Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
76410577
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
76410577
编写于
9月 25, 2020
作者:
H
hong19860320
提交者:
GitHub
9月 25, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[CI] Enable CI for Huawei kirin NPU, Rockchip NPU and MediaTek APU (#4408)
上级
d5e7e73e
变更
12
展开全部
隐藏空白更改
内联
并排
Showing
12 changed file
with
1064 addition
and
585 deletion
+1064
-585
lite/CMakeLists.txt
lite/CMakeLists.txt
+11
-14
lite/core/arena/CMakeLists.txt
lite/core/arena/CMakeLists.txt
+1
-1
lite/tests/api/CMakeLists.txt
lite/tests/api/CMakeLists.txt
+56
-37
lite/tests/api/test_mobilenetv1_fp32_huawei_kirin_npu.cc
lite/tests/api/test_mobilenetv1_fp32_huawei_kirin_npu.cc
+101
-0
lite/tests/api/test_mobilenetv1_int8_apu.cc
lite/tests/api/test_mobilenetv1_int8_apu.cc
+0
-160
lite/tests/api/test_mobilenetv1_int8_mediatek_apu.cc
lite/tests/api/test_mobilenetv1_int8_mediatek_apu.cc
+102
-0
lite/tests/api/test_mobilenetv1_int8_rknpu.cc
lite/tests/api/test_mobilenetv1_int8_rknpu.cc
+0
-127
lite/tests/api/test_mobilenetv1_int8_rockchip_npu.cc
lite/tests/api/test_mobilenetv1_int8_rockchip_npu.cc
+102
-0
lite/tests/api/test_mobilenetv2_fp32_huawei_kirin_npu.cc
lite/tests/api/test_mobilenetv2_fp32_huawei_kirin_npu.cc
+101
-0
lite/tests/api/test_resnet50_fp32_huawei_kirin_npu.cc
lite/tests/api/test_resnet50_fp32_huawei_kirin_npu.cc
+101
-0
lite/tests/kernels/CMakeLists.txt
lite/tests/kernels/CMakeLists.txt
+84
-84
lite/tools/ci_build.sh
lite/tools/ci_build.sh
+405
-162
未找到文件。
lite/CMakeLists.txt
浏览文件 @
76410577
...
...
@@ -38,34 +38,31 @@ if (LITE_WITH_LIGHT_WEIGHT_FRAMEWORK AND NOT LITE_ON_TINY_PUBLISH)
endif
()
if
(
WITH_TESTING
)
set
(
LITE_URL_FOR_UNITTESTS
"http://paddle-inference-dist.bj.bcebos.com/PaddleLite/models_and_data_for_unittests"
)
# models
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"lite_naive_model.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"mobilenet_v1.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"mobilenet_v2_relu.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"inception_v4_simple.tar.gz"
)
if
(
LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"mobilenet_v1.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"mobilenet_v1_int16.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"mobilenet_v2_relu.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"resnet50.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"inception_v4_simple.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"MobileNetV1_quant.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"transformer_with_mask_fp32.tar.gz"
)
endif
()
if
(
NOT LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"mobilenet_v1_int8_for_mediatek_apu.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"mobilenet_v1_int8_for_rockchip_npu.tar.gz"
)
else
()
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"GoogleNet_inference.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"mobilenet_v1.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"mobilenet_v2_relu.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"inception_v4_simple.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"step_rnn.tar.gz"
)
set
(
LITE_URL_FOR_UNITTESTS
"http://paddle-inference-dist.bj.bcebos.com/PaddleLite/models_and_data_for_unittests"
)
# models
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"resnet50.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"bert.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"ernie.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"GoogLeNet.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"VGG19.tar.gz"
)
# data
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"ILSVRC2012_small.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"bert_data.tar.gz"
)
endif
()
# data
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"ILSVRC2012_small.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"bert_data.tar.gz"
)
endif
()
# ----------------------------- PUBLISH -----------------------------
...
...
lite/core/arena/CMakeLists.txt
浏览文件 @
76410577
...
...
@@ -6,5 +6,5 @@ endif()
lite_cc_library
(
arena_framework SRCS framework.cc DEPS program gtest
)
if
((
NOT LITE_WITH_OPENCL
)
AND
(
LITE_WITH_X86 OR LITE_WITH_ARM
))
lite_cc_test
(
test_arena_framework SRCS framework_test.cc DEPS arena_framework
${
rknpu_kernels
}
${
mlu_kernels
}
${
bm_kernels
}
${
npu_kernels
}
${
huawei_ascend_npu_kernels
}
${
xpu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
fpga_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_arena_framework SRCS framework_test.cc DEPS arena_framework
${
rknpu_kernels
}
${
mlu_kernels
}
${
bm_kernels
}
${
npu_kernels
}
${
apu_kernels
}
${
huawei_ascend_npu_kernels
}
${
xpu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
fpga_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
endif
()
lite/tests/api/CMakeLists.txt
浏览文件 @
76410577
if
(
LITE_WITH_ARM
)
lite_cc_test
(
test_transformer_with_mask_fp32_arm SRCS test_transformer_with_mask_fp32_arm.cc
function
(
lite_cc_test_with_model_and_data TARGET
)
if
(
NOT WITH_TESTING
)
return
()
endif
()
set
(
options
""
)
set
(
oneValueArgs MODEL DATA CONFIG ARGS
)
set
(
multiValueArgs
""
)
cmake_parse_arguments
(
args
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
set
(
ARGS
""
)
if
(
DEFINED args_MODEL
)
set
(
ARGS
"
${
ARGS
}
--model_dir=
${
LITE_MODEL_DIR
}
/
${
args_MODEL
}
"
)
endif
()
if
(
DEFINED args_DATA
)
set
(
ARGS
"
${
ARGS
}
--data_dir=
${
LITE_MODEL_DIR
}
/
${
args_DATA
}
"
)
endif
()
if
(
DEFINED args_CONFIG
)
set
(
ARGS
"
${
ARGS
}
--config_dir=
${
LITE_MODEL_DIR
}
/
${
args_CONFIG
}
"
)
endif
()
if
(
DEFINED args_ARGS
)
set
(
ARGS
"
${
ARGS
}
${
args_ARGS
}
"
)
endif
()
lite_cc_test
(
${
TARGET
}
SRCS
${
TARGET
}
.cc
DEPS
${
lite_model_test_DEPS
}
paddle_api_full
ARM_DEPS
${
arm_kernels
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/transformer_with_mask_fp32 SERIAL
)
if
(
WITH_TESTING
)
add_dependencies
(
test_transformer_with_mask_fp32_arm extern_lite_download_transformer_with_mask_fp32_tar_gz
)
X86_DEPS
${
x86_kernels
}
NPU_DEPS
${
npu_kernels
}
${
npu_bridges
}
HUAWEI_ASCEND_NPU_DEPS
${
huawei_ascend_npu_kernels
}
${
huawei_ascend_npu_bridges
}
XPU_DEPS
${
xpu_kernels
}
${
xpu_bridges
}
APU_DEPS
${
apu_kernels
}
${
apu_bridges
}
RKNPU_DEPS
${
rknpu_kernels
}
${
rknpu_bridges
}
BM_DEPS
${
bm_kernels
}
${
bm_bridges
}
MLU_DEPS
${
mlu_kernels
}
${
mlu_bridges
}
ARGS
${
ARGS
}
SERIAL
)
if
(
DEFINED args_MODEL
)
add_dependencies
(
${
TARGET
}
extern_lite_download_
${
args_MODEL
}
_tar_gz
)
endif
()
endif
()
function
(
xpu_x86_without_xtcl_test TARGET MODEL DATA
)
if
(
${
DATA
}
STREQUAL
""
)
lite_cc_test
(
${
TARGET
}
SRCS
${
TARGET
}
.cc
DEPS mir_passes lite_api_test_helper paddle_api_full paddle_api_light gflags utils
${
ops
}
${
host_kernels
}
${
x86_kernels
}
${
xpu_kernels
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/
${
MODEL
}
)
else
()
lite_cc_test
(
${
TARGET
}
SRCS
${
TARGET
}
.cc
DEPS mir_passes lite_api_test_helper paddle_api_full paddle_api_light gflags utils
${
ops
}
${
host_kernels
}
${
x86_kernels
}
${
xpu_kernels
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/
${
MODEL
}
--data_dir=
${
LITE_MODEL_DIR
}
/
${
DATA
}
)
if
(
DEFINED args_DATA
)
add_dependencies
(
${
TARGET
}
extern_lite_download_
${
args_DATA
}
_tar_gz
)
endif
()
if
(
WITH_TESTING
)
add_dependencies
(
${
TARGET
}
extern_lite_download_
${
MODEL
}
_tar_gz
)
if
(
NOT
${
DATA
}
STREQUAL
""
)
add_dependencies
(
${
TARGET
}
extern_lite_download_
${
DATA
}
_tar_gz
)
endif
()
if
(
DEFINED args_CONFIG
)
add_dependencies
(
${
TARGET
}
extern_lite_download_
${
args_CONFIG
}
_tar_gz
)
endif
()
endfunction
()
if
(
LITE_WITH_ARM
)
lite_cc_test_with_model_and_data
(
test_transformer_with_mask_fp32_arm MODEL transformer_with_mask_fp32 ARGS
)
endif
()
if
(
LITE_WITH_NPU
)
lite_cc_test_with_model_and_data
(
test_mobilenetv1_fp32_huawei_kirin_npu MODEL mobilenet_v1 DATA ILSVRC2012_small
)
lite_cc_test_with_model_and_data
(
test_mobilenetv2_fp32_huawei_kirin_npu MODEL mobilenet_v2_relu DATA ILSVRC2012_small
)
lite_cc_test_with_model_and_data
(
test_resnet50_fp32_huawei_kirin_npu MODEL resnet50 DATA ILSVRC2012_small
)
endif
()
if
(
LITE_WITH_XPU AND NOT LITE_WITH_XTCL
)
xpu_x86_without_xtcl_test
(
test_resnet50_fp32_xpu resnet50
ILSVRC2012_small
)
xpu_x86_without_xtcl_test
(
test_googlenet_fp32_xpu GoogLeNet
ILSVRC2012_small
)
xpu_x86_without_xtcl_test
(
test_vgg19_fp32_xpu VGG19
ILSVRC2012_small
)
xpu_x86_without_xtcl_test
(
test_ernie_fp32_xpu ernie
bert_data
)
xpu_x86_without_xtcl_test
(
test_bert_fp32_xpu bert
bert_data
)
lite_cc_test_with_model_and_data
(
test_resnet50_fp32_xpu MODEL resnet50 DATA
ILSVRC2012_small
)
lite_cc_test_with_model_and_data
(
test_googlenet_fp32_xpu MODEL GoogLeNet DATA
ILSVRC2012_small
)
lite_cc_test_with_model_and_data
(
test_vgg19_fp32_xpu MODEL VGG19 DATA
ILSVRC2012_small
)
lite_cc_test_with_model_and_data
(
test_ernie_fp32_xpu MODEL ernie DATA
bert_data
)
lite_cc_test_with_model_and_data
(
test_bert_fp32_xpu MODEL bert DATA
bert_data
)
endif
()
if
(
LITE_WITH_RKNPU
)
lite_cc_test
(
test_mobilenetv1_int8_rknpu SRCS test_mobilenetv1_int8_rknpu.cc
DEPS
${
lite_model_test_DEPS
}
paddle_api_full
RKNPU_DEPS
${
rknpu_kernels
}
${
rknpu_bridges
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/MobilenetV1_full_quant SERIAL
)
lite_cc_test_with_model_and_data
(
test_mobilenetv1_int8_rockchip_npu MODEL mobilenet_v1_int8_for_rockchip_npu DATA ILSVRC2012_small
)
endif
()
if
(
LITE_WITH_APU
)
lite_cc_test
(
test_mobilenetv1_int8_apu SRCS test_mobilenetv1_int8_apu.cc
DEPS
${
lite_model_test_DEPS
}
paddle_api_full
APU_DEPS
${
apu_kernels
}
${
apu_bridges
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/MobilenetV1_full_quant SERIAL
)
lite_cc_test_with_model_and_data
(
test_mobilenetv1_int8_mediatek_apu MODEL mobilenet_v1_int8_for_mediatek_apu DATA ILSVRC2012_small
)
endif
()
lite/tests/api/test_mobilenetv1_fp32_huawei_kirin_npu.cc
0 → 100644
浏览文件 @
76410577
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "lite/api/lite_api_test_helper.h"
#include "lite/api/paddle_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/tests/api/ILSVRC2012_utility.h"
#include "lite/utils/cp_logging.h"
DEFINE_string
(
data_dir
,
""
,
"data dir"
);
DEFINE_int32
(
iteration
,
100
,
"iteration times to run"
);
DEFINE_int32
(
batch
,
1
,
"batch of image"
);
DEFINE_int32
(
channel
,
3
,
"image channel"
);
namespace
paddle
{
namespace
lite
{
TEST
(
MobileNetV1
,
test_mobilenetv1_fp32_huawei_kirin_npu
)
{
lite_api
::
CxxConfig
config
;
config
.
set_model_dir
(
FLAGS_model_dir
);
config
.
set_valid_places
({
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)},
lite_api
::
Place
{
TARGET
(
kNPU
),
PRECISION
(
kFloat
)}});
auto
predictor
=
lite_api
::
CreatePaddlePredictor
(
config
);
std
::
string
raw_data_dir
=
FLAGS_data_dir
+
std
::
string
(
"/raw_data"
);
std
::
vector
<
int
>
input_shape
{
FLAGS_batch
,
FLAGS_channel
,
FLAGS_im_width
,
FLAGS_im_height
};
auto
raw_data
=
ReadRawData
(
raw_data_dir
,
input_shape
,
FLAGS_iteration
);
int
input_size
=
1
;
for
(
auto
i
:
input_shape
)
{
input_size
*=
i
;
}
for
(
int
i
=
0
;
i
<
FLAGS_warmup
;
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
for
(
int
j
=
0
;
j
<
input_size
;
j
++
)
{
data
[
j
]
=
0.
f
;
}
predictor
->
Run
();
}
std
::
vector
<
std
::
vector
<
float
>>
out_rets
;
out_rets
.
resize
(
FLAGS_iteration
);
double
cost_time
=
0
;
for
(
size_t
i
=
0
;
i
<
raw_data
.
size
();
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
memcpy
(
data
,
raw_data
[
i
].
data
(),
sizeof
(
float
)
*
input_size
);
double
start
=
GetCurrentUS
();
predictor
->
Run
();
cost_time
+=
GetCurrentUS
()
-
start
;
auto
output_tensor
=
predictor
->
GetOutput
(
0
);
auto
output_shape
=
output_tensor
->
shape
();
auto
output_data
=
output_tensor
->
data
<
float
>
();
ASSERT_EQ
(
output_shape
.
size
(),
2UL
);
ASSERT_EQ
(
output_shape
[
0
],
1
);
ASSERT_EQ
(
output_shape
[
1
],
1000
);
int
output_size
=
output_shape
[
0
]
*
output_shape
[
1
];
out_rets
[
i
].
resize
(
output_size
);
memcpy
(
&
(
out_rets
[
i
].
at
(
0
)),
output_data
,
sizeof
(
float
)
*
output_size
);
}
LOG
(
INFO
)
<<
"================== Speed Report ==================="
;
LOG
(
INFO
)
<<
"Model: "
<<
FLAGS_model_dir
<<
", threads num "
<<
FLAGS_threads
<<
", warmup: "
<<
FLAGS_warmup
<<
", batch: "
<<
FLAGS_batch
<<
", iteration: "
<<
FLAGS_iteration
<<
", spend "
<<
cost_time
/
FLAGS_iteration
/
1000.0
<<
" ms in average."
;
std
::
string
labels_dir
=
FLAGS_data_dir
+
std
::
string
(
"/labels.txt"
);
float
out_accuracy
=
CalOutAccuracy
(
out_rets
,
labels_dir
);
ASSERT_GE
(
out_accuracy
,
0.57
f
);
}
}
// namespace lite
}
// namespace paddle
lite/tests/api/test_mobilenetv1_int8_apu.cc
已删除
100644 → 0
浏览文件 @
d5e7e73e
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <fstream>
#include <iostream>
#include <numeric>
#include <string>
#include <vector>
#include "lite/api/paddle_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
using
namespace
paddle
::
lite_api
;
// NOLINT
inline
double
GetCurrentUS
()
{
struct
timeval
time
;
gettimeofday
(
&
time
,
NULL
);
return
1e+6
*
time
.
tv_sec
+
time
.
tv_usec
;
}
inline
int64_t
ShapeProduction
(
std
::
vector
<
int64_t
>
shape
)
{
int64_t
s
=
1
;
for
(
int64_t
dim
:
shape
)
{
s
*=
dim
;
}
return
s
;
}
int
main
(
int
argc
,
char
**
argv
)
{
if
(
argc
<
2
)
{
std
::
cerr
<<
"[ERROR] usage: ./"
<<
argv
[
0
]
<<
" model_dir [thread_num] [warmup_times] [repeat_times] "
"[input_data_path] [output_data_path]"
<<
std
::
endl
;
return
-
1
;
}
std
::
string
model_dir
=
argv
[
1
];
int
thread_num
=
1
;
if
(
argc
>
2
)
{
thread_num
=
atoi
(
argv
[
2
]);
}
int
warmup_times
=
5
;
if
(
argc
>
3
)
{
warmup_times
=
atoi
(
argv
[
3
]);
}
int
repeat_times
=
10
;
if
(
argc
>
4
)
{
repeat_times
=
atoi
(
argv
[
4
]);
}
std
::
string
input_data_path
;
if
(
argc
>
5
)
{
input_data_path
=
argv
[
5
];
}
std
::
string
output_data_path
;
if
(
argc
>
6
)
{
output_data_path
=
argv
[
6
];
}
paddle
::
lite_api
::
CxxConfig
config
;
config
.
set_model_dir
(
model_dir
);
config
.
set_threads
(
thread_num
);
config
.
set_power_mode
(
paddle
::
lite_api
::
LITE_POWER_HIGH
);
config
.
set_valid_places
(
{
paddle
::
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
)},
paddle
::
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kInt8
),
DATALAYOUT
(
kNCHW
)},
paddle
::
lite_api
::
Place
{
TARGET
(
kAPU
),
PRECISION
(
kInt8
),
DATALAYOUT
(
kNCHW
)}});
auto
predictor
=
paddle
::
lite_api
::
CreatePaddlePredictor
(
config
);
std
::
unique_ptr
<
paddle
::
lite_api
::
Tensor
>
input_tensor
(
std
::
move
(
predictor
->
GetInput
(
0
)));
input_tensor
->
Resize
({
1
,
3
,
224
,
224
});
auto
input_data
=
input_tensor
->
mutable_data
<
float
>
();
auto
input_size
=
ShapeProduction
(
input_tensor
->
shape
());
// test loop
int
total_imgs
=
500
;
float
test_num
=
0
;
float
top1_num
=
0
;
float
top5_num
=
0
;
int
output_len
=
1000
;
std
::
vector
<
int
>
index
(
1000
);
bool
debug
=
true
;
// false;
int
show_step
=
500
;
for
(
int
i
=
0
;
i
<
total_imgs
;
i
++
)
{
// set input
std
::
string
filename
=
input_data_path
+
"/"
+
std
::
to_string
(
i
);
std
::
ifstream
fs
(
filename
,
std
::
ifstream
::
binary
);
if
(
!
fs
.
is_open
())
{
std
::
cout
<<
"open input file fail."
;
}
auto
input_data_tmp
=
input_data
;
for
(
int
i
=
0
;
i
<
input_size
;
++
i
)
{
fs
.
read
(
reinterpret_cast
<
char
*>
(
input_data_tmp
),
sizeof
(
*
input_data_tmp
));
input_data_tmp
++
;
}
int
label
=
0
;
fs
.
read
(
reinterpret_cast
<
char
*>
(
&
label
),
sizeof
(
label
));
fs
.
close
();
if
(
debug
&&
i
%
show_step
==
0
)
{
std
::
cout
<<
"input data:"
<<
std
::
endl
;
std
::
cout
<<
input_data
[
0
]
<<
" "
<<
input_data
[
10
]
<<
" "
<<
input_data
[
input_size
-
1
]
<<
std
::
endl
;
std
::
cout
<<
"label:"
<<
label
<<
std
::
endl
;
}
// run
predictor
->
Run
();
auto
output0
=
predictor
->
GetOutput
(
0
);
auto
output0_data
=
output0
->
data
<
float
>
();
// get output
std
::
iota
(
index
.
begin
(),
index
.
end
(),
0
);
std
::
stable_sort
(
index
.
begin
(),
index
.
end
(),
[
output0_data
](
size_t
i1
,
size_t
i2
)
{
return
output0_data
[
i1
]
>
output0_data
[
i2
];
});
test_num
++
;
if
(
label
==
index
[
0
])
{
top1_num
++
;
}
for
(
int
i
=
0
;
i
<
5
;
i
++
)
{
if
(
label
==
index
[
i
])
{
top5_num
++
;
}
}
if
(
debug
&&
i
%
show_step
==
0
)
{
std
::
cout
<<
index
[
0
]
<<
" "
<<
index
[
1
]
<<
" "
<<
index
[
2
]
<<
" "
<<
index
[
3
]
<<
" "
<<
index
[
4
]
<<
std
::
endl
;
std
::
cout
<<
output0_data
[
index
[
0
]]
<<
" "
<<
output0_data
[
index
[
1
]]
<<
" "
<<
output0_data
[
index
[
2
]]
<<
" "
<<
output0_data
[
index
[
3
]]
<<
" "
<<
output0_data
[
index
[
4
]]
<<
std
::
endl
;
std
::
cout
<<
output0_data
[
630
]
<<
std
::
endl
;
}
if
(
i
%
show_step
==
0
)
{
std
::
cout
<<
"step "
<<
i
<<
"; top1 acc:"
<<
top1_num
/
test_num
<<
"; top5 acc:"
<<
top5_num
/
test_num
<<
std
::
endl
;
}
}
std
::
cout
<<
"final result:"
<<
std
::
endl
;
std
::
cout
<<
"top1 acc:"
<<
top1_num
/
test_num
<<
std
::
endl
;
std
::
cout
<<
"top5 acc:"
<<
top5_num
/
test_num
<<
std
::
endl
;
return
0
;
}
lite/tests/api/test_mobilenetv1_int8_mediatek_apu.cc
0 → 100644
浏览文件 @
76410577
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "lite/api/lite_api_test_helper.h"
#include "lite/api/paddle_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/tests/api/ILSVRC2012_utility.h"
#include "lite/utils/cp_logging.h"
DEFINE_string
(
data_dir
,
""
,
"data dir"
);
DEFINE_int32
(
iteration
,
100
,
"iteration times to run"
);
DEFINE_int32
(
batch
,
1
,
"batch of image"
);
DEFINE_int32
(
channel
,
3
,
"image channel"
);
namespace
paddle
{
namespace
lite
{
TEST
(
MobileNetV1
,
test_mobilenetv1_int8_mediatek_apu
)
{
lite_api
::
CxxConfig
config
;
config
.
set_model_dir
(
FLAGS_model_dir
);
config
.
set_valid_places
({
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)},
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kInt8
)},
lite_api
::
Place
{
TARGET
(
kAPU
),
PRECISION
(
kInt8
)}});
auto
predictor
=
lite_api
::
CreatePaddlePredictor
(
config
);
std
::
string
raw_data_dir
=
FLAGS_data_dir
+
std
::
string
(
"/raw_data"
);
std
::
vector
<
int
>
input_shape
{
FLAGS_batch
,
FLAGS_channel
,
FLAGS_im_width
,
FLAGS_im_height
};
auto
raw_data
=
ReadRawData
(
raw_data_dir
,
input_shape
,
FLAGS_iteration
);
int
input_size
=
1
;
for
(
auto
i
:
input_shape
)
{
input_size
*=
i
;
}
for
(
int
i
=
0
;
i
<
FLAGS_warmup
;
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
for
(
int
j
=
0
;
j
<
input_size
;
j
++
)
{
data
[
j
]
=
0.
f
;
}
predictor
->
Run
();
}
std
::
vector
<
std
::
vector
<
float
>>
out_rets
;
out_rets
.
resize
(
FLAGS_iteration
);
double
cost_time
=
0
;
for
(
size_t
i
=
0
;
i
<
raw_data
.
size
();
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
memcpy
(
data
,
raw_data
[
i
].
data
(),
sizeof
(
float
)
*
input_size
);
double
start
=
GetCurrentUS
();
predictor
->
Run
();
cost_time
+=
GetCurrentUS
()
-
start
;
auto
output_tensor
=
predictor
->
GetOutput
(
0
);
auto
output_shape
=
output_tensor
->
shape
();
auto
output_data
=
output_tensor
->
data
<
float
>
();
ASSERT_EQ
(
output_shape
.
size
(),
2UL
);
ASSERT_EQ
(
output_shape
[
0
],
1
);
ASSERT_EQ
(
output_shape
[
1
],
1000
);
int
output_size
=
output_shape
[
0
]
*
output_shape
[
1
];
out_rets
[
i
].
resize
(
output_size
);
memcpy
(
&
(
out_rets
[
i
].
at
(
0
)),
output_data
,
sizeof
(
float
)
*
output_size
);
}
LOG
(
INFO
)
<<
"================== Speed Report ==================="
;
LOG
(
INFO
)
<<
"Model: "
<<
FLAGS_model_dir
<<
", threads num "
<<
FLAGS_threads
<<
", warmup: "
<<
FLAGS_warmup
<<
", batch: "
<<
FLAGS_batch
<<
", iteration: "
<<
FLAGS_iteration
<<
", spend "
<<
cost_time
/
FLAGS_iteration
/
1000.0
<<
" ms in average."
;
std
::
string
labels_dir
=
FLAGS_data_dir
+
std
::
string
(
"/labels.txt"
);
float
out_accuracy
=
CalOutAccuracy
(
out_rets
,
labels_dir
);
ASSERT_GE
(
out_accuracy
,
0.55
f
);
}
}
// namespace lite
}
// namespace paddle
lite/tests/api/test_mobilenetv1_int8_rknpu.cc
已删除
100644 → 0
浏览文件 @
d5e7e73e
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sys/time.h>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include "lite/api/paddle_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
inline
double
GetCurrentUS
()
{
struct
timeval
time
;
gettimeofday
(
&
time
,
NULL
);
return
1e+6
*
time
.
tv_sec
+
time
.
tv_usec
;
}
inline
int64_t
ShapeProduction
(
std
::
vector
<
int64_t
>
shape
)
{
int64_t
s
=
1
;
for
(
int64_t
dim
:
shape
)
{
s
*=
dim
;
}
return
s
;
}
int
main
(
int
argc
,
char
**
argv
)
{
if
(
argc
<
2
)
{
std
::
cerr
<<
"[ERROR] usage: ./"
<<
argv
[
0
]
<<
" model_dir [thread_num] [warmup_times] [repeat_times] "
"[input_data_path] [output_data_path]"
<<
std
::
endl
;
return
-
1
;
}
std
::
string
model_dir
=
argv
[
1
];
int
thread_num
=
1
;
if
(
argc
>
2
)
{
thread_num
=
atoi
(
argv
[
2
]);
}
int
warmup_times
=
5
;
if
(
argc
>
3
)
{
warmup_times
=
atoi
(
argv
[
3
]);
}
int
repeat_times
=
10
;
if
(
argc
>
4
)
{
repeat_times
=
atoi
(
argv
[
4
]);
}
std
::
string
input_data_path
;
if
(
argc
>
5
)
{
input_data_path
=
argv
[
5
];
}
std
::
string
output_data_path
;
if
(
argc
>
6
)
{
output_data_path
=
argv
[
6
];
}
paddle
::
lite_api
::
CxxConfig
config
;
config
.
set_model_dir
(
model_dir
);
config
.
set_threads
(
thread_num
);
config
.
set_power_mode
(
paddle
::
lite_api
::
LITE_POWER_HIGH
);
config
.
set_valid_places
(
{
paddle
::
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
)},
paddle
::
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kInt8
),
DATALAYOUT
(
kNCHW
)},
paddle
::
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kInt8
),
DATALAYOUT
(
kNCHW
)},
paddle
::
lite_api
::
Place
{
TARGET
(
kRKNPU
),
PRECISION
(
kInt8
),
DATALAYOUT
(
kNCHW
)}});
auto
predictor
=
paddle
::
lite_api
::
CreatePaddlePredictor
(
config
);
std
::
unique_ptr
<
paddle
::
lite_api
::
Tensor
>
input_tensor
(
std
::
move
(
predictor
->
GetInput
(
0
)));
input_tensor
->
Resize
({
1
,
3
,
224
,
224
});
auto
input_data
=
input_tensor
->
mutable_data
<
float
>
();
auto
input_size
=
ShapeProduction
(
input_tensor
->
shape
());
if
(
input_data_path
.
empty
())
{
for
(
int
i
=
0
;
i
<
input_size
;
i
++
)
{
input_data
[
i
]
=
1
;
}
}
else
{
std
::
fstream
fs
(
input_data_path
,
std
::
ios
::
in
);
if
(
!
fs
.
is_open
())
{
std
::
cerr
<<
"open input data file failed."
<<
std
::
endl
;
return
-
1
;
}
for
(
int
i
=
0
;
i
<
input_size
;
i
++
)
{
fs
>>
input_data
[
i
];
}
}
for
(
int
i
=
0
;
i
<
warmup_times
;
++
i
)
{
predictor
->
Run
();
}
auto
start
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat_times
;
++
i
)
{
predictor
->
Run
();
}
std
::
cout
<<
"Model: "
<<
model_dir
<<
", threads num "
<<
thread_num
<<
", warmup times: "
<<
warmup_times
<<
", repeat times: "
<<
repeat_times
<<
", spend "
<<
(
GetCurrentUS
()
-
start
)
/
repeat_times
/
1000.0
<<
" ms in average."
<<
std
::
endl
;
std
::
unique_ptr
<
const
paddle
::
lite_api
::
Tensor
>
output_tensor
(
std
::
move
(
predictor
->
GetOutput
(
0
)));
auto
output_data
=
output_tensor
->
data
<
float
>
();
auto
output_size
=
ShapeProduction
(
output_tensor
->
shape
());
std
::
cout
<<
"output data:"
;
for
(
int
i
=
0
;
i
<
output_size
;
i
+=
100
)
{
std
::
cout
<<
"["
<<
i
<<
"] "
<<
output_data
[
i
]
<<
std
::
endl
;
}
return
0
;
}
lite/tests/api/test_mobilenetv1_int8_rockchip_npu.cc
0 → 100644
浏览文件 @
76410577
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "lite/api/lite_api_test_helper.h"
#include "lite/api/paddle_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/tests/api/ILSVRC2012_utility.h"
#include "lite/utils/cp_logging.h"
DEFINE_string
(
data_dir
,
""
,
"data dir"
);
DEFINE_int32
(
iteration
,
100
,
"iteration times to run"
);
DEFINE_int32
(
batch
,
1
,
"batch of image"
);
DEFINE_int32
(
channel
,
3
,
"image channel"
);
namespace
paddle
{
namespace
lite
{
TEST
(
MobileNetV1
,
test_mobilenetv1_int8_rockchip_apu
)
{
lite_api
::
CxxConfig
config
;
config
.
set_model_dir
(
FLAGS_model_dir
);
config
.
set_valid_places
({
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)},
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kInt8
)},
lite_api
::
Place
{
TARGET
(
kRKNPU
),
PRECISION
(
kInt8
)}});
auto
predictor
=
lite_api
::
CreatePaddlePredictor
(
config
);
std
::
string
raw_data_dir
=
FLAGS_data_dir
+
std
::
string
(
"/raw_data"
);
std
::
vector
<
int
>
input_shape
{
FLAGS_batch
,
FLAGS_channel
,
FLAGS_im_width
,
FLAGS_im_height
};
auto
raw_data
=
ReadRawData
(
raw_data_dir
,
input_shape
,
FLAGS_iteration
);
int
input_size
=
1
;
for
(
auto
i
:
input_shape
)
{
input_size
*=
i
;
}
for
(
int
i
=
0
;
i
<
FLAGS_warmup
;
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
for
(
int
j
=
0
;
j
<
input_size
;
j
++
)
{
data
[
j
]
=
0.
f
;
}
predictor
->
Run
();
}
std
::
vector
<
std
::
vector
<
float
>>
out_rets
;
out_rets
.
resize
(
FLAGS_iteration
);
double
cost_time
=
0
;
for
(
size_t
i
=
0
;
i
<
raw_data
.
size
();
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
memcpy
(
data
,
raw_data
[
i
].
data
(),
sizeof
(
float
)
*
input_size
);
double
start
=
GetCurrentUS
();
predictor
->
Run
();
cost_time
+=
GetCurrentUS
()
-
start
;
auto
output_tensor
=
predictor
->
GetOutput
(
0
);
auto
output_shape
=
output_tensor
->
shape
();
auto
output_data
=
output_tensor
->
data
<
float
>
();
ASSERT_EQ
(
output_shape
.
size
(),
2UL
);
ASSERT_EQ
(
output_shape
[
0
],
1
);
ASSERT_EQ
(
output_shape
[
1
],
1000
);
int
output_size
=
output_shape
[
0
]
*
output_shape
[
1
];
out_rets
[
i
].
resize
(
output_size
);
memcpy
(
&
(
out_rets
[
i
].
at
(
0
)),
output_data
,
sizeof
(
float
)
*
output_size
);
}
LOG
(
INFO
)
<<
"================== Speed Report ==================="
;
LOG
(
INFO
)
<<
"Model: "
<<
FLAGS_model_dir
<<
", threads num "
<<
FLAGS_threads
<<
", warmup: "
<<
FLAGS_warmup
<<
", batch: "
<<
FLAGS_batch
<<
", iteration: "
<<
FLAGS_iteration
<<
", spend "
<<
cost_time
/
FLAGS_iteration
/
1000.0
<<
" ms in average."
;
std
::
string
labels_dir
=
FLAGS_data_dir
+
std
::
string
(
"/labels.txt"
);
float
out_accuracy
=
CalOutAccuracy
(
out_rets
,
labels_dir
);
ASSERT_GE
(
out_accuracy
,
0.52
f
);
}
}
// namespace lite
}
// namespace paddle
lite/tests/api/test_mobilenetv2_fp32_huawei_kirin_npu.cc
0 → 100644
浏览文件 @
76410577
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "lite/api/lite_api_test_helper.h"
#include "lite/api/paddle_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/tests/api/ILSVRC2012_utility.h"
#include "lite/utils/cp_logging.h"
DEFINE_string
(
data_dir
,
""
,
"data dir"
);
DEFINE_int32
(
iteration
,
100
,
"iteration times to run"
);
DEFINE_int32
(
batch
,
1
,
"batch of image"
);
DEFINE_int32
(
channel
,
3
,
"image channel"
);
namespace
paddle
{
namespace
lite
{
TEST
(
MobileNetV2
,
test_mobilenetv2_fp32_huawei_kirin_npu
)
{
lite_api
::
CxxConfig
config
;
config
.
set_model_dir
(
FLAGS_model_dir
);
config
.
set_valid_places
({
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)},
lite_api
::
Place
{
TARGET
(
kNPU
),
PRECISION
(
kFloat
)}});
auto
predictor
=
lite_api
::
CreatePaddlePredictor
(
config
);
std
::
string
raw_data_dir
=
FLAGS_data_dir
+
std
::
string
(
"/raw_data"
);
std
::
vector
<
int
>
input_shape
{
FLAGS_batch
,
FLAGS_channel
,
FLAGS_im_width
,
FLAGS_im_height
};
auto
raw_data
=
ReadRawData
(
raw_data_dir
,
input_shape
,
FLAGS_iteration
);
int
input_size
=
1
;
for
(
auto
i
:
input_shape
)
{
input_size
*=
i
;
}
for
(
int
i
=
0
;
i
<
FLAGS_warmup
;
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
for
(
int
j
=
0
;
j
<
input_size
;
j
++
)
{
data
[
j
]
=
0.
f
;
}
predictor
->
Run
();
}
std
::
vector
<
std
::
vector
<
float
>>
out_rets
;
out_rets
.
resize
(
FLAGS_iteration
);
double
cost_time
=
0
;
for
(
size_t
i
=
0
;
i
<
raw_data
.
size
();
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
memcpy
(
data
,
raw_data
[
i
].
data
(),
sizeof
(
float
)
*
input_size
);
double
start
=
GetCurrentUS
();
predictor
->
Run
();
cost_time
+=
GetCurrentUS
()
-
start
;
auto
output_tensor
=
predictor
->
GetOutput
(
0
);
auto
output_shape
=
output_tensor
->
shape
();
auto
output_data
=
output_tensor
->
data
<
float
>
();
ASSERT_EQ
(
output_shape
.
size
(),
2UL
);
ASSERT_EQ
(
output_shape
[
0
],
1
);
ASSERT_EQ
(
output_shape
[
1
],
1000
);
int
output_size
=
output_shape
[
0
]
*
output_shape
[
1
];
out_rets
[
i
].
resize
(
output_size
);
memcpy
(
&
(
out_rets
[
i
].
at
(
0
)),
output_data
,
sizeof
(
float
)
*
output_size
);
}
LOG
(
INFO
)
<<
"================== Speed Report ==================="
;
LOG
(
INFO
)
<<
"Model: "
<<
FLAGS_model_dir
<<
", threads num "
<<
FLAGS_threads
<<
", warmup: "
<<
FLAGS_warmup
<<
", batch: "
<<
FLAGS_batch
<<
", iteration: "
<<
FLAGS_iteration
<<
", spend "
<<
cost_time
/
FLAGS_iteration
/
1000.0
<<
" ms in average."
;
std
::
string
labels_dir
=
FLAGS_data_dir
+
std
::
string
(
"/labels.txt"
);
float
out_accuracy
=
CalOutAccuracy
(
out_rets
,
labels_dir
);
ASSERT_GE
(
out_accuracy
,
0.57
f
);
}
}
// namespace lite
}
// namespace paddle
lite/tests/api/test_resnet50_fp32_huawei_kirin_npu.cc
0 → 100644
浏览文件 @
76410577
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "lite/api/lite_api_test_helper.h"
#include "lite/api/paddle_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/tests/api/ILSVRC2012_utility.h"
#include "lite/utils/cp_logging.h"
DEFINE_string
(
data_dir
,
""
,
"data dir"
);
DEFINE_int32
(
iteration
,
100
,
"iteration times to run"
);
DEFINE_int32
(
batch
,
1
,
"batch of image"
);
DEFINE_int32
(
channel
,
3
,
"image channel"
);
namespace
paddle
{
namespace
lite
{
TEST
(
ResNet50
,
test_resnet50_fp32_huawei_kirin_npu
)
{
lite_api
::
CxxConfig
config
;
config
.
set_model_dir
(
FLAGS_model_dir
);
config
.
set_valid_places
({
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)},
lite_api
::
Place
{
TARGET
(
kNPU
),
PRECISION
(
kFloat
)}});
auto
predictor
=
lite_api
::
CreatePaddlePredictor
(
config
);
std
::
string
raw_data_dir
=
FLAGS_data_dir
+
std
::
string
(
"/raw_data"
);
std
::
vector
<
int
>
input_shape
{
FLAGS_batch
,
FLAGS_channel
,
FLAGS_im_width
,
FLAGS_im_height
};
auto
raw_data
=
ReadRawData
(
raw_data_dir
,
input_shape
,
FLAGS_iteration
);
int
input_size
=
1
;
for
(
auto
i
:
input_shape
)
{
input_size
*=
i
;
}
for
(
int
i
=
0
;
i
<
FLAGS_warmup
;
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
for
(
int
j
=
0
;
j
<
input_size
;
j
++
)
{
data
[
j
]
=
0.
f
;
}
predictor
->
Run
();
}
std
::
vector
<
std
::
vector
<
float
>>
out_rets
;
out_rets
.
resize
(
FLAGS_iteration
);
double
cost_time
=
0
;
for
(
size_t
i
=
0
;
i
<
raw_data
.
size
();
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
memcpy
(
data
,
raw_data
[
i
].
data
(),
sizeof
(
float
)
*
input_size
);
double
start
=
GetCurrentUS
();
predictor
->
Run
();
cost_time
+=
GetCurrentUS
()
-
start
;
auto
output_tensor
=
predictor
->
GetOutput
(
0
);
auto
output_shape
=
output_tensor
->
shape
();
auto
output_data
=
output_tensor
->
data
<
float
>
();
ASSERT_EQ
(
output_shape
.
size
(),
2UL
);
ASSERT_EQ
(
output_shape
[
0
],
1
);
ASSERT_EQ
(
output_shape
[
1
],
1000
);
int
output_size
=
output_shape
[
0
]
*
output_shape
[
1
];
out_rets
[
i
].
resize
(
output_size
);
memcpy
(
&
(
out_rets
[
i
].
at
(
0
)),
output_data
,
sizeof
(
float
)
*
output_size
);
}
LOG
(
INFO
)
<<
"================== Speed Report ==================="
;
LOG
(
INFO
)
<<
"Model: "
<<
FLAGS_model_dir
<<
", threads num "
<<
FLAGS_threads
<<
", warmup: "
<<
FLAGS_warmup
<<
", batch: "
<<
FLAGS_batch
<<
", iteration: "
<<
FLAGS_iteration
<<
", spend "
<<
cost_time
/
FLAGS_iteration
/
1000.0
<<
" ms in average."
;
std
::
string
labels_dir
=
FLAGS_data_dir
+
std
::
string
(
"/labels.txt"
);
float
out_accuracy
=
CalOutAccuracy
(
out_rets
,
labels_dir
);
ASSERT_GE
(
out_accuracy
,
0.64
f
);
}
}
// namespace lite
}
// namespace paddle
lite/tests/kernels/CMakeLists.txt
浏览文件 @
76410577
此差异已折叠。
点击以展开。
lite/tools/ci_build.sh
浏览文件 @
76410577
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录