
sub_conv_n
=
param
->
Strides
()[
0
];
auto
bs_ptr
=
(
float
*
)
fpga
::
fpga_malloc
(
2
*
channel
*
sub_conv_n
*
// NOLINT
sizeof
(
float
));
// NOLINT
for
(
int
i
=
0
;
i
<
channel
*
sub_conv_n
;
i
++
)
{
bs_ptr
[
i
+
sub_conv_n
*
channel
]
=
new_scale_ptr
[
i
%
channel
];
bs_ptr
[
i
]
=
new_bias_ptr
[
i
%
(
channel
)];
// for (int i = 0; i < channel * sub_conv_n; i++) {
// bs_ptr[i + sub_conv_n * channel] = new_scale_ptr[i % channel];
// bs_ptr[i] = new_bias_ptr[i % (channel)];
// }
if
(
param
->
Groups
()
==
channel
)
{
for
(
int
i
=
0
;
i
<
channel
*
sub_conv_n
;
i
++
)
{
bs_ptr
[
i
+
sub_conv_n
*
channel
]
=
new_scale_ptr
[
i
%
channel
]
*
Si
/
So
;
bs_ptr
[
i
]
=
new_bias_ptr
[
i
%
(
channel
)]
*
127.0
f
/
So
;
}
}
else
{
for
(
int
i
=
0
;
i
<
channel
*
sub_conv_n
;
i
++
)
{
bs_ptr
[
i
+
sub_conv_n
*
channel
]
=
new_scale_ptr
[
i
%
channel
]
*
Si
/
So
*
Sf
/
127.0
f
;
bs_ptr
[
i
]
=
new_bias_ptr
[
i
%
(
channel
)]
*
127.0
f
/
So
;
}
}
PADDLE_MOBILE_ENFORCE
(
param
->
Strides
()[
1
]
==
param
->
Strides
()[
0
],
"stride_width should be equal to stride_height "
);
PADDLE_MOBILE_ENFORCE
(
filter
->
dims
()[
2
]
==
filter
->
dims
()[
3
],
...
...
src/operators/kernel/fpga/V2/elementwise_add_kernel.cpp
浏览文件 @
769c8083
...
...
@@ -16,7 +16,7 @@ limitations under the License. */
#include "operators/kernel/elementwise_add_kernel.h"
#include <string>
#include "fpga/V
1
/api.h"
#include "fpga/V
2
/api.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -34,7 +34,11 @@ bool ElementwiseAddKernel<FPGA, float>::Init(ElementwiseAddParam<FPGA> *param) {
auto
input_y_ptr
=
input_y
->
data
<
half
>
();
fpga
::
format_fp16_ofm
(
out
);
auto
out_ptr
=
out
->
mutable_data
<
half
>
();
float
Si_1
=
input_x
->
scale
[
0
];
float
Si_2
=
input_y
->
scale
[
0
];
float
So
=
out
->
scale
[
0
];
float
C1
=
Si_1
/
So
;
float
C2
=
Si_2
/
So
;
fpga
::
EWAddArgs
ewaddArgs
=
{
0
};
// ewaddArgs.relu_enabled = relu_enabled;
ewaddArgs
.
output
.
activation
.
activation_type
=
activation_enable
;
...
...
src/operators/kernel/fpga/V2/elementwise_add_relu_kernel.cpp
浏览文件 @
769c8083
...
...
@@ -32,7 +32,11 @@ bool ElementwiseAddReluKernel<FPGA, float>::Init(
auto
input_y_ptr
=
input_y
->
data
<
half
>
();
fpga
::
format_fp16_ofm
(
out
);
auto
out_ptr
=
out
->
mutable_data
<
half
>
();
float
Si_1
=
input_x
->
scale
[
0
];
float
Si_2
=
input_y
->
scale
[
0
];
float
So
=
out
->
scale
[
0
];
float
C1
=
Si_1
/
So
;
float
C2
=
Si_2
/
So
;
fpga
::
EWAddArgs
ewaddArgs
=
{
0
};
// ewaddArgs.relu_enabled = relu_enabled;
ewaddArgs
.
output
.
activation
.
activation_type
=
activation_enable
;
...
...
src/operators/kernel/fpga/V2/fusion_fc_kernel.cpp
浏览文件 @
769c8083
...
...
@@ -29,6 +29,9 @@ bool FusionFcKernel<FPGA, float>::Init(FusionFcParam<FPGA> *param) {
const
Tensor
*
input_z
=
param
->
InputZ
();
auto
input_z_ptr
=
input_z
->
data
<
float
>
();
auto
out
=
param
->
Out
();
float
Si
=
input_x
->
scale
[
0
];
float
Sf
=
filter
->
scale
[
0
];
float
So
=
out
->
scale
[
0
];
// PADDLE_MOBILE_ENFORCE(input_x->dims()[1] == filter->dims()[0],
// "Image channel should be equal to weight number");
...
...
@@ -36,8 +39,10 @@ bool FusionFcKernel<FPGA, float>::Init(FusionFcParam<FPGA> *param) {
auto
bs_ptr
=
(
float
*
)
fpga
::
fpga_malloc
(
2
*
channel
*
sizeof
(
float
));
// NOLINT
for
(
int
i
=
0
;
i
<
channel
;
i
++
)
{
bs_ptr
[
i
+
channel
]
=
1
;
bs_ptr
[
i
]
=
input_z_ptr
[
i
];
// bs_ptr[i + channel] = 1;
// bs_ptr[i] = input_z_ptr[i];
bs_ptr
[
i
+
channel
]
=
Si
/
So
*
Sf
/
127.0
f
;
bs_ptr
[
i
]
=
input_z_ptr
[
i
]
*
127.0
f
/
So
;
}
int
num
=
(
uint32_t
)
filter
->
dims
()[
1
];
int
chw
=
(
uint32_t
)
filter
->
dims
()[
0
];
...
...
src/operators/kernel/fpga/V2/fusion_fc_relu_kernel.cpp
浏览文件 @
769c8083
...
...
@@ -29,6 +29,9 @@ bool FusionFcReluKernel<FPGA, float>::Init(FusionFcReluParam<FPGA> *param) {
const
Tensor
*
input_z
=
param
->
InputZ
();
auto
input_z_ptr
=
input_z
->
data
<
float
>
();
auto
out
=
param
->
Out
();
float
Si
=
input_x
->
scale
[
0
];
float
Sf
=
filter
->
scale
[
0
];
float
So
=
out
->
scale
[
0
];
// PADDLE_MOBILE_ENFORCE(input_x->dims()[1] == filter->dims()[0],
// "Image channel should be equal to weight number");
...
...
@@ -36,8 +39,10 @@ bool FusionFcReluKernel<FPGA, float>::Init(FusionFcReluParam<FPGA> *param) {
auto
bs_ptr
=
(
float
*
)
fpga
::
fpga_malloc
(
2
*
channel
*
sizeof
(
float
));
// NOLINT
for
(
int
i
=
0
;
i
<
channel
;
i
++
)
{
bs_ptr
[
i
+
channel
]
=
1
;
bs_ptr
[
i
]
=
input_z_ptr
[
i
];
// bs_ptr[i + channel] = 1;
// bs_ptr[i] = input_z_ptr[i];
bs_ptr
[
i
+
channel
]
=
Si
/
So
*
Sf
/
127.0
f
;
bs_ptr
[
i
]
=
input_z_ptr
[
i
]
*
127.0
f
/
So
;
}
int
num
=
(
uint32_t
)
filter
->
dims
()[
1
];
int
chw
=
(
uint32_t
)
filter
->
dims
()[
0
];
...
...
src/operators/kernel/fpga/V2/pad2d_kernel.cpp
已删除
100644 → 0
浏览文件 @
3f1e8f7d
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PAD2D_OP
#include "operators/kernel/pad2d_kernel.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
Pad2DKernel
<
FPGA
,
float
>::
Init
(
Pad2DParam
<
FPGA
>
*
param
)
{
Tensor
*
output
=
param
->
output_
;
fpga
::
format_fp16_ofm
(
output
);
return
true
;
}
void
pad2dFunc
(
const
framework
::
Tensor
*
input
,
framework
::
Tensor
*
output
)
{
auto
input_data
=
(
input
->
data
<
half
>
());
auto
output_data
=
(
output
->
data
<
half
>
());
auto
input_c
=
input
->
dims
()[
1
];
auto
input_h
=
input
->
dims
()[
2
];
auto
input_w
=
input
->
dims
()[
3
];
auto
output_c
=
output
->
dims
()[
1
];
auto
output_w
=
output
->
dims
()[
3
];
auto
copysize
=
input_c
*
input_w
;
for
(
int
h
=
0
;
h
<
input_h
;
++
h
)
{
auto
input_offset
=
h
*
input_c
*
input_w
;
auto
output_offset
=
h
*
paddle_mobile
::
fpga
::
align_to_x
(
output_c
*
output_w
,
IMAGE_ALIGNMENT
);
memcpy
((
output_data
+
output_offset
),
(
input_data
+
input_offset
),
copysize
*
sizeof
(
half
));
}
}
template
<
>
void
Pad2DKernel
<
FPGA
,
float
>::
Compute
(
const
Pad2DParam
<
FPGA
>
&
param
)
{
auto
in_x
=
param
.
input_
;
auto
out
=
param
.
output_
;
fpga
::
fpga_invalidate
((
void
*
)
in_x
->
data
<
half
>
(),
// NOLINT
in_x
->
numel
()
*
sizeof
(
half
));
pad2dFunc
(
in_x
,
out
);
(
out
->
scale
)[
0
]
=
(
in_x
->
scale
)[
0
];
(
out
->
scale
)[
1
]
=
(
in_x
->
scale
)[
1
];
DLOG
<<
(
out
->
scale
)[
0
];
DLOG
<<
(
out
->
scale
)[
1
];
size_t
outputSize
=
out
->
dims
()[
2
]
*
paddle_mobile
::
fpga
::
align_to_x
((
out
->
dims
()[
1
])
*
(
out
->
dims
()[
3
]),
IMAGE_ALIGNMENT
)
*
sizeof
(
half
);
fpga
::
fpga_flush
(
out
->
data
<
half
>
(),
outputSize
);
}
}
// namespace operators
}
// namespace paddle_mobile
#endif // PAD2D_OP
src/operators/kernel/fpga/V2/pool_kernel.cpp
浏览文件 @
769c8083
...
...
@@ -44,11 +44,13 @@ bool PoolKernel<FPGA, float>::Init(PoolParam<FPGA> *param) {
auto
input_ptr
=
input
->
data
<
half
>
();
fpga
::
format_fp16_ofm
(
output
);
auto
output_ptr
=
output
->
mutable_data
<
half
>
();
float
Si
=
input
->
scale
[
0
];
float
So
=
output
->
scale
[
0
];
fpga
::
PoolingArgs
poolArgs
=
{
0
};
poolArgs
.
mode
=
pooling_type
==
"max"
?
0
:
1
;
// max:0, avg:1
poolArgs
.
kernel_reciprocal
=
f
pga
::
fp32_2_fp16
(
float
(
1.0
/
(
ksize
[
0
]
*
ksize
[
1
])
));
// NOLINT
poolArgs
.
kernel_reciprocal
=
fpga
::
fp32_2_fp16
(
f
loat
(
1.0
/
(
ksize
[
0
]
*
ksize
[
1
])
*
Si
/
So
));
// NOLINT
poolArgs
.
image
.
address
=
input_ptr
;
poolArgs
.
image
.
channels
=
(
uint32_t
)
input
->
dims
()[
1
];
poolArgs
.
image
.
height
=
(
uint32_t
)
input
->
dims
()[
2
];
...
...
src/operators/kernel/fpga/V2/psroi_pool_kernel.cpp
浏览文件 @
769c8083
...
...
@@ -18,8 +18,8 @@ limitations under the License. */
#include <vector>
#include "operators/kernel/detection_kernel.h"
#include "fpga/V
1
/api.h"
#include "fpga/V
1
/image.h"
#include "fpga/V
2
/api.h"
#include "fpga/V
2
/image.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
src/operators/kernel/fpga/V2/roialign_pool_kernel.cpp
浏览文件 @
769c8083
...
...
@@ -18,8 +18,8 @@ limitations under the License. */
#include <vector>
#include "operators/kernel/detection_kernel.h"
#include "fpga/V
1
/api.h"
#include "fpga/V
1
/image.h"
#include "fpga/V
2
/api.h"
#include "fpga/V
2
/image.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
tools/op.cmake
浏览文件 @
769c8083
...
...
@@ -163,6 +163,26 @@ if (CON GREATER -1)
set
(
SPLIT_OP ON
)
set
(
FUSION_DECONVADD_OP ON
)
set
(
FUSION_DECONVADDRELU_OP ON
)
set
(
RESHAPE_OP ON
)
set
(
FUSION_CONVADDBNRELU_OP ON
)
set
(
FUSION_CONVADDBN_OP ON
)
set
(
RESHAPE2_OP ON
)
set
(
PSROI_POOL_OP ON
)
set
(
ROIALIGN_POOL_OP ON
)
set
(
PROPOSAL_OP ON
)
set
(
ANCHOR_GENERATOR_OP ON
)
set
(
SLICE_OP ON
)
set
(
SIGMOID_OP ON
)
set
(
CONCAT_OP ON
)
set
(
CONV_TRANSPOSE_OP ON
)
set
(
FUSION_DECONVADDBNRELU_OP ON
)
set
(
FUSION_DECONVADDBN_OP ON
)
set
(
FUSION_DECONVBNRELU_OP ON
)
set
(
CONV_OP ON
)
set
(
ELEMENTWISEMUL_OP ON
)
set
(
FUSION_FCRELU_OP ON
)
set
(
RELU_OP ON
)
set
(
FOUND_MATCH ON
)
endif
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录