提交 7603c043 编写于 作者: S Santa An 提交者: GitHub

[LITE][BM] release demo, test=develop (#3320)

* [LITE][BM] add fill_const assign_value ops, test=develop
上级 ba1b1fca
......@@ -9,7 +9,7 @@ if (LITE_ON_TINY_PUBLISH)
set(CMAKE_C_FLAGS_RELEASE "-Os -DNDEBUG")
endif()
set(light_lib_DEPS light_api paddle_api paddle_api_light optimizer)
if ((NOT LITE_ON_TINY_PUBLISH) AND (LITE_WITH_CUDA OR LITE_WITH_X86 OR ARM_TARGET_OS STREQUAL "android" OR ARM_TARGET_OS STREQUAL "armlinux"))
if ((NOT LITE_ON_TINY_PUBLISH) AND (LITE_WITH_CUDA OR LITE_WITH_X86 OR LITE_WITH_BM OR ARM_TARGET_OS STREQUAL "android" OR ARM_TARGET_OS STREQUAL "armlinux"))
#full api dynamic library
add_library(paddle_full_api_shared SHARED "")
target_sources(paddle_full_api_shared PUBLIC ${__lite_cc_files} paddle_api.cc light_api.cc cxx_api.cc cxx_api_impl.cc light_api_impl.cc)
......@@ -262,7 +262,8 @@ if (NOT LITE_ON_TINY_PUBLISH)
CV_DEPS paddle_cv_arm
NPU_DEPS ${npu_kernels}
CL_DEPS ${opencl_kernels}
FPGA_DEPS ${fpga_kernels})
FPGA_DEPS ${fpga_kernels}
BM_DEPS ${bm_kernels})
# The final inference library for just MobileConfig.
bundle_static_library(paddle_api_full paddle_api_full_bundled bundle_full_api)
target_link_libraries(paddle_api_full ${cuda_deps})
......
......@@ -36,7 +36,8 @@ void TestModel(const std::vector<Place>& valid_places) {
predictor.Build(FLAGS_model_dir, "", "", valid_places, passes);
auto* input_tensor = predictor.GetInput(0);
input_tensor->Resize(DDim(std::vector<DDim::value_type>({1, 3, 224, 224})));
input_tensor->Resize(DDim(
std::vector<DDim::value_type>({1, 3, FLAGS_im_height, FLAGS_im_width})));
auto* data = input_tensor->mutable_data<float>();
auto item_size = input_tensor->dims().production();
if (FLAGS_input_img_txt_path.empty()) {
......@@ -67,15 +68,13 @@ void TestModel(const std::vector<Place>& valid_places) {
<< ", spend " << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0
<< " ms in average.";
auto* out = predictor.GetOutput(0);
ASSERT_EQ(out->dims().size(), 2);
ASSERT_EQ(out->dims()[0], 1);
ASSERT_EQ(out->dims()[1], 1000);
auto* out_data = out->data<float>();
auto out = predictor.GetOutputs();
FILE* fp = fopen("result.txt", "wb");
for (int i = 0; i < out->numel(); i++) {
fprintf(fp, "%f\n", out_data[i]);
for (int i = 0; i < out.size(); i++) {
auto* out_data = out[i]->data<float>();
for (int j = 0; j < out[i]->numel(); j++) {
fprintf(fp, "%f\n", out_data[j]);
}
}
fclose(fp);
}
......
......@@ -13,7 +13,9 @@
// limitations under the License.
#include <gflags/gflags.h>
#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest.h>
#endif
#include <string>
#include <vector>
#include "lite/api/cxx_api.h"
......
......@@ -30,6 +30,8 @@ lite_cc_library(subgraph_bridge_conv_transpose_op_bm SRCS conv_transpose_op.cc D
lite_cc_library(subgraph_bridge_reduce_full_op_bm SRCS reduce_full_op.cc DEPS ${bm_subgraph_bridge_deps})
lite_cc_library(subgraph_bridge_squeeze_op_bm SRCS squeeze_op.cc DEPS ${bm_subgraph_bridge_deps})
lite_cc_library(subgraph_bridge_cast_op_bm SRCS cast_op.cc DEPS ${bm_subgraph_bridge_deps})
lite_cc_library(subgraph_bridge_fill_constant_op_bm SRCS fill_constant_op.cc DEPS ${bm_subgraph_bridge_deps})
lite_cc_library(subgraph_bridge_assign_value_op_bm SRCS assign_value_op.cc DEPS ${bm_subgraph_bridge_deps})
set(bm_subgraph_bridges
subgraph_bridge_registry
......@@ -58,4 +60,6 @@ set(bm_subgraph_bridges
subgraph_bridge_reduce_full_op_bm
subgraph_bridge_squeeze_op_bm
subgraph_bridge_cast_op_bm
subgraph_bridge_fill_constant_op_bm
subgraph_bridge_assign_value_op_bm
CACHE INTERNAL "bm_subgraph_bridges")
......@@ -13,6 +13,7 @@
// limitations under the License.
#include <bmcompiler_if.h>
#include <bmcompiler_if_lite.h>
#include <bmcompiler_op_code.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/npu/bridges/registry.h"
......@@ -35,16 +36,14 @@ int ActConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto output_var_name = op_info->Output("Out").front();
auto output = scope->FindVar(output_var_name)->GetMutable<lite::Tensor>();
auto output_dims = output->dims();
const int64_t* x_shape_data = const_cast<const int64_t*>(&x_dims.data()[0]);
const int64_t* output_shape_data =
const_cast<const int64_t*>(&output_dims.data()[0]);
bool x_is_const = !graph->HasNode(x_var_name);
std::vector<int32_t> i_x_shape_data(x_dims.size());
std::vector<int32_t> i_output_shape_data(output_dims.size());
for (size_t i = 0; i < x_dims.size(); i++) {
i_x_shape_data[i] = static_cast<int>(x_shape_data[i]);
i_x_shape_data[i] = x_dims[i];
}
for (size_t i = 0; i < output_dims.size(); i++) {
i_output_shape_data[i] = static_cast<int>(output_shape_data[i]);
i_output_shape_data[i] = output_dims[i];
}
float alpha = 0.f;
int active_type_id = 0;
......@@ -59,6 +58,15 @@ int ActConverter(void* ctx, OpLite* op, KernelBase* kernel) {
LOG(FATAL) << "[BM] unsupport act type";
return FAILED;
}
const float* x_data = const_cast<const float*>(x->mutable_data<float>());
if (x_is_const) {
bm_add_const_tensor(graph->GetCompilerHandle(),
static_cast<const char*>(x_var_name.c_str()),
const_cast<const int*>(&i_x_shape_data[0]),
x_dims.size(),
static_cast<bm_data_type_t>(DTYPE_FP32),
static_cast<const void*>(x_data));
}
if (op_type == "relu" || op_type == "leaky_relu") {
add_relu_layer(graph->GetCompilerHandle(),
const_cast<const int*>(&i_x_shape_data[0]),
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <bmcompiler_defs.h>
#include <bmcompiler_if.h>
#include <bmcompiler_if_lite.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace paddle {
namespace lite {
namespace subgraph {
namespace bm {
int AssignValueConverter(void* ctx, OpLite* op, KernelBase* kernel) {
CHECK(ctx != nullptr);
CHECK(op != nullptr);
auto graph = static_cast<Graph*>(ctx);
auto scope = op->scope();
auto op_info = op->op_info();
auto output_var_name = op_info->Output("Out").front();
auto output = scope->FindVar(output_var_name)->GetMutable<lite::Tensor>();
auto output_dims = output->dims();
std::vector<int32_t> i_output_shape_data(output_dims.size());
int buffer_size = 1;
for (size_t i = 0; i < output_dims.size(); i++) {
i_output_shape_data[i] = static_cast<int>(output_dims[i]);
buffer_size *= i_output_shape_data[i];
}
auto fp32_values = op_info->GetAttr<std::vector<float>>("fp32_values");
float* assign_data =
reinterpret_cast<float*>(malloc(buffer_size * sizeof(float)));
CHECK(assign_data != nullptr);
CHECK_EQ(buffer_size, fp32_values.size());
bm_add_const_tensor(graph->GetCompilerHandle(),
static_cast<const char*>(output_var_name.c_str()),
const_cast<const int*>(i_output_shape_data.data()),
output_dims.size(),
static_cast<bm_data_type_t>(DTYPE_FP32),
reinterpret_cast<const void*>(assign_data));
graph->AddNode(output_var_name);
return SUCCESS;
}
} // namespace bm
} // namespace subgraph
} // namespace lite
} // namespace paddle
REGISTER_SUBGRAPH_BRIDGE(assign_value,
kBM,
paddle::lite::subgraph::bm::AssignValueConverter);
......@@ -39,6 +39,7 @@ int ConvConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto filter_var_name = op_info->Input("Filter").front();
auto filter = scope->FindVar(filter_var_name)->GetMutable<lite::Tensor>();
auto filter_dims = filter->dims();
CHECK_EQ(input_dims.size(), 4);
CHECK_EQ(output_dims.size(), 4);
CHECK_EQ(filter_dims.size(), 4);
......@@ -90,6 +91,7 @@ int ConvConverter(void* ctx, OpLite* op, KernelBase* kernel) {
dilations[1],
static_cast<int>(has_bias));
graph->AddNode(output_var_name);
LOG(INFO) << output_var_name << input_dims << " " << output_dims;
return SUCCESS;
}
......
......@@ -65,6 +65,7 @@ int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto output_dims = output->dims();
const int64_t* output_shape_data =
const_cast<const int64_t*>(&output_dims.data()[0]);
LOG(INFO) << x_dims << " " << output_dims;
std::vector<int32_t> i_output_shape_data(output_dims.size());
for (size_t i = 0; i < output_dims.size(); i++) {
i_output_shape_data[i] = static_cast<int>(output_shape_data[i]);
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <bmcompiler_defs.h>
#include <bmcompiler_if.h>
#include <bmcompiler_if_lite.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace paddle {
namespace lite {
namespace subgraph {
namespace bm {
int FillConstantConverter(void* ctx, OpLite* op, KernelBase* kernel) {
CHECK(ctx != nullptr);
CHECK(op != nullptr);
auto graph = static_cast<Graph*>(ctx);
auto scope = op->scope();
auto op_info = op->op_info();
auto output_var_name = op_info->Output("Out").front();
auto output = scope->FindVar(output_var_name)->GetMutable<lite::Tensor>();
auto output_dims = output->dims();
std::vector<int32_t> i_output_shape_data(output_dims.size());
int buffer_size = 1;
for (size_t i = 0; i < output_dims.size(); i++) {
i_output_shape_data[i] = static_cast<int>(output_dims[i]);
}
float* const_data =
reinterpret_cast<float*>(malloc(buffer_size * sizeof(float)));
CHECK(const_data != nullptr);
auto value = op_info->GetAttr<float>("value");
for (size_t i = 0; i < buffer_size; i++) {
const_data[i] = value;
}
bm_add_const_tensor(graph->GetCompilerHandle(),
static_cast<const char*>(output_var_name.c_str()),
const_cast<const int*>(i_output_shape_data.data()),
output_dims.size(),
static_cast<bm_data_type_t>(DTYPE_FP32),
reinterpret_cast<const void*>(const_data));
graph->AddNode(output_var_name);
return SUCCESS;
}
} // namespace bm
} // namespace subgraph
} // namespace lite
} // namespace paddle
REGISTER_SUBGRAPH_BRIDGE(fill_constant,
kBM,
paddle::lite::subgraph::bm::FillConstantConverter);
......@@ -29,7 +29,6 @@ int MulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto op_info = op->op_info();
auto op_type = op_info->Type();
auto unique_op_name = lite::subgraph::bm::UniqueName(op_type);
// only support y is const
// input
auto x_var_name = op_info->Input("X").front();
auto x = scope->FindVar(x_var_name)->GetMutable<lite::Tensor>();
......@@ -61,6 +60,12 @@ int MulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto y_var_name = op_info->Input("Y").front();
auto y = scope->FindVar(y_var_name)->GetMutable<lite::Tensor>();
auto y_dims = y->dims();
bool y_is_const = !graph->HasNode(y_var_name);
CHECK_EQ(y_dims.size(), 2);
int i_y_shape_data[2];
for (size_t i = 0; i < 2; i++) {
i_y_shape_data[i] = y_dims[i];
}
// output
auto output_var_name = op_info->Output("Out").front();
auto output = scope->FindVar(output_var_name)->GetMutable<lite::Tensor>();
......@@ -71,20 +76,39 @@ int MulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
for (size_t i = 0; i < output_dims.size(); i++) {
i_output_shape_data[i] = static_cast<int>(output_shape_data[i]);
}
add_fc_layer(graph->GetCompilerHandle(),
const_cast<const int*>(&i_x_reshape_shape_data[0]),
2,
static_cast<const char*>(unique_op_reshape_name.c_str()),
const_cast<const int*>(&i_output_shape_data[0]),
output_dims.size(),
static_cast<const char*>(output_var_name.c_str()),
static_cast<const char*>(unique_op_name.c_str()),
i_x_reshape_shape_data[1],
i_output_shape_data[1],
static_cast<const float*>(y->mutable_data<float>()),
nullptr,
0,
0);
if (y_is_const) {
add_fc_layer(graph->GetCompilerHandle(),
const_cast<const int*>(&i_x_reshape_shape_data[0]),
2,
static_cast<const char*>(unique_op_reshape_name.c_str()),
const_cast<const int*>(&i_output_shape_data[0]),
output_dims.size(),
static_cast<const char*>(output_var_name.c_str()),
static_cast<const char*>(unique_op_name.c_str()),
i_x_reshape_shape_data[1],
i_output_shape_data[1],
static_cast<const float*>(y->mutable_data<float>()),
nullptr,
0,
0);
} else {
add_fc_weight_layer(
graph->GetCompilerHandle(),
const_cast<const int*>(&i_x_reshape_shape_data[0]),
2,
static_cast<const char*>(unique_op_reshape_name.c_str()),
const_cast<const int*>(&i_output_shape_data[0]),
output_dims.size(),
static_cast<const char*>(output_var_name.c_str()),
static_cast<const char*>(unique_op_name.c_str()),
const_cast<const int*>(&i_y_shape_data[0]),
2,
static_cast<const char*>(y_var_name.c_str()),
i_x_reshape_shape_data[1],
nullptr,
0,
0);
}
graph->AddNode(output_var_name);
return SUCCESS;
}
......
......@@ -51,3 +51,5 @@ USE_SUBGRAPH_BRIDGE(reduce_mean, kBM);
USE_SUBGRAPH_BRIDGE(squeeze, kBM);
USE_SUBGRAPH_BRIDGE(squeeze2, kBM);
USE_SUBGRAPH_BRIDGE(cast, kBM);
USE_SUBGRAPH_BRIDGE(fill_constant, kBM);
USE_SUBGRAPH_BRIDGE(assign_value, kBM);
......@@ -35,7 +35,7 @@ int SubgraphEngine::BuildDeviceProgram() {
graph.CreateCompilerHandle();
auto& ctx = this->ctx_->template As<BMContext>();
for (auto& inst : origin_program_) {
auto op = inst.op();
auto op = const_cast<OpLite*>(inst.op());
CHECK(op);
op->CheckShape();
op->InferShape();
......
......@@ -5,7 +5,7 @@ set -ex
BM_SDK_ROOT="$(pwd)/third-party/bmlibs/bm_sc3_libs" # BM SDK
TARGET_NAME="BM1682" # default target
BUILD_EXTRA=OFF # ON(with sequence ops)/OFF
WITH_TESTING=ON # ON/OFF
WITH_TESTING=OFF # ON/OFF
function print_usage {
echo -e "\nUSAGE:"
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册