未验证 提交 75750786 编写于 作者: R Ruilong Liu 提交者: GitHub

Merge pull request #878 from codeWorm2015/metal

Metal
......@@ -7,7 +7,7 @@
<key>paddle-mobile-demo.xcscheme</key>
<dict>
<key>orderHint</key>
<integer>2</integer>
<integer>1</integer>
</dict>
</dict>
<key>SuppressBuildableAutocreation</key>
......
......@@ -33,7 +33,7 @@ class MobileNet_ssd_hand: Net{
return " \(res)"
}
func fetchResult(paddleMobileRes: ResultHolder<Float32>) -> [Float32]{
func fetchResult(paddleMobileRes: ResultHolder<Float32>) -> [Float32] {
guard let interRes = paddleMobileRes.intermediateResults else {
fatalError(" need have inter result ")
......@@ -46,12 +46,11 @@ class MobileNet_ssd_hand: Net{
guard let bboxs = interRes["BBoxes"], bboxs.count > 0, let bbox = bboxs[0] as? Texture<Float32> else {
fatalError()
}
var scoreFormatArr: [Float32] = score.metalTexture.realNHWC(dim: (n: score.originDim[0], h: score.originDim[1], w: score.originDim[2], c: score.originDim[3]))
var bboxArr = bbox.metalTexture.floatArray { (f) -> Float32 in
return f
}
var bboxArr = bbox.metalTexture.float32Array()
let nmsCompute = NMSCompute.init()
nmsCompute.scoreThredshold = 0.01
nmsCompute.nmsTopK = 200
......@@ -78,10 +77,37 @@ class MobileNet_ssd_hand: Net{
let paramPath: String
let modelDir: String
// let paramPointer: UnsafeMutableRawPointer
//
// let paramSize: Int
//
// let modelPointer: UnsafeMutableRawPointer
//
// let modelSize: Int
//
// /**
// * inParamPointer: 参数文件内存地址
// * inParamSize: 参数文件大小(字节数)
// * inModelPointer: 模型文件内存地址
// * inModelSize: 模型文件大小(字节数)
// */
// init(inParamPointer: UnsafeMutableRawPointer, inParamSize: Int, inModelPointer: UnsafeMutableRawPointer, inModelSize: Int) {
// paramPointer = inParamPointer
// paramSize = inParamSize
// modelPointer = inModelPointer
// modelSize = inModelSize
//// fatalError()
// }
init() {
modelPath = Bundle.main.path(forResource: "ssd_hand_model", ofType: nil) ?! "model null"
paramPath = Bundle.main.path(forResource: "ssd_hand_params", ofType: nil) ?! "para null"
modelDir = ""
preprocessKernel = MobilenetssdPreProccess.init(device: MetalHelper.shared.device)
// fatalError()
}
}
......@@ -85,6 +85,17 @@ kernel void genet_preprocess(texture2d<float, access::read> inTexture [[texture(
outTexture.write(float4(inColor.z, inColor.y, inColor.x, 0.0f), gid);
}
kernel void genet_preprocess_half(texture2d<half, access::read> inTexture [[texture(0)]], texture2d<half, access::write> outTexture [[texture(1)]], uint2 gid [[thread_position_in_grid]])
{
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height()) {
return;
}
const auto means = half4(128.0f, 128.0f, 128.0f, 0.0f);
const half4 inColor = (inTexture.read(gid) * 255.0 - means) * 0.017;
outTexture.write(half4(inColor.z, inColor.y, inColor.x, 0.0f), gid);
}
kernel void scale(texture2d<float, access::sample> inTexture [[texture(0)]], texture2d<float, access::write> outTexture [[texture(1)]], uint2 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height()) return;
......@@ -95,12 +106,13 @@ kernel void scale(texture2d<float, access::sample> inTexture [[texture(0)]], tex
outTexture.write(input, gid);
}
kernel void scale_half(texture2d<float, access::sample> inTexture [[texture(0)]], texture2d<half, access::write> outTexture [[texture(1)]], uint2 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height()) return;
float w_stride = inTexture.get_width() / outTexture.get_width();
float h_stride = inTexture.get_height() / outTexture.get_height();
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
float4 input = inTexture.sample(sample, float2(gid.x * w_stride, gid.y * h_stride), 0);
outTexture.write(half4(input), gid);
}
......@@ -26,7 +26,7 @@ let modelHelperMap: [SupportModel : Net] = [.mobilenet_ssd : MobileNet_ssd_hand.
enum SupportModel: String{
// case mobilenet = "mobilenet"
case mobilenet_ssd = "mobilenetssd"
case genet = "enet"
case genet = "genet"
static func supportedModels() -> [SupportModel] {
//.mobilenet,
return [.mobilenet_ssd ,.genet]
......@@ -87,6 +87,7 @@ class ViewController: UIViewController {
fatalError()
}
// print(result.resultArray)
if i == max - 1 {
let time = Date.init().timeIntervalSince(startDate)
DispatchQueue.main.async {
......
......@@ -12,6 +12,8 @@
4AF928822135673D005B6C3A /* Concat.metal in Sources */ = {isa = PBXBuildFile; fileRef = 4AF928812135673D005B6C3A /* Concat.metal */; };
4AF9288421357BE3005B6C3A /* Elementwise.metal in Sources */ = {isa = PBXBuildFile; fileRef = 4AF9288321357BE3005B6C3A /* Elementwise.metal */; };
D3831F70E7E0B565B9AC22DA /* Pods_paddle_mobile.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = DD2E06330A1E7129C918DB46 /* Pods_paddle_mobile.framework */; };
FC0226562138F33800F395E2 /* TransposeKernel.metal in Sources */ = {isa = PBXBuildFile; fileRef = FC0226552138F33800F395E2 /* TransposeKernel.metal */; };
FC0226582138F38D00F395E2 /* PoolKernel.metal in Sources */ = {isa = PBXBuildFile; fileRef = FC0226572138F38D00F395E2 /* PoolKernel.metal */; };
FC039B6F20E11C3C0081E9F8 /* paddle_mobile.h in Headers */ = {isa = PBXBuildFile; fileRef = FC039B6D20E11C3C0081E9F8 /* paddle_mobile.h */; settings = {ATTRIBUTES = (Public, ); }; };
FC039B9720E11C9A0081E9F8 /* Extensions.swift in Sources */ = {isa = PBXBuildFile; fileRef = FC039B9420E11C9A0081E9F8 /* Extensions.swift */; };
FC039B9820E11C9A0081E9F8 /* Errors.swift in Sources */ = {isa = PBXBuildFile; fileRef = FC039B9520E11C9A0081E9F8 /* Errors.swift */; };
......@@ -53,6 +55,9 @@
FCA3A1632132A4AC00084FE5 /* ReshapeKernel.metal in Sources */ = {isa = PBXBuildFile; fileRef = FCA3A1622132A4AC00084FE5 /* ReshapeKernel.metal */; };
FCA3A1652132A5EB00084FE5 /* Common.metal in Sources */ = {isa = PBXBuildFile; fileRef = FCA3A1642132A5EB00084FE5 /* Common.metal */; };
FCA67B1721364EF000BD58AA /* ConvTransposeKernel.metal in Sources */ = {isa = PBXBuildFile; fileRef = FCA67B1621364EF000BD58AA /* ConvTransposeKernel.metal */; };
FCA67CD52138272900BD58AA /* ConvAddMetal.metal in Sources */ = {isa = PBXBuildFile; fileRef = FCA67CD42138272900BD58AA /* ConvAddMetal.metal */; };
FCA67CD7213827AC00BD58AA /* ConvAddBNReluKernel.metal in Sources */ = {isa = PBXBuildFile; fileRef = FCA67CD6213827AC00BD58AA /* ConvAddBNReluKernel.metal */; };
FCA67CD92138287B00BD58AA /* ConvBNReluKernel.metal in Sources */ = {isa = PBXBuildFile; fileRef = FCA67CD82138287B00BD58AA /* ConvBNReluKernel.metal */; };
FCBCCC572122F41300D94F7E /* DwConvBNReluOp.swift in Sources */ = {isa = PBXBuildFile; fileRef = FCBCCC562122F41300D94F7E /* DwConvBNReluOp.swift */; };
FCBCCC592122F42700D94F7E /* ConvBNReluOp.swift in Sources */ = {isa = PBXBuildFile; fileRef = FCBCCC582122F42700D94F7E /* ConvBNReluOp.swift */; };
FCBCCC5B2122F66F00D94F7E /* ConvBNReluKernel.swift in Sources */ = {isa = PBXBuildFile; fileRef = FCBCCC5A2122F66F00D94F7E /* ConvBNReluKernel.swift */; };
......@@ -97,6 +102,8 @@
CDF58151D902A1CBAE56A0C2 /* Pods-paddle-mobile.debug.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-paddle-mobile.debug.xcconfig"; path = "../Pods/Target Support Files/Pods-paddle-mobile/Pods-paddle-mobile.debug.xcconfig"; sourceTree = "<group>"; };
DD2E06330A1E7129C918DB46 /* Pods_paddle_mobile.framework */ = {isa = PBXFileReference; explicitFileType = wrapper.framework; includeInIndex = 0; path = Pods_paddle_mobile.framework; sourceTree = BUILT_PRODUCTS_DIR; };
E2A7957C92EDA5C3BEC0FFC2 /* Pods-paddle-mobile.release.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-paddle-mobile.release.xcconfig"; path = "../Pods/Target Support Files/Pods-paddle-mobile/Pods-paddle-mobile.release.xcconfig"; sourceTree = "<group>"; };
FC0226552138F33800F395E2 /* TransposeKernel.metal */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.metal; path = TransposeKernel.metal; sourceTree = "<group>"; };
FC0226572138F38D00F395E2 /* PoolKernel.metal */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.metal; path = PoolKernel.metal; sourceTree = "<group>"; };
FC039B6A20E11C3C0081E9F8 /* paddle_mobile.framework */ = {isa = PBXFileReference; explicitFileType = wrapper.framework; includeInIndex = 0; path = paddle_mobile.framework; sourceTree = BUILT_PRODUCTS_DIR; };
FC039B6D20E11C3C0081E9F8 /* paddle_mobile.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = paddle_mobile.h; sourceTree = "<group>"; };
FC039B6E20E11C3C0081E9F8 /* Info.plist */ = {isa = PBXFileReference; lastKnownFileType = text.plist.xml; path = Info.plist; sourceTree = "<group>"; };
......@@ -141,6 +148,9 @@
FCA3A1622132A4AC00084FE5 /* ReshapeKernel.metal */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.metal; path = ReshapeKernel.metal; sourceTree = "<group>"; };
FCA3A1642132A5EB00084FE5 /* Common.metal */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.metal; path = Common.metal; sourceTree = "<group>"; };
FCA67B1621364EF000BD58AA /* ConvTransposeKernel.metal */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.metal; path = ConvTransposeKernel.metal; sourceTree = "<group>"; };
FCA67CD42138272900BD58AA /* ConvAddMetal.metal */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.metal; path = ConvAddMetal.metal; sourceTree = "<group>"; };
FCA67CD6213827AC00BD58AA /* ConvAddBNReluKernel.metal */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.metal; path = ConvAddBNReluKernel.metal; sourceTree = "<group>"; };
FCA67CD82138287B00BD58AA /* ConvBNReluKernel.metal */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.metal; path = ConvBNReluKernel.metal; sourceTree = "<group>"; };
FCBCCC562122F41300D94F7E /* DwConvBNReluOp.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = DwConvBNReluOp.swift; sourceTree = "<group>"; };
FCBCCC582122F42700D94F7E /* ConvBNReluOp.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = ConvBNReluOp.swift; sourceTree = "<group>"; };
FCBCCC5A2122F66F00D94F7E /* ConvBNReluKernel.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = ConvBNReluKernel.swift; sourceTree = "<group>"; };
......@@ -372,6 +382,11 @@
FCA3A1622132A4AC00084FE5 /* ReshapeKernel.metal */,
FCA3A1642132A5EB00084FE5 /* Common.metal */,
FCA67B1621364EF000BD58AA /* ConvTransposeKernel.metal */,
FCA67CD42138272900BD58AA /* ConvAddMetal.metal */,
FCA67CD6213827AC00BD58AA /* ConvAddBNReluKernel.metal */,
FCA67CD82138287B00BD58AA /* ConvBNReluKernel.metal */,
FC0226552138F33800F395E2 /* TransposeKernel.metal */,
FC0226572138F38D00F395E2 /* PoolKernel.metal */,
);
path = metal;
sourceTree = "<group>";
......@@ -478,6 +493,7 @@
files = (
FC9D038020E22FBB000F735A /* FeedOp.swift in Sources */,
FC039B9F20E11CB20081E9F8 /* Tensor.swift in Sources */,
FCA67CD7213827AC00BD58AA /* ConvAddBNReluKernel.metal in Sources */,
4AF9287921341661005B6C3A /* Softmax.metal in Sources */,
FC0E2DBC20EE45FE009C1FAC /* ConvKernel.swift in Sources */,
FC039BAA20E11CBC0081E9F8 /* ElementwiseAddOp.swift in Sources */,
......@@ -493,12 +509,15 @@
FC1B186620ECF1C600678B91 /* ResizeKernel.swift in Sources */,
FCF2D73820E64E70007AC5F5 /* Kernel.swift in Sources */,
FCDDC6CC212FDFDB00E5EF74 /* ReluKernel.metal in Sources */,
FC0226562138F33800F395E2 /* TransposeKernel.metal in Sources */,
FCDDC6C6212F9FB800E5EF74 /* PreluKernel.swift in Sources */,
FCA67CD52138272900BD58AA /* ConvAddMetal.metal in Sources */,
FCBCCC5B2122F66F00D94F7E /* ConvBNReluKernel.swift in Sources */,
FCEBC0F420F1FDD90099DBAF /* ConvAddBatchNormReluOp.swift in Sources */,
FC0E2DC020EE461F009C1FAC /* ElementwiseAddKernel.swift in Sources */,
4AF928772133F1DB005B6C3A /* BoxCoder.metal in Sources */,
FCEB684C212F093800D2448E /* PreluOp.swift in Sources */,
FCA67CD92138287B00BD58AA /* ConvBNReluKernel.metal in Sources */,
FC60DB8920E9AAA500FF203F /* MetalExtension.swift in Sources */,
FCEBC0F620F1FE120099DBAF /* ConvAddBatchNormReluKernel.swift in Sources */,
FCDDC6CA212FDF6800E5EF74 /* BatchNormKernel.metal in Sources */,
......@@ -550,6 +569,7 @@
FC5163F620EF556E00636C28 /* Texture2DTo2DArrayKernel.swift in Sources */,
FC039BC020E11CC20081E9F8 /* BlockDesc.swift in Sources */,
FCD04E6820F315020007374F /* PoolKernel.swift in Sources */,
FC0226582138F38D00F395E2 /* PoolKernel.metal in Sources */,
FC039BAD20E11CBC0081E9F8 /* ReluOp.swift in Sources */,
FCBCCC572122F41300D94F7E /* DwConvBNReluOp.swift in Sources */,
FC039BBE20E11CC20081E9F8 /* OpDesc.swift in Sources */,
......@@ -699,6 +719,7 @@
"@executable_path/Frameworks",
"@loader_path/Frameworks",
);
MACH_O_TYPE = mh_dylib;
MTL_LANGUAGE_REVISION = UseDeploymentTarget;
PRODUCT_BUNDLE_IDENTIFIER = "orange.paddle-mobile";
PRODUCT_NAME = "$(TARGET_NAME:c99extidentifier)";
......@@ -727,6 +748,7 @@
"@executable_path/Frameworks",
"@loader_path/Frameworks",
);
MACH_O_TYPE = mh_dylib;
MTL_LANGUAGE_REVISION = UseDeploymentTarget;
PRODUCT_BUNDLE_IDENTIFIER = "orange.paddle-mobile";
PRODUCT_NAME = "$(TARGET_NAME:c99extidentifier)";
......
......@@ -225,16 +225,12 @@ extension MTLComputeCommandEncoder {
let groupDepth = slices
let groups = MTLSize.init(width: groupWidth, height: groupHeight, depth: groupDepth)
// print("groups: \(groups) ")
// print("threads per group: \(threadsPerGroup)")
setComputePipelineState(computePipline)
dispatchThreadgroups(groups, threadsPerThreadgroup: threadsPerGroup)
}
}
public extension MTLTexture {
func stridableFloatArray<P>(stridable: Bool = true) -> [(index: Int, value: P)] {
......@@ -285,6 +281,23 @@ public extension MTLTexture {
return fArr
}
func float32Array() -> [Float32] {
if pixelFormat == .rgba32Float {
let float32Array = floatArray { (f: Float32) -> Float32 in
return f
}
return float32Array
} else if pixelFormat == .rgba16Float {
var float16Array = floatArray { (f: Float16) -> Float16 in
return f
}
return float16To32(input: &float16Array, count: float16Array.count)
} else {
fatalError()
}
}
func logDesc<T>(header: String = "", stridable: Bool = true) -> T? {
print(header)
print("texture: \(self)")
......@@ -341,14 +354,27 @@ public extension MTLTexture {
}
// n c h w - dim
func toTensor(dim: (n: Int, c: Int, h: Int, w: Int)) -> [Float32] {
print("origin dim: \(dim)")
func toTensor(dim: (n: Int, c: Int, h: Int, w: Int), texturePrecision: ComputePrecision = .Float16) -> [Float32] {
// print("origin dim: \(dim)")
print("texture: ")
print(self)
var textureArray: [Float32]
// if texturePrecision == .Float16
let textureArray = floatArray { (i : Float32) -> Float32 in
return i
if pixelFormat == .rgba32Float {
textureArray = floatArray { (i : Float32) -> Float32 in
return i
}
} else if pixelFormat == .rgba16Float {
var textureFloat16Array = floatArray { (i : Float16) -> Float16 in
return i
}
textureArray = float16To32(input: &textureFloat16Array, count: textureFloat16Array.count)
} else {
fatalError(" 目前还不支持其他类型 ")
}
var output: [Float32] = []
for s in 0..<arrayLength {
for c in 0..<4{
......@@ -366,16 +392,26 @@ public extension MTLTexture {
return output
}
func realNHWC(dim: (n: Int, h: Int, w: Int, c: Int)) -> [Float32] {
func realNHWC(dim: (n: Int, h: Int, w: Int, c: Int), texturePrecision: ComputePrecision = .Float16) -> [Float32] {
// print("origin dim: \(dim)")
// print("texture: ")
// print(self)
let textureArray = floatArray { (i : Float32) -> Float32 in
return i
var textureArray: [Float32]
if pixelFormat == .rgba32Float {
textureArray = floatArray { (i : Float32) -> Float32 in
return i
}
} else if pixelFormat == .rgba16Float {
var textureFloat16Array = floatArray { (i : Float16) -> Float16 in
return i
}
textureArray = float16To32(input: &textureFloat16Array, count: textureFloat16Array.count)
} else {
fatalError(" 目前还不支持其他类型 ")
}
var output: [Float32] = []
let numOfASlice = dim.h * dim.w * 4
for h in 0..<dim.h {
for w in 0..<dim.w {
......@@ -394,7 +430,6 @@ public extension MTLTexture {
}
}
}
// print(" tensor count -- \(output.count)")
return output
}
......
......@@ -314,7 +314,7 @@ public class PaddleMobileUnitTest {
let offsetX = filterSize.width/2 - paddings.0
let offsetY = filterSize.height/2 - paddings.1
let metalParam = MetalConvParam.init(offsetX: Int16(offsetX), offsetY: Int16(offsetY), offsetZ: 0, strideX: UInt16(stride.0), strideY: UInt16(stride.1), paddedZ: UInt16(paddings.0))
let metalParam = MetalConvParam.init(offsetX: Int16(offsetX), offsetY: Int16(offsetY), offsetZ: 0, strideX: UInt16(stride.0), strideY: UInt16(stride.1), paddedZ: UInt16(paddings.0), dilationX: UInt16(1), dilationY: UInt16(1))
let param = ConvAddBatchNormReluTestParam.init(inInputTexture: inputeTexture, inOutputTexture: outputTexture, inMetalParam: metalParam, inFilterBuffer: filterBuffer, inBiaseBuffer: biaseBuffer, inNewScaleBuffer: newScalueBuffer, inNewBiaseBuffer: newBiaseBuffer, inFilterSize: filterSize)
......
......@@ -13,6 +13,7 @@
limitations under the License. */
import Foundation
import Accelerate
public protocol SummableMultipliable: Equatable {
static func +(lhs: Self, rhs: Self) -> Self
......@@ -78,6 +79,28 @@ extension Float32: PrecisionType {
}
}
public func float32ToFloat16(input: UnsafeMutablePointer<Float32>, output: UnsafeMutableRawPointer, count: Int) {
var float32Buffer = vImage_Buffer(data: input, height: 1, width: UInt(count), rowBytes: count * 4)
var float16buffer = vImage_Buffer(data: output, height: 1, width: UInt(count), rowBytes: count * 2)
guard vImageConvert_PlanarFtoPlanar16F(&float32Buffer, &float16buffer, 0) == kvImageNoError else {
fatalError(" float 32 to float 16 error ! ")
}
}
public func float16To32(input: UnsafeMutablePointer<Float16>, count: Int) -> [Float32] {
var output = Array<Float>.init(repeating: 0.0, count: count)
float16to32(input: input, output: &output, count: count)
return output
}
public func float16to32(input: UnsafeMutablePointer<Float16>, output: UnsafeMutablePointer<Float32>, count: Int) {
var bufferFloat16 = vImage_Buffer(data: input, height: 1, width: UInt(count), rowBytes: count * 2)
var bufferFloat32 = vImage_Buffer(data: output, height: 1, width: UInt(count), rowBytes: count * 4)
if vImageConvert_Planar16FtoPlanarF(&bufferFloat16, &bufferFloat32, 0) != kvImageNoError {
fatalError(" convert float16 to float32 error")
}
}
// N - 0 C - 1 H - 2 W - 3
struct DataLayout {
......
......@@ -14,7 +14,9 @@
import Foundation
let testTo = 12
let testTo = 54
let computePrecision: ComputePrecision = .Float32
public class ResultHolder<P: PrecisionType> {
public let dim: [Int]
......@@ -62,11 +64,10 @@ public class Executor<P: PrecisionType> {
queue = inQueue
for block in inProgram.programDesc.blocks {
//block.ops.count
for i in 0..<testTo {
for i in 0..<block.ops.count {
let op = block.ops[i]
do {
let op = try OpCreator<P>.shared.creat(device: inDevice, opDesc: op, scope: inProgram.scope)
// op.inferShape()
ops.append(op)
} catch let error {
throw error
......@@ -110,10 +111,11 @@ public class Executor<P: PrecisionType> {
}
buffer.addCompletedHandler { (commandbuffer) in
// let inputArr = resInput.floatArray(res: { (p:P) -> P in
// return p
// })
// print(inputArr.strideArray())
//
// writeToLibrary(fileName: "genet_input_hand", array: inputArr)
// print("write to library done")
......@@ -129,8 +131,8 @@ public class Executor<P: PrecisionType> {
print(" 第 \(i) 个 op: ")
op.delogOutput()
}
return
// return
let afterDate = Date.init()
......@@ -145,7 +147,6 @@ public class Executor<P: PrecisionType> {
return p
}), inElapsedTime: afterDate.timeIntervalSince(beforeDate))
}
completionHandle(resultHolder)
}
......
......@@ -16,168 +16,170 @@ import Foundation
import SwiftProtobuf
public class Loader<P: PrecisionType> {
class ParaLoader {
let file: UnsafeMutablePointer<FILE>
let fileSize: Int
var nowIndex: Int
init(paramPath: String) throws {
guard let tmpFile = fopen(paramPath, "rb") else {
throw PaddleMobileError.loaderError(message: "open param file error" + paramPath)
}
file = tmpFile
fseek(file, 0, SEEK_END)
fileSize = ftell(file)
guard fileSize > 0 else {
throw PaddleMobileError.loaderError(message: "param file size is too small")
}
rewind(file)
nowIndex = 0
}
func read(tensor: Tensor<P>) throws {
guard nowIndex <= fileSize else {
throw PaddleMobileError.loaderError(message: "out of the file range")
}
func pointerReader<T>(type: T.Type) -> T {
let ptr = UnsafeMutablePointer<T>.allocate(capacity: MemoryLayout<T>.size)
fread(ptr, 1, MemoryLayout<T>.size, file)
nowIndex += MemoryLayout<T>.size
let pointee = ptr.pointee
ptr.deinitialize(count: MemoryLayout<UInt32>.size)
ptr.deallocate()
return pointee
}
let _ = pointerReader(type: UInt32.self)
let lodLevel = pointerReader(type: UInt64.self)
for _ in 0..<lodLevel {
let size = pointerReader(type: UInt64.self)
for _ in 0..<Int(size/UInt64(MemoryLayout<size_t>.size)){
_ = pointerReader(type: size_t.self)
}
}
let _ = pointerReader(type: UInt32.self)
let tensorDescSize = pointerReader(type: Int32.self)
fseek(file, Int(tensorDescSize), SEEK_CUR)
nowIndex += Int(tensorDescSize)
/*
这里没有根据 Data Type 去判断, 而是从外部泛型直接指定了精度
*/
//现在模型传入模型为 Float 类型, 这块应该根据模型来
// let tmpCapacity = MemoryLayout<Float>.size * tensor.numel()
// let tmpPointer = UnsafeMutablePointer<Float>.allocate(capacity: tmpCapacity);
let bytesRead = fread(tensor.data.pointer, 1, tensor.data.size, file)
guard bytesRead == tensor.data.size else {
throw PaddleMobileError.loaderError(message: "param read size error")
}
// TODO: use script to convert
// let bytesRead = fread(tmpPointer, 1, tmpCapacity, file)
// for i in 0..<tensor.numel() {
// tensor.data[i] = P.init(inFloat: tmpPointer[i])
// }
// tmpPointer.deinitialize(count: tmpCapacity)
// tmpPointer.deallocate()
nowIndex += bytesRead
}
deinit {
fclose(file)
}
class ParaLoader {
let file: UnsafeMutablePointer<FILE>
let fileSize: Int
var nowIndex: Int
init(paramPath: String) throws {
guard let tmpFile = fopen(paramPath, "rb") else {
throw PaddleMobileError.loaderError(message: "open param file error" + paramPath)
}
file = tmpFile
fseek(file, 0, SEEK_END)
fileSize = ftell(file)
guard fileSize > 0 else {
throw PaddleMobileError.loaderError(message: "param file size is too small")
}
rewind(file)
nowIndex = 0
}
public init(){}
public func load(device: MTLDevice, modelPath: String, paraPath: String) throws -> Program{
guard let modelData = try? Data.init(contentsOf: URL.init(fileURLWithPath: modelPath)) else {
throw PaddleMobileError.loaderError(message: "load " + modelPath + " failed !")
func read(tensor: Tensor<P>) throws {
guard nowIndex <= fileSize else {
throw PaddleMobileError.loaderError(message: "out of the file range")
}
func pointerReader<T>(type: T.Type) -> T {
let ptr = UnsafeMutablePointer<T>.allocate(capacity: MemoryLayout<T>.size)
fread(ptr, 1, MemoryLayout<T>.size, file)
nowIndex += MemoryLayout<T>.size
let pointee = ptr.pointee
ptr.deinitialize(count: MemoryLayout<UInt32>.size)
ptr.deallocate()
return pointee
}
let _ = pointerReader(type: UInt32.self)
let lodLevel = pointerReader(type: UInt64.self)
for _ in 0..<lodLevel {
let size = pointerReader(type: UInt64.self)
for _ in 0..<Int(size/UInt64(MemoryLayout<size_t>.size)){
_ = pointerReader(type: size_t.self)
}
do {
let protoProgram = try PaddleMobile_Framework_Proto_ProgramDesc.init(
serializedData: modelData)
let originProgramDesc = ProgramDesc.init(protoProgram: protoProgram)
let programDesc = ProgramOptimize<P>.init().optimize(originProgramDesc: originProgramDesc)
print(programDesc)
guard let paraLoader = try? ParaLoader.init(paramPath: paraPath) else {
throw PaddleMobileError.loaderError(message: "load para error")
}
guard programDesc.blocks.count > 0 else {
throw PaddleMobileError.loaderError(message: "count of blocks must greater than 0")
}
// to get feed key and fetch key
let block = programDesc.blocks[0]
guard let firstOp = block.ops.first, let lastOp = block.ops.last else {
throw PaddleMobileError.loaderError(message: "at least two operator")
}
guard firstOp.type == gFeedType, lastOp.type == gFetchType else {
throw PaddleMobileError.loaderError(message: "the first op is not feed or the last op is not fetch")
}
let _ = pointerReader(type: UInt32.self)
let tensorDescSize = pointerReader(type: Int32.self)
fseek(file, Int(tensorDescSize), SEEK_CUR)
nowIndex += Int(tensorDescSize)
/*
这里没有根据 Data Type 去判断, 而是从外部泛型直接指定了精度
*/
//现在模型传入模型为 Float 类型, 这块应该根据模型来
// let tmpCapacity = MemoryLayout<Float>.size * tensor.numel()
// let tmpPointer = UnsafeMutablePointer<Float>.allocate(capacity: tmpCapacity);
let bytesRead = fread(tensor.data.pointer, 1, tensor.data.size, file)
guard bytesRead == tensor.data.size else {
throw PaddleMobileError.loaderError(message: "param read size error")
}
// TODO: use script to convert
// let bytesRead = fread(tmpPointer, 1, tmpCapacity, file)
// for i in 0..<tensor.numel() {
// tensor.data[i] = P.init(inFloat: tmpPointer[i])
// }
// tmpPointer.deinitialize(count: tmpCapacity)
// tmpPointer.deallocate()
nowIndex += bytesRead
}
deinit {
fclose(file)
}
}
public init(){}
public func load(device: MTLDevice, modelPath: String, paraPath: String) throws -> Program{
guard let modelData = try? Data.init(contentsOf: URL.init(fileURLWithPath: modelPath)) else {
throw PaddleMobileError.loaderError(message: "load " + modelPath + " failed !")
}
do {
let protoProgram = try PaddleMobile_Framework_Proto_ProgramDesc.init(
serializedData: modelData)
let originProgramDesc = ProgramDesc.init(protoProgram: protoProgram)
let programDesc = ProgramOptimize<P>.init().optimize(originProgramDesc: originProgramDesc)
print(programDesc)
guard let paraLoader = try? ParaLoader.init(paramPath: paraPath) else {
throw PaddleMobileError.loaderError(message: "load para error")
}
guard programDesc.blocks.count > 0 else {
throw PaddleMobileError.loaderError(message: "count of blocks must greater than 0")
}
// to get feed key and fetch key
let block = programDesc.blocks[0]
guard let firstOp = block.ops.first, let lastOp = block.ops.last else {
throw PaddleMobileError.loaderError(message: "at least two operator")
}
guard firstOp.type == gFeedType, lastOp.type == gFetchType else {
throw PaddleMobileError.loaderError(message: "the first op is not feed or the last op is not fetch")
}
guard let inputKey = opInfos[gFeedType]?.inputs.first, let outKey = opInfos[gFetchType]?.outputs.first else {
throw PaddleMobileError.loaderError(message: "the feed input key or fetch output key not found")
}
guard let feedKey = firstOp.inputs[inputKey]?.first, let fetchKey = lastOp.outputs[outKey]?.first else {
throw PaddleMobileError.loaderError(message: "feed key or fetch key not found")
}
let scope = Scope.init(inFeedKey: feedKey, inFetchKey: fetchKey)
// to load memory
for block in programDesc.blocks {
for varDesc in block.vars {
if (varDesc.type == .LodTensor) {
guard let tensorDesc = varDesc.tensorDesc else {
throw PaddleMobileError.loaderError(message: "get tensor desc failed")
}
guard let inputKey = opInfos[gFeedType]?.inputs.first, let outKey = opInfos[gFetchType]?.outputs.first else {
throw PaddleMobileError.loaderError(message: "the feed input key or fetch output key not found")
}
guard let feedKey = firstOp.inputs[inputKey]?.first, let fetchKey = lastOp.outputs[outKey]?.first else {
throw PaddleMobileError.loaderError(message: "feed key or fetch key not found")
if (varDesc.persistable
&& varDesc.type != .FeedMiniBatch
&& varDesc.type != .FetchList) {
let dimArr = tensorDesc.dims
guard dimArr.count > 0 else {
throw PaddleMobileError.loaderError(message: "tensor desc dim size error")
}
let dim = Dim.init(inDim: dimArr)
let tensor = Tensor<P>.init(inDim: dim, inLayout: tensorDesc.dataLayout)
do {
try paraLoader.read(tensor: tensor)
} catch let error {
throw error
}
tensor.convert(to: DataLayout.NHWC())
// tensor.initBuffer(device: device)
scope[varDesc.name] = tensor
} else {
let dim = Dim.init(inDim: tensorDesc.dims)
scope[varDesc.name] = Texture<P>.init(device: device, inDim: dim)
}
let scope = Scope.init(inFeedKey: feedKey, inFetchKey: fetchKey)
// to load memory
for block in programDesc.blocks {
for varDesc in block.vars {
if (varDesc.type == .LodTensor) {
guard let tensorDesc = varDesc.tensorDesc else {
throw PaddleMobileError.loaderError(message: "get tensor desc failed")
}
if (varDesc.persistable
&& varDesc.type != .FeedMiniBatch
&& varDesc.type != .FetchList) {
let dimArr = tensorDesc.dims
guard dimArr.count > 0 else {
throw PaddleMobileError.loaderError(message: "tensor desc dim size error")
}
let dim = Dim.init(inDim: dimArr)
let tensor = Tensor<P>.init(inDim: dim, inLayout: tensorDesc.dataLayout)
do {
try paraLoader.read(tensor: tensor)
} catch let error {
throw error
}
tensor.convert(to: DataLayout.NHWC())
// tensor.initBuffer(device: device)
scope[varDesc.name] = tensor
} else {
let dim = Dim.init(inDim: tensorDesc.dims)
scope[varDesc.name] = Texture<P>.init(device: device, inDim: dim)
}
} else {
if varDesc.name == fetchKey {
scope[varDesc.name] = ResultHolder<P>.init(inDim: [], inResult: [], inElapsedTime: 0.0)
} else if varDesc.name == feedKey {
}
}
}
} else {
if varDesc.name == fetchKey {
scope[varDesc.name] = ResultHolder<P>.init(inDim: [], inResult: [], inElapsedTime: 0.0)
} else if varDesc.name == feedKey {
}
let program = Program.init(inProgramDesc: programDesc, inParamPath: paraPath, inScope: scope)
return program
} catch _ {
throw PaddleMobileError.loaderError(message: "protobuf decoder error")
}
}
}
let program = Program.init(inProgramDesc: programDesc, inParamPath: paraPath, inScope: scope)
return program
} catch _ {
throw PaddleMobileError.loaderError(message: "protobuf decoder error")
}
}
}
......@@ -58,28 +58,31 @@ class BoxcoderOp<P: PrecisionType>: Operator<BoxcoderKernel<P>, BoxcoderParam<P>
}
func delogOutput() {
print(" \(type) output: ")
let priorBoxOriginDim = para.priorBox.originDim
let priorBoxArray = para.priorBox.metalTexture.realNHWC(dim: (n: priorBoxOriginDim[0], h: priorBoxOriginDim[1], w: priorBoxOriginDim[2], c: priorBoxOriginDim[3]))
print(" prior box ")
print(priorBoxArray.strideArray())
let priorBoxVarOriginDim = para.priorBoxVar.originDim
let priorBoxVarArray = para.priorBoxVar.metalTexture.realNHWC(dim: (n: priorBoxVarOriginDim[0], h: priorBoxVarOriginDim[1], w: priorBoxVarOriginDim[2], c: priorBoxVarOriginDim[3]))
print(" prior box var ")
print(priorBoxVarArray.strideArray())
// let priorBoxOriginDim = para.priorBox.originDim
// let priorBoxArray: [Float32] = para.priorBox.metalTexture.realNHWC(dim: (n: priorBoxOriginDim[0], h: priorBoxOriginDim[1], w: priorBoxOriginDim[2], c: priorBoxOriginDim[3]))
// print(" prior box ")
// print(priorBoxArray.strideArray())
//
// let priorBoxVarOriginDim = para.priorBoxVar.originDim
// let priorBoxVarArray: [Float32] = para.priorBoxVar.metalTexture.realNHWC(dim: (n: priorBoxVarOriginDim[0], h: priorBoxVarOriginDim[1], w: priorBoxVarOriginDim[2], c: priorBoxVarOriginDim[3]))
// print(" prior box var ")
// print(priorBoxVarArray.strideArray())
//
// let targetBoxOriginDim = para.targetBox.originDim
// let targetBoxArray: [Float32] = para.targetBox.metalTexture.realNHWC(dim: (n: targetBoxOriginDim[0], h: targetBoxOriginDim[1], w: targetBoxOriginDim[2], c: targetBoxOriginDim[3]))
// print(" target box ")
// print(targetBoxArray.strideArray())
let targetBoxOriginDim = para.targetBox.originDim
let targetBoxArray = para.targetBox.metalTexture.realNHWC(dim: (n: targetBoxOriginDim[0], h: targetBoxOriginDim[1], w: targetBoxOriginDim[2], c: targetBoxOriginDim[3]))
let targetBoxArray = para.targetBox.metalTexture.realNHWC(dim: (n: targetBoxOriginDim[0], h: targetBoxOriginDim[1], w: targetBoxOriginDim[2], c: targetBoxOriginDim[3]), texturePrecision: computePrecision)
print(" target box ")
print(targetBoxArray.strideArray())
let originDim = para.output.originDim
let outputArray = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]))
let outputArray: [Float32] = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]), texturePrecision: computePrecision)
print(" output ")
print(outputArray.strideArray())
}
}
......
......@@ -66,10 +66,16 @@ class ConcatOp<P: PrecisionType>: Operator<ConcatKernel<P>, ConcatParam<P>>, Run
func delogOutput() {
print(" \(type) output: ")
let originDim = para.output.originDim
let outputArray = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]))
print(outputArray.strideArray())
print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3])).strideArray())
if para.output.transpose == [0, 1, 2, 3] {
let outputArray: [Float32] = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]), texturePrecision: computePrecision)
print(outputArray.strideArray())
} else if para.output.transpose == [0, 2, 3, 1] {
print(para.output.metalTexture.toTensor(dim: (n: originDim[0], c: originDim[1], h: originDim[2], w: originDim[3]), texturePrecision: computePrecision).strideArray())
} else {
fatalError(" not implemet")
}
}
}
......
......@@ -125,13 +125,6 @@ class ConvAddBatchNormReluOp<P: PrecisionType>: Operator<ConvAddBatchNormReluKer
// let _: P? = para.newBiase?.logDesc(header: "new biase: ", stridable: false)
// let _: P? = para.newScale?.logDesc(header: "new scale: ", stridable: false)
let output = para.output.metalTexture.floatArray { (p: P) -> P in
return p
}
//
writeToLibrary(fileName: "output_112x112x32_2", array: output)
print(" write done")
// let _: P? = para.output.metalTexture.logDesc(header: "conv add batchnorm relu output: ", stridable: false)
}
}
......@@ -46,9 +46,6 @@ class ConvAddParam<P: PrecisionType>: OpParam {
class ConvAddOp<P: PrecisionType>: Operator<ConvAddKernel<P>, ConvAddParam<P>>, Runable, Creator, InferShaperable, Fusion{
typealias OpType = ConvAddOp<P>
static func fusionNode() -> Node {
let beginNode = Node.init(inType: gConvType)
_ = beginNode
......@@ -64,7 +61,6 @@ class ConvAddOp<P: PrecisionType>: Operator<ConvAddKernel<P>, ConvAddParam<P>>,
return gConvAddType
}
func inferShape() {
let inDims = para.input.dim
......@@ -97,7 +93,12 @@ class ConvAddOp<P: PrecisionType>: Operator<ConvAddKernel<P>, ConvAddParam<P>>,
}
func delogOutput() {
print("stride: ")
print(para.stride)
print("dilations: ")
print(para.dilations)
print(" \(type) output: ")
print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3])).strideArray())
print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3]), texturePrecision: computePrecision).strideArray())
}
}
......@@ -110,7 +110,7 @@ class ConvBNReluOp<P: PrecisionType>: Operator<ConvBNReluKernel<P>, ConvBNReluPa
func delogOutput() {
print(" \(type) output: ")
print(para.output.metalTexture.toTensor(dim: (n: para.output.originDim[0], c: para.output.originDim[1], h: para.output.originDim[2], w: para.output.originDim[3])).strideArray())
print(para.output.metalTexture.toTensor(dim: (n: para.output.originDim[0], c: para.output.originDim[1], h: para.output.originDim[2], w: para.output.originDim[3]), texturePrecision: computePrecision).strideArray())
}
}
......@@ -43,8 +43,15 @@ class ConvTransposeOp<P: PrecisionType>: Operator<ConvTransposeKernel<P>, ConvTr
}
func delogOutput() {
print("conv transpose delog")
let _: P? = para.input.metalTexture.logDesc(header: "conv transpose input: ", stridable: true)
let _: P? = para.output.metalTexture.logDesc(header: "conv transpose output: ", stridable: true)
print(" \(type) output: ")
let originDim = para.output.originDim
if para.output.transpose == [0, 1, 2, 3] {
let outputArray: [Float32] = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]), texturePrecision: computePrecision)
print(outputArray.strideArray())
} else if para.output.transpose == [0, 2, 3, 1] {
print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3]), texturePrecision: computePrecision).strideArray())
} else {
print(" not implement")
}
}
}
......@@ -58,6 +58,6 @@ class DepthConvOp<P: PrecisionType>: Operator<ConvKernel<P>, ConvParam<P>>, Runa
func delogOutput() {
print(" \(type) output: ")
print(para.output.metalTexture.toTensor(dim: (n: para.output.originDim[0], c: para.output.originDim[1], h: para.output.originDim[2], w: para.output.originDim[3])).strideArray())
print(para.output.metalTexture.toTensor(dim: (n: para.output.originDim[0], c: para.output.originDim[1], h: para.output.originDim[2], w: para.output.originDim[3]), texturePrecision: computePrecision).strideArray())
}
}
......@@ -65,6 +65,6 @@ class DwConvBNReluOp<P: PrecisionType>: Operator<ConvBNReluKernel<P>, ConvBNRelu
func delogOutput() {
print(" \(type) output: ")
print(para.output.metalTexture.toTensor(dim: (n: para.output.originDim[0], c: para.output.originDim[1], h: para.output.originDim[2], w: para.output.originDim[3])).strideArray())
print(para.output.metalTexture.toTensor(dim: (n: para.output.originDim[0], c: para.output.originDim[1], h: para.output.originDim[2], w: para.output.originDim[3]), texturePrecision: computePrecision).strideArray())
}
}
......@@ -56,18 +56,6 @@ class ElementwiseAddOp<P: PrecisionType>: Operator<ElementwiseAddKernel<P>, Elem
// para.output.dim = para.input.dim
}
func delogOutput() {
print(" \(type) inputX: ")
print(para.inputX.metalTexture.toTensor(dim: (n: para.inputX.tensorDim[0], c: para.inputX.tensorDim[1], h: para.inputX.tensorDim[2], w: para.inputX.tensorDim[3])).strideArray())
print(" \(type) inputY: ")
print(para.inputY.metalTexture.toTensor(dim: (n: para.inputY.tensorDim[0], c: para.inputY.tensorDim[1], h: para.inputY.tensorDim[2], w: para.inputY.tensorDim[3])).strideArray())
print(" \(type) output: ")
let originDim = para.output.originDim
let outputArray = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]))
print(outputArray.strideArray())
print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3])).strideArray())
}
func runImpl(device: MTLDevice, buffer: MTLCommandBuffer) throws {
do {
try kernel.compute(commandBuffer: buffer, param: para)
......@@ -75,6 +63,24 @@ class ElementwiseAddOp<P: PrecisionType>: Operator<ElementwiseAddKernel<P>, Elem
throw error
}
}
func delogOutput() {
// print(" \(type) inputX: ")
// print(para.inputX.metalTexture.toTensor(dim: (n: para.inputX.tensorDim[0], c: para.inputX.tensorDim[1], h: para.inputX.tensorDim[2], w: para.inputX.tensorDim[3])).strideArray())
// print(" \(type) inputY: ")
// print(para.inputY.metalTexture.toTensor(dim: (n: para.inputY.tensorDim[0], c: para.inputY.tensorDim[1], h: para.inputY.tensorDim[2], w: para.inputY.tensorDim[3])).strideArray())
print(" \(type) output: ")
let originDim = para.output.originDim
if para.output.transpose == [0, 1, 2, 3] {
let outputArray: [Float32] = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]), texturePrecision: computePrecision)
print(outputArray.strideArray())
} else if para.output.transpose == [0, 2, 3, 1] {
print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3]), texturePrecision: computePrecision).strideArray())
} else {
print(" not implement")
}
}
}
......
......@@ -60,9 +60,8 @@ class FeedOp<P: PrecisionType>: Operator<Texture2DTo2DArrayKernel<P>, FeedParam<
}
func delogOutput() {
// para.input.mtlTexture.logDesc()
// let _: P? = para.input.mtlTexture.logDesc(header: "feed input: ", stridable: true)
// let _: P? = para.output.metalTexture.logDesc(header: "feed output: ", stridable: false)
print(" \(type) output: ")
print(para.output.metalTexture.toTensor(dim: (n: para.output.originDim[0], c: para.output.originDim[1], h: para.output.originDim[2], w: para.output.originDim[3]), texturePrecision: computePrecision).strideArray())
}
}
......@@ -19,68 +19,76 @@ public protocol TestParam {
}
public protocol Testable {
associatedtype TestParamType: TestParam
func test(commandBuffer: MTLCommandBuffer, param: TestParamType)
init(device: MTLDevice, testParam: TestParamType)
associatedtype TestParamType: TestParam
func test(commandBuffer: MTLCommandBuffer, param: TestParamType)
init(device: MTLDevice, testParam: TestParamType)
}
protocol Computable {
associatedtype ParamType: OpParam
func compute(commandBuffer: MTLCommandBuffer, param: ParamType) throws
init(device: MTLDevice, param: ParamType)
associatedtype ParamType: OpParam
func compute(commandBuffer: MTLCommandBuffer, param: ParamType) throws
init(device: MTLDevice, param: ParamType)
}
protocol KernelProtocol {
var pipline: MTLComputePipelineState { get set }
var functionName: String { get set }
var pipline: MTLComputePipelineState { get set }
var functionName: String { get set }
}
open class Kernel {
let pipline: MTLComputePipelineState
let functionName: String
public init(device: MTLDevice, inFunctionName: String, usePaddleMobileLib: Bool = true) {
pipline = device.pipeLine(funcName: inFunctionName, inPaddleMobileLib: usePaddleMobileLib)
functionName = inFunctionName
}
let pipline: MTLComputePipelineState
let functionName: String
public init(device: MTLDevice, inFunctionName: String, usePaddleMobileLib: Bool = true) {
pipline = device.pipeLine(funcName: inFunctionName, inPaddleMobileLib: usePaddleMobileLib)
functionName = inFunctionName
}
}
open class CusomKernel: Kernel {
public struct Shape {
public let width: Int
public let height: Int
public let channel: Int
public init(inWidth: Int, inHeight: Int, inChannel: Int){
width = inWidth
height = inHeight
channel = inChannel
}
}
public let outputTexture: MTLTexture
public init(device: MTLDevice, inFunctionName: String, outputDim: Shape, usePaddleMobileLib: Bool = false) {
let textureDesc = MTLTextureDescriptor.init()
textureDesc.textureType = .type2D
textureDesc.width = outputDim.width
textureDesc.height = outputDim.height
textureDesc.depth = (outputDim.channel + 3) / 4
textureDesc.pixelFormat = .rgba32Float
textureDesc.usage = [.shaderRead, .shaderWrite]
textureDesc.storageMode = .shared
outputTexture = device.makeTexture(descriptor: textureDesc) ?! " make texture error "
super.init(device: device, inFunctionName: inFunctionName, usePaddleMobileLib: usePaddleMobileLib)
public struct Shape {
public let width: Int
public let height: Int
public let channel: Int
public init(inWidth: Int, inHeight: Int, inChannel: Int){
width = inWidth
height = inHeight
channel = inChannel
}
}
public let outputTexture: MTLTexture
public init(device: MTLDevice, inFunctionName: String, outputDim: Shape, usePaddleMobileLib: Bool = false) {
let textureDesc = MTLTextureDescriptor.init()
textureDesc.textureType = .type2D
textureDesc.width = outputDim.width
textureDesc.height = outputDim.height
textureDesc.depth = (outputDim.channel + 3) / 4
public func compute(inputTexuture: MTLTexture, commandBuffer: MTLCommandBuffer) throws {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
throw PaddleMobileError.predictError(message: " encode is nil")
}
encoder.setTexture(inputTexuture, index: 0)
encoder.setTexture(outputTexture, index: 1)
encoder.dispatch(computePipline: pipline, outTexture: outputTexture)
encoder.endEncoding()
if computePrecision == .Float16 {
textureDesc.pixelFormat = .rgba16Float
} else if computePrecision == .Float32 {
textureDesc.pixelFormat = .rgba32Float
} else {
fatalError()
}
textureDesc.usage = [.shaderRead, .shaderWrite]
textureDesc.storageMode = .shared
outputTexture = device.makeTexture(descriptor: textureDesc) ?! " make texture error "
super.init(device: device, inFunctionName: inFunctionName, usePaddleMobileLib: usePaddleMobileLib)
}
public func compute(inputTexuture: MTLTexture, commandBuffer: MTLCommandBuffer) throws {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
throw PaddleMobileError.predictError(message: " encode is nil")
}
encoder.setTexture(inputTexuture, index: 0)
encoder.setTexture(outputTexture, index: 1)
encoder.dispatch(computePipline: pipline, outTexture: outputTexture)
encoder.endEncoding()
}
}
......@@ -18,22 +18,29 @@ struct BoxcoderMetalParam {
}
class BoxcoderKernel<P: PrecisionType>: Kernel, Computable{
func compute(commandBuffer: MTLCommandBuffer, param: BoxcoderParam<P>) throws {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
throw PaddleMobileError.predictError(message: " encode is nil")
}
encoder.setTexture(param.priorBox.metalTexture, index: 0)
encoder.setTexture(param.priorBoxVar.metalTexture, index: 1)
encoder.setTexture(param.targetBox.metalTexture, index: 2)
encoder.setTexture(param.output.metalTexture, index: 3)
var bmp = BoxcoderMetalParam.init()
encoder.setBytes(&bmp, length: MemoryLayout<BoxcoderMetalParam>.size, index: 0)
encoder.dispatch(computePipline: pipline, outTexture: param.output.metalTexture)
encoder.endEncoding()
func compute(commandBuffer: MTLCommandBuffer, param: BoxcoderParam<P>) throws {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
throw PaddleMobileError.predictError(message: " encode is nil")
}
required init(device: MTLDevice, param: BoxcoderParam<P>) {
param.output.initTexture(device: device)
super.init(device: device, inFunctionName: "boxcoder")
encoder.setTexture(param.priorBox.metalTexture, index: 0)
encoder.setTexture(param.priorBoxVar.metalTexture, index: 1)
encoder.setTexture(param.targetBox.metalTexture, index: 2)
encoder.setTexture(param.output.metalTexture, index: 3)
var bmp = BoxcoderMetalParam.init()
encoder.setBytes(&bmp, length: MemoryLayout<BoxcoderMetalParam>.size, index: 0)
encoder.dispatch(computePipline: pipline, outTexture: param.output.metalTexture)
encoder.endEncoding()
}
required init(device: MTLDevice, param: BoxcoderParam<P>) {
param.output.initTexture(device: device, computePrecision: computePrecision)
if computePrecision == .Float32 {
super.init(device: device, inFunctionName: "boxcoder")
} else if computePrecision == .Float16 {
super.init(device: device, inFunctionName: "boxcoder_half")
} else {
fatalError()
}
}
}
......@@ -121,8 +121,14 @@ class ConcatKernel<P: PrecisionType>: Kernel, Computable{
}
required init(device: MTLDevice, param: ConcatParam<P>) {
param.output.initTexture(device: device, inTranspose: param.transpose)
super.init(device: device, inFunctionName: "concat")
param.output.initTexture(device: device, inTranspose: param.transpose, computePrecision: computePrecision)
if computePrecision == .Float32 {
super.init(device: device, inFunctionName: "concat")
} else if computePrecision == .Float16 {
super.init(device: device, inFunctionName: "concat_half")
} else {
fatalError()
}
}
required init(device: MTLDevice, testParam: ConcatTestParam) {
......
......@@ -15,127 +15,155 @@
import Foundation
struct ConvAddBatchNormReluTestParam: TestParam {
let inputTexture: MTLTexture
let outputTexture: MTLTexture
var metalParam: MetalConvParam
let filterBuffer: MTLBuffer
let biaseBuffer: MTLBuffer
let newScaleBuffer: MTLBuffer
let newBiaseBuffer: MTLBuffer
let filterSize: (width: Int, height: Int, channel: Int)
init(inInputTexture: MTLTexture, inOutputTexture: MTLTexture, inMetalParam: MetalConvParam, inFilterBuffer: MTLBuffer, inBiaseBuffer: MTLBuffer, inNewScaleBuffer: MTLBuffer, inNewBiaseBuffer: MTLBuffer, inFilterSize: (width: Int, height: Int, channel: Int)) {
inputTexture = inInputTexture
outputTexture = inOutputTexture
metalParam = inMetalParam
filterBuffer = inFilterBuffer
biaseBuffer = inBiaseBuffer
newScaleBuffer = inNewScaleBuffer
newBiaseBuffer = inNewBiaseBuffer
filterSize = inFilterSize
}
let inputTexture: MTLTexture
let outputTexture: MTLTexture
var metalParam: MetalConvParam
let filterBuffer: MTLBuffer
let biaseBuffer: MTLBuffer
let newScaleBuffer: MTLBuffer
let newBiaseBuffer: MTLBuffer
let filterSize: (width: Int, height: Int, channel: Int)
init(inInputTexture: MTLTexture, inOutputTexture: MTLTexture, inMetalParam: MetalConvParam, inFilterBuffer: MTLBuffer, inBiaseBuffer: MTLBuffer, inNewScaleBuffer: MTLBuffer, inNewBiaseBuffer: MTLBuffer, inFilterSize: (width: Int, height: Int, channel: Int)) {
inputTexture = inInputTexture
outputTexture = inOutputTexture
metalParam = inMetalParam
filterBuffer = inFilterBuffer
biaseBuffer = inBiaseBuffer
newScaleBuffer = inNewScaleBuffer
newBiaseBuffer = inNewBiaseBuffer
filterSize = inFilterSize
}
}
class ConvAddBatchNormReluKernel<P: PrecisionType>: Kernel, Computable, Testable {
required init(device: MTLDevice, testParam: ConvAddBatchNormReluTestParam) {
if testParam.filterSize.width == 1 && testParam.filterSize.height == 1 {
super.init(device: device, inFunctionName: "conv_add_batch_norm_relu_1x1")
} else if testParam.filterSize.channel == 1 {
super.init(device: device, inFunctionName: "depthwise_conv_add_batch_norm_relu_3x3")
} else {
super.init(device: device, inFunctionName: "conv_add_batch_norm_relu_3x3")
}
required init(device: MTLDevice, testParam: ConvAddBatchNormReluTestParam) {
if testParam.filterSize.width == 1 && testParam.filterSize.height == 1 {
super.init(device: device, inFunctionName: "conv_add_batch_norm_relu_1x1")
} else if testParam.filterSize.channel == 1 {
super.init(device: device, inFunctionName: "depthwise_conv_add_batch_norm_relu_3x3")
} else {
super.init(device: device, inFunctionName: "conv_add_batch_norm_relu_3x3")
}
}
var metalParam: MetalConvParam!
required init(device: MTLDevice, param: ConvAddBatchNormReluParam<P>) {
var metalParam: MetalConvParam!
required init(device: MTLDevice, param: ConvAddBatchNormReluParam<P>) {
param.output.initTexture(device: device, inTranspose: [0, 2, 3, 1])
if param.filter.width == 1 && param.filter.height == 1 {
super.init(device: device, inFunctionName: "conv_add_batch_norm_relu_1x1")
} else if param.filter.channel == 1 {
super.init(device: device, inFunctionName: "depthwise_conv_add_batch_norm_relu_3x3")
} else {
super.init(device: device, inFunctionName: "conv_add_batch_norm_relu_3x3")
}
param.filter.initBuffer(device: device, precision: Tensor.BufferPrecision.Float32)
param.y.initBuffer(device: device, precision: Tensor.BufferPrecision.Float32)
param.variance.initBuffer(device: device)
param.mean.initBuffer(device: device)
param.scale.initBuffer(device: device)
param.bias.initBuffer(device: device)
let offsetX = param.filter.width/2 - Int(param.paddings[0])
let offsetY = param.filter.height/2 - Int(param.paddings[1])
print("offset x: \(offsetX)")
print("offset y: \(offsetY)")
let offsetZ = 0.0
metalParam = MetalConvParam.init(offsetX: Int16(offsetX), offsetY: Int16(offsetY), offsetZ: Int16(offsetZ), strideX: UInt16(param.stride[0]), strideY: UInt16(param.stride[1]), paddedZ: UInt16(param.input.metalTexture.arrayLength * 4 - param.input.dim[3]))
var invs: [P] = []
let varianceContents = param.variance.buffer.contents().assumingMemoryBound(to: P.self)
for i in 0..<param.variance.buffer.length/MemoryLayout<P>.stride {
let inv = 1.0/pow(Float32.init(varianceContents[i]) + param.epsilon, 0.5)
invs.append(P(inv))
}
let newScale: UnsafeMutablePointer<P> = UnsafeMutablePointer<P>.allocate(capacity: param.scale.buffer.length)
let newBiase: UnsafeMutablePointer<P> = UnsafeMutablePointer<P>.allocate(capacity: param.bias.buffer.length)
let scaleContents = param.scale.buffer.contents().assumingMemoryBound(to: P.self)
let biaseContents = param.bias.buffer.contents().assumingMemoryBound(to: P.self)
let meanContents = param.mean.buffer.contents().assumingMemoryBound(to: P.self)
for i in 0..<param.scale.buffer.length/MemoryLayout<P>.stride {
newScale[i] = invs[i] * scaleContents[i]
newBiase[i] = biaseContents[i] - meanContents[i] * invs[i] * scaleContents[i]
}
param.newBiase = device.makeBuffer(bytes: newBiase, length: param.bias.buffer.length)
param.newScale = device.makeBuffer(bytes: newScale, length: param.scale.buffer.length)
newScale.deinitialize(count: param.scale.buffer.length)
newScale.deallocate()
newBiase.deinitialize(count: param.bias.buffer.length)
newBiase.deallocate()
param.output.initTexture(device: device, inTranspose: [0, 2, 3, 1], computePrecision: computePrecision)
if param.filter.width == 1 && param.filter.height == 1 {
super.init(device: device, inFunctionName: "conv_add_batch_norm_relu_1x1")
} else if param.filter.channel == 1 {
super.init(device: device, inFunctionName: "depthwise_conv_add_batch_norm_relu_3x3")
} else {
super.init(device: device, inFunctionName: "conv_add_batch_norm_relu_3x3")
}
func compute(commandBuffer: MTLCommandBuffer, param: ConvAddBatchNormReluParam<P>) throws {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
throw PaddleMobileError.predictError(message: " encode is nil")
}
param.filter.initBuffer(device: device, precision: computePrecision)
param.y.initBuffer(device: device, precision: computePrecision)
param.variance.initBuffer(device: device, precision: .Float32)
param.mean.initBuffer(device: device, precision: .Float32)
param.scale.initBuffer(device: device, precision: .Float32)
param.bias.initBuffer(device: device, precision: .Float32)
let offsetX = param.filter.width/2 - Int(param.paddings[0])
let offsetY = param.filter.height/2 - Int(param.paddings[1])
print("offset x: \(offsetX)")
print("offset y: \(offsetY)")
let offsetZ = 0.0
metalParam = MetalConvParam.init(offsetX: Int16(offsetX), offsetY: Int16(offsetY), offsetZ: Int16(offsetZ), strideX: UInt16(param.stride[0]), strideY: UInt16(param.stride[1]), paddedZ: UInt16(param.input.metalTexture.arrayLength * 4 - param.input.dim[3]), dilationX: UInt16(param.dilations[0]), dilationY: UInt16(param.dilations[1]))
var invs: [P] = []
let varianceContents = param.variance.buffer.contents().assumingMemoryBound(to: P.self)
for i in 0..<param.variance.buffer.length/MemoryLayout<P>.stride {
let inv = 1.0/pow(Float32.init(varianceContents[i]) + param.epsilon, 0.5)
invs.append(P(inv))
}
let newScale: UnsafeMutablePointer<P> = UnsafeMutablePointer<P>.allocate(capacity: param.scale.buffer.length)
let newBiase: UnsafeMutablePointer<P> = UnsafeMutablePointer<P>.allocate(capacity: param.bias.buffer.length)
let scaleContents = param.scale.buffer.contents().assumingMemoryBound(to: P.self)
let biaseContents = param.bias.buffer.contents().assumingMemoryBound(to: P.self)
let meanContents = param.mean.buffer.contents().assumingMemoryBound(to: P.self)
for i in 0..<param.scale.buffer.length/MemoryLayout<P>.stride {
newScale[i] = invs[i] * scaleContents[i]
newBiase[i] = biaseContents[i] - meanContents[i] * invs[i] * scaleContents[i]
}
// var newScaleFP16: UnsafeMutableRawPointer
//
// float32ToFloat16(input: newScale as! UnsafeMutablePointer<Float32>, output: newScaleFP16, count: param.scale.buffer.length / MemoryLayout<P>.size)
// let newBiaseFloat16 = device.makeBuffer(length: <#T##Int#>, options: <#T##MTLResourceOptions#>)
var newBiaseBuffer: MTLBuffer
var newScaleBuffer: MTLBuffer
if computePrecision == .Float16 {
newBiaseBuffer = device.makeBuffer(bytes: newBiase, length: param.bias.buffer.length)!
newScaleBuffer = device.makeBuffer(bytes: newScale, length: param.scale.buffer.length)!
} else if computePrecision == .Float32 {
encoder.setTexture(param.input.metalTexture, index: 0)
encoder.setTexture(param.output.metalTexture, index: 1)
encoder.setBytes(&metalParam, length: MemoryLayout<MetalConvParam>.size, index: 0)
encoder.setBuffer(param.filter.buffer, offset: 0, index: 1)
encoder.setBuffer(param.y.buffer, offset: 0, index: 2)
encoder.setBuffer(param.newScale!, offset: 0, index: 3)
encoder.setBuffer(param.newBiase!, offset: 0, index: 4)
encoder.dispatch(computePipline: pipline, outTexture: param.output.metalTexture)
encoder.endEncoding()
newBiaseBuffer = device.makeBuffer(length: param.bias.buffer.length / 2)!
newScaleBuffer = device.makeBuffer(length: param.bias.buffer.length / 2)!
float32ToFloat16(input: newBiase as! UnsafeMutablePointer<Float32>, output: newBiaseBuffer.contents(), count: param.bias.buffer.length / MemoryLayout<P>.size)
float32ToFloat16(input: newScale as! UnsafeMutablePointer<Float32>, output: newScaleBuffer.contents(), count: param.scale.buffer.length / MemoryLayout<P>.size)
} else {
fatalError(" unsupport ")
}
public func test(commandBuffer: MTLCommandBuffer, param: ConvAddBatchNormReluTestParam) {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
fatalError()
}
encoder.setTexture(param.inputTexture, index: 0)
encoder.setTexture(param.outputTexture, index: 1)
var inMetalParam = param.metalParam
encoder.setBytes(&inMetalParam, length: MemoryLayout<MetalConvParam>.size, index: 0)
encoder.setBuffer(param.filterBuffer, offset: 0, index: 1)
encoder.setBuffer(param.biaseBuffer, offset: 0, index: 2)
encoder.setBuffer(param.newScaleBuffer, offset: 0, index: 3)
encoder.setBuffer(param.newBiaseBuffer, offset: 0, index: 4)
encoder.dispatch(computePipline: pipline, outTexture: param.outputTexture)
encoder.endEncoding()
param.newBiase = newBiaseBuffer
param.newScale = newScaleBuffer
newScale.deinitialize(count: param.scale.buffer.length)
newScale.deallocate()
newBiase.deinitialize(count: param.bias.buffer.length)
newBiase.deallocate()
}
func compute(commandBuffer: MTLCommandBuffer, param: ConvAddBatchNormReluParam<P>) throws {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
throw PaddleMobileError.predictError(message: " encode is nil")
}
encoder.setTexture(param.input.metalTexture, index: 0)
encoder.setTexture(param.output.metalTexture, index: 1)
encoder.setBytes(&metalParam, length: MemoryLayout<MetalConvParam>.size, index: 0)
encoder.setBuffer(param.filter.buffer, offset: 0, index: 1)
encoder.setBuffer(param.y.buffer, offset: 0, index: 2)
encoder.setBuffer(param.newScale!, offset: 0, index: 3)
encoder.setBuffer(param.newBiase!, offset: 0, index: 4)
encoder.dispatch(computePipline: pipline, outTexture: param.output.metalTexture)
encoder.endEncoding()
}
public func test(commandBuffer: MTLCommandBuffer, param: ConvAddBatchNormReluTestParam) {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
fatalError()
}
encoder.setTexture(param.inputTexture, index: 0)
encoder.setTexture(param.outputTexture, index: 1)
var inMetalParam = param.metalParam
encoder.setBytes(&inMetalParam, length: MemoryLayout<MetalConvParam>.size, index: 0)
encoder.setBuffer(param.filterBuffer, offset: 0, index: 1)
encoder.setBuffer(param.biaseBuffer, offset: 0, index: 2)
encoder.setBuffer(param.newScaleBuffer, offset: 0, index: 3)
encoder.setBuffer(param.newBiaseBuffer, offset: 0, index: 4)
encoder.dispatch(computePipline: pipline, outTexture: param.outputTexture)
encoder.endEncoding()
}
}
......@@ -17,27 +17,45 @@ import Foundation
class ConvAddKernel<P: PrecisionType>: Kernel, Computable {
var metalParam: MetalConvParam!
required init(device: MTLDevice, param: ConvAddParam<P>) {
if param.filter.width == 1 && param.filter.height == 1 {
super.init(device: device, inFunctionName: "conv_add_1x1")
} else if param.filter.channel == 1 {
super.init(device: device, inFunctionName: "depthwise_conv_add_3x3")
if computePrecision == .Float16 {
if param.filter.width == 1 && param.filter.height == 1 {
super.init(device: device, inFunctionName: "conv_add_1x1_half")
} else if param.filter.channel == 1 {
super.init(device: device, inFunctionName: "depthwise_conv_add_3x3_half")
} else {
super.init(device: device, inFunctionName: "conv_add_3x3_half")
}
} else if computePrecision == .Float32 {
if param.filter.width == 1 && param.filter.height == 1 {
super.init(device: device, inFunctionName: "conv_add_1x1")
} else if param.filter.channel == 1 {
super.init(device: device, inFunctionName: "depthwise_conv_add_3x3")
} else {
super.init(device: device, inFunctionName: "conv_add_3x3")
}
} else {
super.init(device: device, inFunctionName: "conv_add_3x3")
fatalError()
}
param.output.initTexture(device: device, inTranspose: [0, 2, 3, 1])
param.output.initTexture(device: device, inTranspose: [0, 2, 3, 1], computePrecision: computePrecision)
let offsetX = param.filter.width/2 - Int(param.paddings[0])
let offsetY = param.filter.height/2 - Int(param.paddings[1])
let offsetX = (Int(param.dilations[0]) * (param.filter.width - 1) + 1)/2 - Int(param.paddings[0])
param.filter.initBuffer(device: device, precision: Tensor.BufferPrecision.Float32)
param.y.initBuffer(device: device, precision: Tensor.BufferPrecision.Float32)
let offsetY = (Int(param.dilations[1]) * (param.filter.height - 1) + 1)/2 - Int(param.paddings[1])
param.filter.initBuffer(device: device, precision: computePrecision)
param.y.initBuffer(device: device, precision: computePrecision)
print("offset x: \(offsetX)")
print("offset y: \(offsetY)")
let offsetZ = 0.0
metalParam = MetalConvParam.init(offsetX: Int16(offsetX), offsetY: Int16(offsetY), offsetZ: Int16(offsetZ), strideX: UInt16(param.stride[0]), strideY: UInt16(param.stride[1]), paddedZ: UInt16(param.input.metalTexture.arrayLength * 4 - param.input.dim[3]))
let inMetalParam = MetalConvParam.init(offsetX: Int16(offsetX), offsetY: Int16(offsetY), offsetZ: Int16(offsetZ), strideX: UInt16(param.stride[0]), strideY: UInt16(param.stride[1]), paddedZ: UInt16(param.input.metalTexture.arrayLength * 4 - param.input.dim[3]), dilationX: UInt16(param.dilations[0]), dilationY: UInt16(param.dilations[1]))
print("metal param: ")
print(inMetalParam)
metalParam = inMetalParam
}
func compute(commandBuffer: MTLCommandBuffer, param: ConvAddParam<P>) throws {
......
......@@ -51,21 +51,33 @@ class ConvBNReluKernel<P: PrecisionType>: Kernel, Computable, Testable {
var metalParam: MetalConvParam!
required init(device: MTLDevice, param: ConvBNReluParam<P>) {
if param.filter.width == 1 && param.filter.height == 1 {
super.init(device: device, inFunctionName: "conv_batch_norm_relu_1x1")
} else if param.filter.channel == 1 {
super.init(device: device, inFunctionName: "depthwise_conv_batch_norm_relu_3x3")
if computePrecision == .Float32 {
if param.filter.width == 1 && param.filter.height == 1 {
super.init(device: device, inFunctionName: "conv_batch_norm_relu_1x1")
} else if param.filter.channel == 1 {
super.init(device: device, inFunctionName: "depthwise_conv_batch_norm_relu_3x3")
} else {
super.init(device: device, inFunctionName: "conv_batch_norm_relu_3x3")
}
} else if computePrecision == .Float16 {
if param.filter.width == 1 && param.filter.height == 1 {
super.init(device: device, inFunctionName: "conv_batch_norm_relu_1x1_half")
} else if param.filter.channel == 1 {
super.init(device: device, inFunctionName: "depthwise_conv_batch_norm_relu_3x3_half")
} else {
super.init(device: device, inFunctionName: "conv_batch_norm_relu_3x3_half")
}
} else {
super.init(device: device, inFunctionName: "conv_batch_norm_relu_3x3")
fatalError()
}
param.output.initTexture(device: device, inTranspose: [0, 2, 3, 1])
param.filter.initBuffer(device: device, precision: Tensor.BufferPrecision.Float32)
param.variance.initBuffer(device: device)
param.mean.initBuffer(device: device)
param.scale.initBuffer(device: device)
param.bias.initBuffer(device: device)
param.output.initTexture(device: device, inTranspose: [0, 2, 3, 1], computePrecision: computePrecision)
param.filter.initBuffer(device: device, precision: computePrecision)
param.variance.initBuffer(device: device, precision: .Float32)
param.mean.initBuffer(device: device, precision: .Float32)
param.scale.initBuffer(device: device, precision: .Float32)
param.bias.initBuffer(device: device, precision: .Float32)
let offsetX = param.filter.width/2 - Int(param.paddings[0])
let offsetY = param.filter.height/2 - Int(param.paddings[1])
......@@ -81,7 +93,7 @@ class ConvBNReluKernel<P: PrecisionType>: Kernel, Computable, Testable {
let offsetZ = 0.0
print(" fuck ")
metalParam = MetalConvParam.init(offsetX: Int16(offsetX), offsetY: Int16(offsetY), offsetZ: Int16(offsetZ), strideX: UInt16(param.stride[0]), strideY: UInt16(param.stride[1]), paddedZ: UInt16(param.input.metalTexture.arrayLength * 4 - param.input.dim[3]))
metalParam = MetalConvParam.init(offsetX: Int16(offsetX), offsetY: Int16(offsetY), offsetZ: Int16(offsetZ), strideX: UInt16(param.stride[0]), strideY: UInt16(param.stride[1]), paddedZ: UInt16(param.input.metalTexture.arrayLength * 4 - param.input.dim[3]), dilationX: UInt16(param.dilations[0]), dilationY: UInt16(param.dilations[1]))
var invs: [P] = []
let varianceContents = param.variance.buffer.contents().assumingMemoryBound(to: P.self)
......@@ -102,8 +114,26 @@ class ConvBNReluKernel<P: PrecisionType>: Kernel, Computable, Testable {
newBiase[i] = biaseContents[i] - meanContents[i] * invs[i] * scaleContents[i]
}
param.newBiase = device.makeBuffer(bytes: newBiase, length: param.bias.buffer.length)
param.newScale = device.makeBuffer(bytes: newScale, length: param.scale.buffer.length)
var newBiaseBuffer: MTLBuffer
var newScaleBuffer: MTLBuffer
if computePrecision == .Float32 {
newBiaseBuffer = device.makeBuffer(bytes: newBiase, length: param.bias.buffer.length)!
newScaleBuffer = device.makeBuffer(bytes: newScale, length: param.scale.buffer.length)!
} else if computePrecision == .Float16 {
newBiaseBuffer = device.makeBuffer(length: param.bias.buffer.length / 2)!
newScaleBuffer = device.makeBuffer(length: param.bias.buffer.length / 2)!
float32ToFloat16(input: newBiase as! UnsafeMutablePointer<Float32>, output: newBiaseBuffer.contents(), count: param.bias.buffer.length / MemoryLayout<P>.size)
float32ToFloat16(input: newScale as! UnsafeMutablePointer<Float32>, output: newScaleBuffer.contents(), count: param.scale.buffer.length / MemoryLayout<P>.size)
} else {
fatalError(" unsupport ")
}
param.newBiase = newBiaseBuffer
param.newScale = newScaleBuffer
newScale.deinitialize(count: param.scale.buffer.length)
newScale.deallocate()
......
......@@ -21,6 +21,8 @@ public struct MetalConvParam {
let strideX: UInt16
let strideY: UInt16
let paddedZ: UInt16
let dilationX: UInt16
let dilationY: UInt16
}
class ConvKernel<P: PrecisionType>: Kernel, Computable {
......@@ -37,9 +39,9 @@ class ConvKernel<P: PrecisionType>: Kernel, Computable {
let offsetX = param.filter.dim[2]/2 - Int(param.paddings[0])
let offsetY = param.filter.dim[1]/2 - Int(param.paddings[1])
let offsetZ = 0.0
param.filter.initBuffer(device: device, precision: Tensor.BufferPrecision.Float32)
param.filter.initBuffer(device: device, precision: ComputePrecision.Float32)
metalParam = MetalConvParam.init(offsetX: Int16(offsetX), offsetY: Int16(offsetY), offsetZ: Int16(offsetZ), strideX: UInt16(param.stride[0]), strideY: UInt16(param.stride[1]), paddedZ: UInt16(param.input.metalTexture.arrayLength * 4 - param.input.dim[3]))
metalParam = MetalConvParam.init(offsetX: Int16(offsetX), offsetY: Int16(offsetY), offsetZ: Int16(offsetZ), strideX: UInt16(param.stride[0]), strideY: UInt16(param.stride[1]), paddedZ: UInt16(param.input.metalTexture.arrayLength * 4 - param.input.dim[3]), dilationX: UInt16(param.dilations[0]), dilationY: UInt16(param.dilations[1]))
}
func compute(commandBuffer: MTLCommandBuffer, param: ConvParam<P>) throws {
......
......@@ -45,6 +45,7 @@ class ConvTransposeKernel<P: PrecisionType>: Kernel, Computable{
metalParam = MetalConvTransposeParam.init(kernelW: kernelWidth, kernelH: kernelHeight, strideX: strideX, strideY: strideY, paddingX: paddingX, paddingY: paddingY, dilationX: dilationX, dilationY: dilationY)
param.output.initTexture(device: device, inTranspose: param.input.transpose)
param.filter.initBuffer(device: device)
}
func compute(commandBuffer: MTLCommandBuffer, param: ConvTransposeParam<P>) throws {
......
......@@ -55,7 +55,7 @@ class ElementwiseAddKernel<P: PrecisionType>: Kernel, Computable {
}
emp.yoff = 4 - Int32(param.inputY.tensorDim.cout())
if (param.inputX.dim == param.inputY.dim) && (param.inputX.transpose == param.inputY.transpose) {
print("===> elementwise_add fast!!!")
// print("===> elementwise_add fast!!!")
emp.fast = 1
}
......
......@@ -28,7 +28,7 @@ class PoolKernel<P: PrecisionType>: Kernel, Computable{
required init(device: MTLDevice, param: PoolParam<P>) {
super.init(device: device, inFunctionName: "pool")
param.output.initTexture(device: device, inTranspose: param.input.transpose)
param.output.initTexture(device: device, inTranspose: param.input.transpose, computePrecision: computePrecision)
}
func compute(commandBuffer: MTLCommandBuffer, param: PoolParam<P>) throws {
......
......@@ -17,8 +17,8 @@ class PreluKernel<P: PrecisionType>: Kernel, Computable{
} else {
super.init(device: device, inFunctionName: "prelu_other")
}
param.alpha.initBuffer(device: device)
param.output.initTexture(device: device, inTranspose: param.input.transpose)
param.alpha.initBuffer(device: device, precision: computePrecision)
param.output.initTexture(device: device, inTranspose: param.input.transpose, computePrecision: computePrecision)
}
func compute(commandBuffer: MTLCommandBuffer, param: PreluParam<P>) throws {
......
......@@ -33,11 +33,16 @@ class PriorBoxKernel<P: PrecisionType>: Kernel, Computable{
var metalParam: PriorBoxMetalParam!
required init(device: MTLDevice, param: PriorBoxParam<P>) {
super.init(device: device, inFunctionName: "prior_box")
param.output.initTexture(device: device, inTranspose: [2, 0, 1, 3])
if computePrecision == .Float32 {
super.init(device: device, inFunctionName: "prior_box")
} else if computePrecision == .Float16 {
super.init(device: device, inFunctionName: "prior_box_half")
} else {
fatalError()
}
param.outputVariances.initTexture(device: device, inTranspose: [2, 0, 1, 3])
param.output.initTexture(device: device, inTranspose: [2, 0, 1, 3], computePrecision: computePrecision)
param.outputVariances.initTexture(device: device, inTranspose: [2, 0, 1, 3], computePrecision: computePrecision)
let n = 1
let h = param.output.dim[1]
......@@ -79,7 +84,18 @@ class PriorBoxKernel<P: PrecisionType>: Kernel, Computable{
}
}
param.newAspectRatios = outputAspectRatior
if computePrecision == .Float16 {
let buffer = device.makeBuffer(length: outputAspectRatior.count * MemoryLayout<Float16>.size)
float32ToFloat16(input: &outputAspectRatior, output:(buffer?.contents())!, count: outputAspectRatior.count)
param.newAspectRatios = buffer
} else if computePrecision == .Float32 {
let buffer = device.makeBuffer(bytes: outputAspectRatior, length: outputAspectRatior.count * MemoryLayout<Float32>.size, options: [])
param.newAspectRatios = buffer
} else {
fatalError()
}
let aspectRatiosSize = uint(outputAspectRatior.count)
let maxSizeSize: uint = uint(param.maxSizes.count)
......@@ -102,12 +118,13 @@ class PriorBoxKernel<P: PrecisionType>: Kernel, Computable{
encoder.setTexture(param.input.metalTexture, index: 0)
encoder.setTexture(param.output.metalTexture, index: 1)
encoder.setTexture(param.outputVariances.metalTexture, index: 2)
encoder.setBytes(&metalParam, length: MemoryLayout<PriorBoxMetalParam>.size, index: 0)
encoder.setBytes(param.newAspectRatios!, length: MemoryLayout<Float32>.size * param.newAspectRatios!.count, index: 1)
encoder.setBuffer(param.newAspectRatios!, offset: 0, index: 0)
encoder.setBytes(&metalParam, length: MemoryLayout<PriorBoxMetalParam>.size, index: 1)
encoder.setBytes(param.variances, length: MemoryLayout<Float32>.size * param.variances.count, index: 2)
encoder.dispatch(computePipline: pipline, outTexture: param.output.metalTexture)
encoder.endEncoding()
}
}
......@@ -15,58 +15,65 @@
import Foundation
struct ReshapeMetalParam {
var idim: (Int32, Int32, Int32, Int32)
var itrans: (Int32, Int32, Int32, Int32)
var odim: (Int32, Int32, Int32, Int32)
var otrans: (Int32, Int32, Int32, Int32)
var idim: (Int32, Int32, Int32, Int32)
var itrans: (Int32, Int32, Int32, Int32)
var odim: (Int32, Int32, Int32, Int32)
var otrans: (Int32, Int32, Int32, Int32)
}
struct ReshapeTestParam: TestParam {
let inputTexture: MTLTexture
let outputTexture: MTLTexture
let param: ReshapeMetalParam
let inputTexture: MTLTexture
let outputTexture: MTLTexture
let param: ReshapeMetalParam
}
class ReshapeKernel<P: PrecisionType>: Kernel, Computable{
required init(device: MTLDevice, param: ReshapeParam<P>) {
param.output.initTexture(device: device)
super.init(device: device, inFunctionName: "reshape")
required init(device: MTLDevice, param: ReshapeParam<P>) {
param.output.initTexture(device: device, computePrecision: computePrecision)
if computePrecision == .Float32 {
super.init(device: device, inFunctionName: "reshape")
} else if computePrecision == .Float16 {
super.init(device: device, inFunctionName: "reshape_half")
} else {
fatalError()
}
required init(device: MTLDevice, testParam: ReshapeTestParam) {
super.init(device: device, inFunctionName: "reshape")
}
func compute(commandBuffer: MTLCommandBuffer, param: ReshapeParam<P>) throws {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
throw PaddleMobileError.predictError(message: " encoder is nil")
}
encoder.setTexture(param.input.metalTexture, index: 0)
encoder.setTexture(param.output.metalTexture, index: 1)
let id: [Int32] = (0..<4).map { Int32(param.input.dim[$0]) }
let it: [Int32] = param.input.transpose.map { Int32($0) }
let od: [Int32] = (0..<4).map { Int32(param.output.dim[$0]) }
let ot: [Int32] = param.output.transpose.map { Int32($0) }
var rmp = ReshapeMetalParam.init(
idim: (id[0], id[1], id[2], id[3]),
itrans: (it[0], it[1], it[2], it[3]),
odim: (od[0], od[1], od[2], od[3]),
otrans: (ot[0], ot[1], ot[2], ot[3])
)
encoder.setBytes(&rmp, length: MemoryLayout<ReshapeMetalParam>.size, index: 0)
encoder.dispatch(computePipline: pipline, outTexture: param.output.metalTexture)
encoder.endEncoding()
}
required init(device: MTLDevice, testParam: ReshapeTestParam) {
super.init(device: device, inFunctionName: "reshape")
}
func compute(commandBuffer: MTLCommandBuffer, param: ReshapeParam<P>) throws {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
throw PaddleMobileError.predictError(message: " encoder is nil")
}
func test(commandBuffer: MTLCommandBuffer, testParam: ReshapeTestParam) {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
fatalError()
}
encoder.setTexture(testParam.inputTexture, index: 0)
encoder.setTexture(testParam.outputTexture, index: 1)
var pm: ReshapeMetalParam = testParam.param
encoder.setBytes(&pm, length: MemoryLayout<ReshapeMetalParam>.size, index: 0)
encoder.dispatch(computePipline: pipline, outTexture: testParam.outputTexture)
encoder.endEncoding()
encoder.setTexture(param.input.metalTexture, index: 0)
encoder.setTexture(param.output.metalTexture, index: 1)
let id: [Int32] = (0..<4).map { Int32(param.input.dim[$0]) }
let it: [Int32] = param.input.transpose.map { Int32($0) }
let od: [Int32] = (0..<4).map { Int32(param.output.dim[$0]) }
let ot: [Int32] = param.output.transpose.map { Int32($0) }
var rmp = ReshapeMetalParam.init(
idim: (id[0], id[1], id[2], id[3]),
itrans: (it[0], it[1], it[2], it[3]),
odim: (od[0], od[1], od[2], od[3]),
otrans: (ot[0], ot[1], ot[2], ot[3])
)
encoder.setBytes(&rmp, length: MemoryLayout<ReshapeMetalParam>.size, index: 0)
encoder.dispatch(computePipline: pipline, outTexture: param.output.metalTexture)
encoder.endEncoding()
}
func test(commandBuffer: MTLCommandBuffer, testParam: ReshapeTestParam) {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
fatalError()
}
encoder.setTexture(testParam.inputTexture, index: 0)
encoder.setTexture(testParam.outputTexture, index: 1)
var pm: ReshapeMetalParam = testParam.param
encoder.setBytes(&pm, length: MemoryLayout<ReshapeMetalParam>.size, index: 0)
encoder.dispatch(computePipline: pipline, outTexture: testParam.outputTexture)
encoder.endEncoding()
}
}
......@@ -38,7 +38,13 @@ class SoftmaxKernel<P: PrecisionType>: Kernel, Computable{
}
required init(device: MTLDevice, param: SoftmaxParam<P>) {
param.output.initTexture(device: device)
super.init(device: device, inFunctionName: "softmax")
param.output.initTexture(device: device, computePrecision: computePrecision)
if computePrecision == .Float32 {
super.init(device: device, inFunctionName: "softmax")
} else if computePrecision == .Float16 {
super.init(device: device, inFunctionName: "softmax_half")
} else {
fatalError()
}
}
}
......@@ -32,7 +32,14 @@ class Texture2DTo2DArrayKernel<P: PrecisionType>: Kernel, Computable{
}
required init(device: MTLDevice, param: FeedParam<P>) {
param.output.initTexture(device: device, inTranspose: [0, 2, 3, 1])
super.init(device: device, inFunctionName: "texture2d_to_2d_array")
param.output.initTexture(device: device, inTranspose: [0, 2, 3, 1], computePrecision: computePrecision)
if computePrecision == .Float16 {
super.init(device: device, inFunctionName: "texture2d_to_2d_array_half")
} else if computePrecision == .Float32 {
super.init(device: device, inFunctionName: "texture2d_to_2d_array")
} else {
fatalError()
}
}
}
......@@ -41,33 +41,27 @@ struct TransposeTestParam: TestParam {
}
class TransposeKernel<P: PrecisionType>: Kernel, Computable, Testable {
var metalParam: TransposeMetalParam!
func compute(commandBuffer: MTLCommandBuffer, param: TransposeParam<P>) throws {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
throw PaddleMobileError.predictError(message: " encode is nil")
}
encoder.setTexture(param.input.metalTexture, index: 0)
encoder.setTexture(param.output.metalTexture, index: 1)
encoder.setBytes(&metalParam, length: MemoryLayout<TransposeMetalParam>.size, index: 0)
encoder.dispatch(computePipline: pipline, outTexture: param.output.metalTexture)
encoder.endEncoding()
}
required init(device: MTLDevice, param: TransposeParam<P>) {
param.output.initTexture(device: device, inTranspose: [0, 1, 2, 3])
super.init(device: device, inFunctionName: "transpose")
param.output.initTexture(device: device, inTranspose: [0, 1, 2, 3], computePrecision: computePrecision)
if computePrecision == .Float16 {
super.init(device: device, inFunctionName: "transpose_half")
} else if computePrecision == .Float32 {
super.init(device: device, inFunctionName: "transpose")
} else {
fatalError()
}
var invT: [Int] = [0, 1, 2, 3]
for (i, v) in param.input.transpose.enumerated() {
invT[v] = i
}
var axis: [Int] = [0, 1, 2, 3]
// var doNothing = false
// if param.axis.count == param.input.transpose.count {
// doNothing = param.axis == param.input.transpose.map { Int32($0) }
// }
// var doNothing = false
// if param.axis.count == param.input.transpose.count {
// doNothing = param.axis == param.input.transpose.map { Int32($0) }
// }
for i in 0..<param.axis.count {
......@@ -84,10 +78,30 @@ class TransposeKernel<P: PrecisionType>: Kernel, Computable, Testable {
}
metalParam = tmp
}
required init(device: MTLDevice, testParam: TransposeTestParam) {
super.init(device: device, inFunctionName: "transpose")
fatalError()
if computePrecision == .Float16 {
super.init(device: device, inFunctionName: "transpose_half")
} else if computePrecision == .Float32 {
super.init(device: device, inFunctionName: "transpose")
} else {
fatalError()
}
}
var metalParam: TransposeMetalParam!
func compute(commandBuffer: MTLCommandBuffer, param: TransposeParam<P>) throws {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
throw PaddleMobileError.predictError(message: " encode is nil")
}
encoder.setTexture(param.input.metalTexture, index: 0)
encoder.setTexture(param.output.metalTexture, index: 1)
encoder.setBytes(&metalParam, length: MemoryLayout<TransposeMetalParam>.size, index: 0)
encoder.dispatch(computePipline: pipline, outTexture: param.output.metalTexture)
encoder.endEncoding()
}
public func test(commandBuffer: MTLCommandBuffer, param: TransposeTestParam) {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
......
......@@ -34,7 +34,6 @@ kernel void boxcoder(texture2d_array<float, access::read> priorBox [[texture(0)]
float tw = exp(pv.z * t.z) * pw;
float th = exp(pv.w * t.w) * ph;
float4 r;
r.x = tx - tw / 2;
r.y = ty - th / 2;
......@@ -43,3 +42,31 @@ kernel void boxcoder(texture2d_array<float, access::read> priorBox [[texture(0)]
output.write(r, gid.xy, gid.z);
}
kernel void boxcoder_half(texture2d_array<half, access::read> priorBox [[texture(0)]],
texture2d_array<half, access::read> priorBoxVar [[texture(1)]],
texture2d_array<half, access::read> targetBox [[texture(2)]],
texture2d_array<half, access::write> output[[texture(3)]],
uint3 gid [[thread_position_in_grid]]) {
half4 t = targetBox.read(gid.xy, gid.z);
half4 p = priorBox.read(gid.xy, gid.z);
half4 pv = priorBoxVar.read(gid.xy, gid.z);
float px = (float(p.x) + float(p.z)) / 2;
float py = (float(p.y) + float(p.w)) / 2;
float pw = float(p.z) - float(p.x);
float ph = float(p.w) - float(p.y);
float tx = float(pv.x) * float(t.x) * pw + px;
float ty = float(pv.y) * float(t.y) * ph + py;
float tw = exp(float(pv.z) * float(t.z)) * pw;
float th = exp(float(pv.w) * float(t.w)) * ph;
float4 r;
r.x = tx - tw / 2;
r.y = ty - th / 2;
r.z = tx + tw / 2;
r.w = ty + th / 2;
output.write(half4(r), gid.xy, gid.z);
}
......@@ -57,3 +57,14 @@ inline void invtrans(int32_t trans[4], int32_t ipos[4], int32_t opos[4]) {
opos[trans[i]] = ipos[i];
}
}
struct MetalConvParam {
short offsetX;
short offsetY;
short offsetZ;
ushort strideX;
ushort strideY;
ushort dilationX;
ushort dilationY;
};
......@@ -69,3 +69,48 @@ kernel void concat(texture2d_array<float, access::read> in0 [[texture(0)]],
}
out.write(r, gid.xy, gid.z);
}
kernel void concat_half(texture2d_array<half, access::read> in0 [[texture(0)]],
texture2d_array<half, access::read> in1 [[texture(1)]],
texture2d_array<half, access::read> in2 [[texture(2)]],
texture2d_array<half, access::read> in3 [[texture(3)]],
texture2d_array<half, access::read> in4 [[texture(4)]],
texture2d_array<half, access::read> in5 [[texture(5)]],
texture2d_array<half, access::read> inx [[texture(6)]],
texture2d_array<half, access::write> out [[texture(7)]],
constant ConcatParam & pm [[buffer(0)]],
uint3 gid [[thread_position_in_grid]]) {
ConcatParam cp = pm;
int xyzn[4] = {int(gid.x), int(gid.y), int(gid.z), 0}, abcd[4], oxyzn[4];
half4 r;
for (int i = 0; i < 4; i++) {
xyzn[3] = i;
xyzn2abcd(cp.odim[3], xyzn, abcd);
int k = abcd[cp.axis] - cp.offset;
int j = 0;
if (k < 0) {
r[i] = inx.read(gid.xy, gid.z)[i];
} else {
for (; j < 6; j++) {
if (k < cp.vdim[j]) {
break;
}
k -= cp.vdim[j];
}
int ta = cp.odim[cp.axis];
abcd[cp.axis] = k;
cp.odim[cp.axis] = cp.vdim[j];
abcd2xyzn(cp.odim[3], abcd, oxyzn);
cp.odim[cp.axis] = ta;
switch (j) {
case 0: r[i] = in0.read(uint2(oxyzn[0], oxyzn[1]), oxyzn[2])[oxyzn[3]]; break;
case 1: r[i] = in1.read(uint2(oxyzn[0], oxyzn[1]), oxyzn[2])[oxyzn[3]]; break;
case 2: r[i] = in2.read(uint2(oxyzn[0], oxyzn[1]), oxyzn[2])[oxyzn[3]]; break;
case 3: r[i] = in3.read(uint2(oxyzn[0], oxyzn[1]), oxyzn[2])[oxyzn[3]]; break;
case 4: r[i] = in4.read(uint2(oxyzn[0], oxyzn[1]), oxyzn[2])[oxyzn[3]]; break;
case 5: r[i] = in5.read(uint2(oxyzn[0], oxyzn[1]), oxyzn[2])[oxyzn[3]]; break;
}
}
}
out.write(r, gid.xy, gid.z);
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <metal_stdlib>
#include "Common.metal"
using namespace metal;
kernel void conv_add_batch_norm_relu_1x1_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half4 *weights [[buffer(1)]],
const device half4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 1;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
half4 output = half4(0.0);
half4 input;
for (uint i = 0; i < input_arr_size; ++i) {
input = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
half4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + i];
output.x += dot(input, weight_x);
half4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + i];
output.y += dot(input, weight_y);
half4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + i];
output.z += dot(input, weight_z);
half4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + i];
output.w += dot(input, weight_w);
}
output = half4(fmax((float4(output) + float4(biase[gid.z])) * new_scale[gid.z] + new_biase[gid.z], 0.0));
outTexture.write(output, gid.xy, gid.z);
}
kernel void conv_add_batch_norm_relu_3x3_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half4 *weights [[buffer(1)]],
const device half4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
const ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
half4 output = half4(0.0);
half4 input[9];
for (uint i = 0; i < input_arr_size; ++i) {
input[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), i);
input[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), i);
input[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), i);
input[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), i);
input[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
input[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), i);
input[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), i);
input[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), i);
input[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), i);
for (int j = 0; j < 9; ++j) {
half4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.x += dot(input[j], weight_x);
half4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.y += dot(input[j], weight_y);
half4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.z += dot(input[j], weight_z);
half4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.w += dot(input[j], weight_w);
}
}
output = half4(fmax((float4(output) + float4(biase[gid.z])) * new_scale[gid.z] + new_biase[gid.z], 0.0));
outTexture.write(output, gid.xy, gid.z);
}
kernel void depthwise_conv_add_batch_norm_relu_3x3_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half *weights [[buffer(1)]],
const device half4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
uint output_slice = gid.z;
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint weithTo = gid.z * kernelHXW * 4;
half4 output = half4(0.0);
half4 inputs[9];
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
inputs[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), output_slice);
inputs[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), output_slice);
inputs[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), output_slice);
inputs[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), output_slice);
inputs[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), output_slice);
inputs[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), output_slice);
inputs[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), output_slice);
for (int j = 0; j < 9; ++j) {
half4 input = inputs[j];
output.x += input.x * weights[weithTo + 0 * kernelHXW + j];
output.y += input.y * weights[weithTo + 1 * kernelHXW + j];
output.z += input.z * weights[weithTo + 2 * kernelHXW + j];
output.w += input.w * weights[weithTo + 3 * kernelHXW + j];
}
output = half4(fmax((float4(output) + float4(biase[gid.z])) * new_scale[gid.z] + new_biase[gid.z], 0.0));
outTexture.write(output, gid.xy, gid.z);
}
/*---------------------------------------------*/
kernel void conv_add_batch_norm_relu_1x1(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 1;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
float4 input;
for (uint i = 0; i < input_arr_size; ++i) {
input = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + i];
output.x += dot(input, weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + i];
output.y += dot(input, weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + i];
output.z += dot(input, weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + i];
output.w += dot(input, weight_w);
}
output = fmax((output + biase[gid.z]) * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
kernel void conv_add_batch_norm_relu_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
const ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
float4 input[9];
for (uint i = 0; i < input_arr_size; ++i) {
input[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), i);
input[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), i);
input[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), i);
input[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), i);
input[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
input[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), i);
input[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), i);
input[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), i);
input[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), i);
for (int j = 0; j < 9; ++j) {
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.x += dot(input[j], weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.y += dot(input[j], weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.z += dot(input[j], weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.w += dot(input[j], weight_w);
}
}
output = fmax((output + biase[gid.z]) * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
kernel void depthwise_conv_add_batch_norm_relu_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
uint output_slice = gid.z;
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint weithTo = gid.z * kernelHXW * 4;
float4 output = float4(0.0);
float4 inputs[9];
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
inputs[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), output_slice);
inputs[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), output_slice);
inputs[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), output_slice);
inputs[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), output_slice);
inputs[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), output_slice);
inputs[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), output_slice);
inputs[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), output_slice);
for (int j = 0; j < 9; ++j) {
float4 input = inputs[j];
output.x += input.x * weights[weithTo + 0 * kernelHXW + j];
output.y += input.y * weights[weithTo + 1 * kernelHXW + j];
output.z += input.z * weights[weithTo + 2 * kernelHXW + j];
output.w += input.w * weights[weithTo + 3 * kernelHXW + j];
}
output = fmax((output + biase[gid.z]) * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <metal_stdlib>
#include "Common.metal"
using namespace metal;
#pragma mark - convAdd
kernel void conv_add_1x1(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 1;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
float4 input;
for (uint i = 0; i < input_arr_size; ++i) {
input = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + i];
output.x += dot(input, weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + i];
output.y += dot(input, weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + i];
output.z += dot(input, weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + i];
output.w += dot(input, weight_w);
}
output = output + biase[gid.z];
outTexture.write(output, gid.xy, gid.z);
}
kernel void conv_add_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
const ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
ushort dilation_x = param.dilationX;
ushort dilation_y = param.dilationY;
float4 input[9];
for (uint i = 0; i < input_arr_size; ++i) {
input[0] = inTexture.sample(sample, float2(posInInput.x - dilation_x, posInInput.y - dilation_y), i);
input[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - dilation_y), i);
input[2] = inTexture.sample(sample, float2(posInInput.x + dilation_x, posInInput.y - dilation_y), i);
input[3] = inTexture.sample(sample, float2(posInInput.x - dilation_x, posInInput.y), i);
input[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
input[5] = inTexture.sample(sample, float2(posInInput.x + dilation_x, posInInput.y), i);
input[6] = inTexture.sample(sample, float2(posInInput.x - dilation_x, posInInput.y + dilation_y), i);
input[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + dilation_y), i);
input[8] = inTexture.sample(sample, float2(posInInput.x + dilation_x, posInInput.y + dilation_y), i);
for (int j = 0; j < 9; ++j) {
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.x += dot(input[j], weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.y += dot(input[j], weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.z += dot(input[j], weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.w += dot(input[j], weight_w);
}
}
output = output + biase[gid.z];
outTexture.write(output, gid.xy, gid.z);
}
kernel void depthwise_conv_add_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
uint output_slice = gid.z;
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint weithTo = gid.z * kernelHXW * 4;
float4 output = float4(0.0);
float4 inputs[9];
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
inputs[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), output_slice);
inputs[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), output_slice);
inputs[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), output_slice);
inputs[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), output_slice);
inputs[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), output_slice);
inputs[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), output_slice);
inputs[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), output_slice);
for (int j = 0; j < 9; ++j) {
float4 input = inputs[j];
output.x += input.x * weights[weithTo + 0 * kernelHXW + j];
output.y += input.y * weights[weithTo + 1 * kernelHXW + j];
output.z += input.z * weights[weithTo + 2 * kernelHXW + j];
output.w += input.w * weights[weithTo + 3 * kernelHXW + j];
}
output = output + biase[gid.z];
outTexture.write(output, gid.xy, gid.z);
}
#pragma mark - half
kernel void conv_add_1x1_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half4 *weights [[buffer(1)]],
const device half4 *biase [[buffer(2)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 1;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
half4 input;
for (uint i = 0; i < input_arr_size; ++i) {
input = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
half4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + i];
output.x += dot(input, weight_x);
half4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + i];
output.y += dot(input, weight_y);
half4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + i];
output.z += dot(input, weight_z);
half4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + i];
output.w += dot(input, weight_w);
}
output = output + float4(biase[gid.z]);
outTexture.write(half4(output), gid.xy, gid.z);
}
kernel void conv_add_3x3_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half4 *weights [[buffer(1)]],
const device half4 *biase [[buffer(2)]],
const device half4 *new_scale [[buffer(3)]],
const device half4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
const ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
ushort dilation_x = param.dilationX;
ushort dilation_y = param.dilationY;
half4 input[9];
for (uint i = 0; i < input_arr_size; ++i) {
input[0] = inTexture.sample(sample, float2(posInInput.x - dilation_x, posInInput.y - dilation_y), i);
input[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - dilation_y), i);
input[2] = inTexture.sample(sample, float2(posInInput.x + dilation_x, posInInput.y - dilation_y), i);
input[3] = inTexture.sample(sample, float2(posInInput.x - dilation_x, posInInput.y), i);
input[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
input[5] = inTexture.sample(sample, float2(posInInput.x + dilation_x, posInInput.y), i);
input[6] = inTexture.sample(sample, float2(posInInput.x - dilation_x, posInInput.y + dilation_y), i);
input[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + dilation_y), i);
input[8] = inTexture.sample(sample, float2(posInInput.x + dilation_x, posInInput.y + dilation_y), i);
for (int j = 0; j < 9; ++j) {
half4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.x += dot(float4(input[j]), float4(weight_x));
half4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.y += dot(float4(input[j]), float4(weight_y));
half4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.z += dot(float4(input[j]), float4(weight_z));
half4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.w += dot(float4(input[j]), float4(weight_w));
}
}
output = output + float4(biase[gid.z]);
outTexture.write(half4(output), gid.xy, gid.z);
}
kernel void depthwise_conv_add_3x3_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half *weights [[buffer(1)]],
const device half4 *biase [[buffer(2)]],
const device half4 *new_scale [[buffer(3)]],
const device half4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
uint output_slice = gid.z;
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint weithTo = gid.z * kernelHXW * 4;
float4 output = float4(0.0);
half4 inputs[9];
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
inputs[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), output_slice);
inputs[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), output_slice);
inputs[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), output_slice);
inputs[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), output_slice);
inputs[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), output_slice);
inputs[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), output_slice);
inputs[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), output_slice);
for (int j = 0; j < 9; ++j) {
half4 input = inputs[j];
output.x += float(input.x) * float(weights[weithTo + 0 * kernelHXW + j]);
output.y += float(input.y) * float(weights[weithTo + 1 * kernelHXW + j]);
output.z += float(input.z) * float(weights[weithTo + 2 * kernelHXW + j]);
output.w += input.w * weights[weithTo + 3 * kernelHXW + j];
}
output = output + float4(biase[gid.z]);
outTexture.write(half4(output), gid.xy, gid.z);
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <metal_stdlib>
#include "Common.metal"
using namespace metal;
#pragma mark - conv bn relu
kernel void conv_batch_norm_relu_1x1(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *new_scale [[buffer(2)]],
const device float4 *new_biase [[buffer(3)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 1;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
float4 input;
for (uint i = 0; i < input_arr_size; ++i) {
input = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + i];
output.x += dot(input, weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + i];
output.y += dot(input, weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + i];
output.z += dot(input, weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + i];
output.w += dot(input, weight_w);
}
output = fmax(output * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
kernel void conv_batch_norm_relu_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *new_scale [[buffer(2)]],
const device float4 *new_biase [[buffer(3)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
const ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
float4 input[9];
for (uint i = 0; i < input_arr_size; ++i) {
input[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), i);
input[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), i);
input[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), i);
input[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), i);
input[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
input[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), i);
input[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), i);
input[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), i);
input[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), i);
for (int j = 0; j < 9; ++j) {
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.x += dot(input[j], weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.y += dot(input[j], weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.z += dot(input[j], weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.w += dot(input[j], weight_w);
}
}
output = fmax(output * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
kernel void depthwise_conv_batch_norm_relu_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float *weights [[buffer(1)]],
const device float4 *new_scale [[buffer(2)]],
const device float4 *new_biase [[buffer(3)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
uint output_slice = gid.z;
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint weithTo = gid.z * kernelHXW * 4;
float4 output = float4(0.0);
float4 inputs[9];
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
inputs[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), output_slice);
inputs[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), output_slice);
inputs[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), output_slice);
inputs[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), output_slice);
inputs[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), output_slice);
inputs[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), output_slice);
inputs[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), output_slice);
for (int j = 0; j < 9; ++j) {
float4 input = inputs[j];
output.x += input.x * weights[weithTo + 0 * kernelHXW + j];
output.y += input.y * weights[weithTo + 1 * kernelHXW + j];
output.z += input.z * weights[weithTo + 2 * kernelHXW + j];
output.w += input.w * weights[weithTo + 3 * kernelHXW + j];
}
output = fmax(output * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
#pragma mark - half
kernel void conv_batch_norm_relu_1x1_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half4 *weights [[buffer(1)]],
const device half4 *new_scale [[buffer(2)]],
const device half4 *new_biase [[buffer(3)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 1;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
half4 input;
for (uint i = 0; i < input_arr_size; ++i) {
input = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
half4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + i];
output.x += dot(float4(input), float4(weight_x));
half4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + i];
output.y += dot(float4(input), float4(weight_y));
half4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + i];
output.z += dot(float4(input), float4(weight_z));
half4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + i];
output.w += dot(float4(input), float4(weight_w));
}
output = fmax(output * float4(new_scale[gid.z]) + float4(new_biase[gid.z]), 0.0);
outTexture.write(half4(output), gid.xy, gid.z);
}
kernel void conv_batch_norm_relu_3x3_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half4 *weights [[buffer(1)]],
const device half4 *new_scale [[buffer(2)]],
const device half4 *new_biase [[buffer(3)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
const ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
half4 input[9];
for (uint i = 0; i < input_arr_size; ++i) {
input[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), i);
input[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), i);
input[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), i);
input[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), i);
input[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
input[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), i);
input[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), i);
input[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), i);
input[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), i);
for (int j = 0; j < 9; ++j) {
half4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.x += dot(float4(input[j]), float4(weight_x));
half4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.y += dot(float4(input[j]), float4(weight_y));
half4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.z += dot(float4(input[j]), float4(weight_z));
half4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.w += dot(float4(input[j]), float4(weight_w));
}
}
output = fmax(output * float4(new_scale[gid.z]) + float4(new_biase[gid.z]), 0.0);
outTexture.write(half4(output), gid.xy, gid.z);
}
kernel void depthwise_conv_batch_norm_relu_3x3_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half *weights [[buffer(1)]],
const device half4 *new_scale [[buffer(2)]],
const device half4 *new_biase [[buffer(3)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
uint output_slice = gid.z;
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint weithTo = gid.z * kernelHXW * 4;
float4 output = float4(0.0);
half4 inputs[9];
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
inputs[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), output_slice);
inputs[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), output_slice);
inputs[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), output_slice);
inputs[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), output_slice);
inputs[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), output_slice);
inputs[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), output_slice);
inputs[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), output_slice);
for (int j = 0; j < 9; ++j) {
half4 input = inputs[j];
output.x += input.x * weights[weithTo + 0 * kernelHXW + j];
output.y += input.y * weights[weithTo + 1 * kernelHXW + j];
output.z += input.z * weights[weithTo + 2 * kernelHXW + j];
output.w += input.w * weights[weithTo + 3 * kernelHXW + j];
}
output = fmax(output * float4(new_scale[gid.z]) + float4(new_biase[gid.z]), 0.0);
outTexture.write(half4(output), gid.xy, gid.z);
}
......@@ -44,18 +44,6 @@ kernel void resize(texture2d<half, access::read> inTexture [[texture(0)]],
}
//kernel void texture2d_to_2d_array(texture2d<half, access::read> inTexture [[texture(0)]],
// texture2d_array<half, access::write> outTexture [[texture(1)]],
// uint3 gid [[thread_position_in_grid]]) {
// if (gid.x >= inTexture.get_width() ||
// gid.y >= inTexture.get_height()){
// return;
// }
// const half4 input = inTexture.read(gid.xy);
// outTexture.write(input, gid.xy, 0);
//}
kernel void texture2d_to_2d_array(texture2d<float, access::read> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
uint3 gid [[thread_position_in_grid]]) {
......@@ -67,10 +55,9 @@ kernel void texture2d_to_2d_array(texture2d<float, access::read> inTexture [[tex
outTexture.write(input, gid.xy, 0);
}
kernel void texture2d_to_2d_array_half(texture2d<half, access::read> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
uint3 gid [[thread_position_in_grid]]) {
texture2d_array<half, access::write> outTexture [[texture(1)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= inTexture.get_width() ||
gid.y >= inTexture.get_height()){
return;
......@@ -79,113 +66,4 @@ kernel void texture2d_to_2d_array_half(texture2d<half, access::read> inTexture [
outTexture.write(input, gid.xy, 0);
}
struct PoolParam {
int ksizeX;
int ksizeY;
int strideX;
int strideY;
int paddingX;
int paddingY;
int poolType;
};
kernel void pool(texture2d_array<float, access::read> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant PoolParam &pm [[buffer(0)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) return;
int xmin = gid.x * pm.strideX - pm.paddingX;
int xmax = min(xmin + pm.ksizeX, int(inTexture.get_width()));
xmin = max(xmin, 0);
int ymin = gid.y * pm.strideX - pm.paddingX;
int ymax = min(ymin + pm.ksizeX, int(inTexture.get_height()));
ymin = max(ymin, 0);
float4 r = 0;
if (pm.poolType == 0) {
r = inTexture.read(uint2(xmin, ymin), gid.z);
for (int x = xmin; x < xmax; x++) {
for (int y = ymin; y < ymax; y++) {
r = fmax(r, inTexture.read(uint2(x, y), gid.z));
}
}
} else if (pm.poolType == 1) {
for (int x = xmin; x < xmax; x++) {
for (int y = ymin; y < ymax; y++) {
r += inTexture.read(uint2(x, y), gid.z);
}
}
r /= pm.ksizeX * pm.ksizeY;
}
outTexture.write(r, gid.xy, gid.z);
}
kernel void pool_half(texture2d_array<half, access::read> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant PoolParam &pm [[buffer(0)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) return;
int xmin = gid.x * pm.strideX - pm.paddingX;
int xmax = min(xmin + pm.ksizeX, int(inTexture.get_width()));
xmin = max(xmin, 0);
int ymin = gid.y * pm.strideX - pm.paddingX;
int ymax = min(ymin + pm.ksizeX, int(inTexture.get_height()));
ymin = max(ymin, 0);
half4 r = 0;
if (pm.poolType == 0) {
r = inTexture.read(uint2(xmin, ymin), gid.z);
for (int x = xmin; x < xmax; x++) {
for (int y = ymin; y < ymax; y++) {
r = fmax(r, inTexture.read(uint2(x, y), gid.z));
}
}
} else if (pm.poolType == 1) {
for (int x = xmin; x < xmax; x++) {
for (int y = ymin; y < ymax; y++) {
r += inTexture.read(uint2(x, y), gid.z);
}
}
r /= pm.ksizeX * pm.ksizeY;
}
outTexture.write(r, gid.xy, gid.z);
}
struct TransposeParam {
int iC;
int oC;
int axis[4];
};
kernel void transpose(texture2d_array<float, access::read> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant TransposeParam &pm [[buffer(0)]],
uint3 gid [[thread_position_in_grid]]) {
if ((pm.axis[0] == 0) && (pm.axis[1] == 1) && (pm.axis[2] == 2) && (pm.axis[3] == 3)) {
// do nothing
float4 r = inTexture.read(gid.xy, gid.z);
outTexture.write(r, gid.xy, gid.z);
} else {
float4 r;
for (int n = 0; n < 4; n++) {
int ixyzn[] = {int(gid.x), int(gid.y), int(gid.z), n};
int iabcd[4], oabcd[4], oxyzn[4];
xyzn2abcd(pm.oC, ixyzn, iabcd);
oabcd[pm.axis[0]] = iabcd[0];
oabcd[pm.axis[1]] = iabcd[1];
oabcd[pm.axis[2]] = iabcd[2];
oabcd[pm.axis[3]] = iabcd[3];
abcd2xyzn(pm.iC, oabcd, oxyzn);
float4 rt = inTexture.read(uint2(oxyzn[0], oxyzn[1]), oxyzn[2]);
r[n] = rt[oxyzn[3]];
}
outTexture.write(r, gid.xy, gid.z);
}
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <metal_stdlib>
#include "Common.metal"
using namespace metal;
struct PoolParam {
int ksizeX;
int ksizeY;
int strideX;
int strideY;
int paddingX;
int paddingY;
int poolType;
};
kernel void pool(texture2d_array<float, access::read> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant PoolParam &pm [[buffer(0)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) return;
int xmin = gid.x * pm.strideX - pm.paddingX;
int xmax = min(xmin + pm.ksizeX, int(inTexture.get_width()));
xmin = max(xmin, 0);
int ymin = gid.y * pm.strideX - pm.paddingX;
int ymax = min(ymin + pm.ksizeX, int(inTexture.get_height()));
ymin = max(ymin, 0);
float4 r = 0;
if (pm.poolType == 0) {
r = inTexture.read(uint2(xmin, ymin), gid.z);
for (int x = xmin; x < xmax; x++) {
for (int y = ymin; y < ymax; y++) {
r = fmax(r, inTexture.read(uint2(x, y), gid.z));
}
}
} else if (pm.poolType == 1) {
for (int x = xmin; x < xmax; x++) {
for (int y = ymin; y < ymax; y++) {
r += inTexture.read(uint2(x, y), gid.z);
}
}
r /= pm.ksizeX * pm.ksizeY;
}
outTexture.write(r, gid.xy, gid.z);
}
kernel void pool_half(texture2d_array<half, access::read> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant PoolParam &pm [[buffer(0)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) return;
int xmin = gid.x * pm.strideX - pm.paddingX;
int xmax = min(xmin + pm.ksizeX, int(inTexture.get_width()));
xmin = max(xmin, 0);
int ymin = gid.y * pm.strideX - pm.paddingX;
int ymax = min(ymin + pm.ksizeX, int(inTexture.get_height()));
ymin = max(ymin, 0);
half4 r = 0;
if (pm.poolType == 0) {
r = inTexture.read(uint2(xmin, ymin), gid.z);
for (int x = xmin; x < xmax; x++) {
for (int y = ymin; y < ymax; y++) {
r = fmax(r, inTexture.read(uint2(x, y), gid.z));
}
}
} else if (pm.poolType == 1) {
for (int x = xmin; x < xmax; x++) {
for (int y = ymin; y < ymax; y++) {
r += inTexture.read(uint2(x, y), gid.z);
}
}
r /= pm.ksizeX * pm.ksizeY;
}
outTexture.write(r, gid.xy, gid.z);
}
......@@ -15,8 +15,6 @@
#include <metal_stdlib>
using namespace metal;
kernel void prelu_channel(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
const device float4 *alpha [[buffer(0)]],
......@@ -82,3 +80,4 @@ kernel void prelu_other(texture2d_array<float, access::sample> inTexture [[textu
output.w = input.w > 0 ? input.w : (alpha_value * input.w);
outTexture.write(output, gid.xy, gid.z);
}
......@@ -35,8 +35,8 @@ struct PriorBoxMetalParam {
kernel void prior_box(texture2d_array<float, access::read> inTexture [[texture(0)]],
texture2d_array<float, access::write> outBoxTexture [[texture(1)]],
texture2d_array<float, access::write> varianceTexture [[texture(2)]],
constant PriorBoxMetalParam &param [[buffer(0)]],
const device float *aspect_ratios [[buffer(1)]],
const device float *aspect_ratios [[buffer(0)]],
constant PriorBoxMetalParam &param [[buffer(1)]],
const device float4 *variances [[buffer(2)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outBoxTexture.get_width() ||
......@@ -96,3 +96,68 @@ kernel void prior_box(texture2d_array<float, access::read> inTexture [[texture(0
}
}
kernel void prior_box_half(texture2d_array<half, access::read> inTexture [[texture(0)]],
texture2d_array<half, access::write> outBoxTexture [[texture(1)]],
texture2d_array<half, access::write> varianceTexture [[texture(2)]],
const device half *aspect_ratios [[buffer(0)]],
constant PriorBoxMetalParam &param [[buffer(1)]],
const device float4 *variances [[buffer(2)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outBoxTexture.get_width() ||
gid.y >= outBoxTexture.get_height() ||
gid.z >= outBoxTexture.get_array_size()) return;
float center_x = (gid.x + param.offset) * param.stepWidth;
float center_y = (gid.y + param.offset) * param.stepHeight;
float box_width, box_height;
if (gid.z < param.aspecRatiosSize) {
half ar = aspect_ratios[gid.z];
box_width = param.minSize * sqrt(ar) / 2;
box_height = param.minSize / sqrt(ar) / 2;
float4 box;
box.x = (center_x - box_width) / param.imageWidth;
box.y = (center_y - box_height) / param.imageHeight;
box.z = (center_x + box_width) / param.imageWidth;
box.w = (center_y + box_height) / param.imageHeight;
float4 res;
if (param.clip) {
res = fmin(fmax(box, 0.0), 1.0);
} else {
res = box;
}
outBoxTexture.write(half4(res), gid.xy, gid.z);
} else if (gid.z >= param.aspecRatiosSize) {
if (param.maxSizeSize > 0) {
box_width = box_height = sqrt(param.minSize * param.maxSize) / 2;
float4 max_box;
max_box.x = (center_x - box_width) / param.imageWidth;
max_box.y = (center_y - box_height) / param.imageHeight;
max_box.z = (center_x + box_width) / param.imageWidth;
max_box.w = (center_y + box_height) / param.imageHeight;
float4 res;
if (param.clip) {
res = min(max(max_box, 0.0), 1.0);
} else {
res = max_box;
}
outBoxTexture.write(half4(max_box), gid.xy, gid.z);
}
}
float4 variance = variances[0];
if (gid.z < param.numPriors) {
float4 variances_output;
variances_output.x = variance.x;
variances_output.y = variance.y;
variances_output.z = variance.z;
variances_output.w = variance.w;
varianceTexture.write(half4(variances_output), gid.xy, gid.z);
}
}
......@@ -102,14 +102,36 @@ kernel void reshape(texture2d_array<float, access::read> inTexture [[texture(0)]
outTexture.write(r, gid.xy, gid.z);
}
kernel void reshape_half(texture2d_array<half, access::read> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) return;
half4 r = inTexture.read(uint2(0, 0), gid.x);
outTexture.write(r, gid.xy, gid.z);
kernel void reshape_half(texture2d_array<half, access::read> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant ReshapeParam &rp [[buffer(0)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) return;
int oxyzn[4] = {int(gid.x), int(gid.y), int(gid.z), 0}, oabcd[4], ixyzn[4], iabcd[4];
ReshapeParam lrp = rp;
int oC = lrp.odim[lrp.otrans[3]];
int iC = lrp.idim[lrp.itrans[3]];
int count = lrp.odim[0] * lrp.odim[1] * lrp.odim[2] * lrp.odim[3];
half4 r;
for (int n = 0; n < 4; n++) {
oxyzn[3] = n;
xyzn2abcd(oC, oxyzn, oabcd);
int tabcd[4];
invtrans(lrp.otrans, oabcd, tabcd);
int index = abcd2index(lrp.odim, tabcd);
if (index < count) {
index2abcd(lrp.idim, index, tabcd);
trans(lrp.itrans, tabcd, iabcd);
abcd2xyzn(iC, iabcd, ixyzn);
r[n] = inTexture.read(uint2(ixyzn[0], ixyzn[1]), ixyzn[2])[ixyzn[3]];
} else {
r[n] = 0;
}
}
outTexture.write(r, gid.xy, gid.z);
}
......@@ -57,25 +57,44 @@ kernel void softmax(texture2d_array<float, access::read> inTexture [[texture(0)]
rr = exp(rr - maxv) / sum;
outTexture.write(rr, gid.xy, gid.z);
}
//
//kernel void softmax_half(texture2d_array<half, access::read> inTexture [[texture(0)]],
// texture2d_array<half, access::write> outTexture [[texture(1)]],
// uint3 gid [[thread_position_in_grid]]) {
// if (gid.x >= outTexture.get_width() ||
// gid.y >= outTexture.get_height() ||
// gid.z >= outTexture.get_array_size()) return;
// int zsize = inTexture.get_array_size();
// half maxv = inTexture.read(uint2(0, 0), 0)[0];
// for (int z = 0; z < zsize; z++) {
// half4 r = inTexture.read(uint2(0, 0), z);
// maxv = max(maxv, max(max(r[0], r[1]), max(r[2], r[3])));
// }
// float sum = 0;
// for (int z = 0; z < zsize; z++) {
// half4 r = inTexture.read(uint2(0, 0), z);
// sum += exp(r[0] - maxv) + exp(r[1] - maxv) + exp(r[2] - maxv) + exp(r[3] - maxv);
// }
// half4 rr = inTexture.read(gid.xy, gid.z);
// rr = exp(rr - maxv) / sum;
// outTexture.write(rr, gid.xy, gid.z);
//}
kernel void softmax_half(texture2d_array<half, access::read> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant SoftmaxParam &sp [[buffer(0)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) return;
// int zsize = inTexture.get_array_size();
half maxv = inTexture.read(gid.xy, 0)[0];
int group = sp.K / 4;
int remain = sp.K % 4;
for (int z = 0; z < group; z++) {
half4 r = inTexture.read(gid.xy, z);
maxv = max(maxv, max(r[0], max(r[1], max(r[2], r[3]))));
}
if (remain > 0) {
half4 r = inTexture.read(gid.xy, group);
for (int i = 0; i < remain; i++) {
maxv = max(maxv, r[i]);
}
}
float4 rsum = {0, 0, 0, 0};
for (int z = 0; z < group; z++) {
half4 r = inTexture.read(gid.xy, z);
rsum += exp(float4(r) - float4(maxv));
}
float sum = rsum[0] + rsum[1] + rsum[2] + rsum[3];
if (remain > 0) {
half4 r = inTexture.read(gid.xy, group);
for (int i = 0; i < remain; i++) {
sum += exp(float(r[i]) - float(maxv));
}
}
half4 rr = inTexture.read(gid.xy, gid.z);
rr = half4(exp(float4(rr) - float(maxv)) / sum);
outTexture.write(rr, gid.xy, gid.z);
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <metal_stdlib>
#include "Common.metal"
using namespace metal;
struct TransposeParam {
int iC;
int oC;
int axis[4];
};
kernel void transpose(texture2d_array<float, access::read> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant TransposeParam &pm [[buffer(0)]],
uint3 gid [[thread_position_in_grid]]) {
if ((pm.axis[0] == 0) && (pm.axis[1] == 1) && (pm.axis[2] == 2) && (pm.axis[3] == 3)) {
// do nothing
float4 r = inTexture.read(gid.xy, gid.z);
outTexture.write(r, gid.xy, gid.z);
} else {
float4 r;
for (int n = 0; n < 4; n++) {
int ixyzn[] = {int(gid.x), int(gid.y), int(gid.z), n};
int iabcd[4], oabcd[4], oxyzn[4];
xyzn2abcd(pm.oC, ixyzn, iabcd);
oabcd[pm.axis[0]] = iabcd[0];
oabcd[pm.axis[1]] = iabcd[1];
oabcd[pm.axis[2]] = iabcd[2];
oabcd[pm.axis[3]] = iabcd[3];
abcd2xyzn(pm.iC, oabcd, oxyzn);
float4 rt = inTexture.read(uint2(oxyzn[0], oxyzn[1]), oxyzn[2]);
r[n] = rt[oxyzn[3]];
}
outTexture.write(r, gid.xy, gid.z);
}
}
kernel void transpose_half(texture2d_array<half, access::read> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant TransposeParam &pm [[buffer(0)]],
uint3 gid [[thread_position_in_grid]]) {
if ((pm.axis[0] == 0) && (pm.axis[1] == 1) && (pm.axis[2] == 2) && (pm.axis[3] == 3)) {
// do nothing
half4 r = inTexture.read(gid.xy, gid.z);
outTexture.write(r, gid.xy, gid.z);
} else {
half4 r;
for (int n = 0; n < 4; n++) {
int ixyzn[] = {int(gid.x), int(gid.y), int(gid.z), n};
int iabcd[4], oabcd[4], oxyzn[4];
xyzn2abcd(pm.oC, ixyzn, iabcd);
oabcd[pm.axis[0]] = iabcd[0];
oabcd[pm.axis[1]] = iabcd[1];
oabcd[pm.axis[2]] = iabcd[2];
oabcd[pm.axis[3]] = iabcd[3];
abcd2xyzn(pm.iC, oabcd, oxyzn);
half4 rt = inTexture.read(uint2(oxyzn[0], oxyzn[1]), oxyzn[2]);
r[n] = rt[oxyzn[3]];
}
outTexture.write(r, gid.xy, gid.z);
}
}
......@@ -60,7 +60,7 @@ class PoolOp<P: PrecisionType>: Operator<PoolKernel<P>, PoolParam<P>>, Runable,
func delogOutput() {
print(" \(type) output: ")
print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3])).strideArray())
print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3]), texturePrecision: computePrecision).strideArray())
// print("pool2d delog")
......
......@@ -51,13 +51,13 @@ class PreluOp<P: PrecisionType>: Operator<PreluKernel<P>, PreluParam<P>>, Runabl
func delogOutput() {
print(" \(type) input: ")
print(para.input.metalTexture.toTensor(dim: (n: para.input.originDim[0], c: para.input.originDim[1], h: para.input.originDim[2], w: para.input.originDim[3])).strideArray())
print(para.input.metalTexture.toTensor(dim: (n: para.input.originDim[0], c: para.input.originDim[1], h: para.input.originDim[2], w: para.input.originDim[3]), texturePrecision: computePrecision).strideArray())
print(" \(type) Alpha: ")
let _: Float32? = para.alpha.buffer.logDesc(header: " alpha: ", stridable: false)
print(" \(type) output: ")
print(para.output.metalTexture.toTensor(dim: (n: para.output.originDim[0], c: para.output.originDim[1], h: para.output.originDim[2], w: para.output.originDim[3])).strideArray())
print(para.output.metalTexture.toTensor(dim: (n: para.output.originDim[0], c: para.output.originDim[1], h: para.output.originDim[2], w: para.output.originDim[3]), texturePrecision: computePrecision).strideArray())
}
// print("softmax delog")
......
......@@ -39,7 +39,7 @@ class PriorBoxParam<P: PrecisionType>: OpParam {
let minSizes: [Float32]
let maxSizes: [Float32]
let aspectRatios: [Float32]
var newAspectRatios: [Float32]?
var newAspectRatios: MTLBuffer?
let variances: [Float32]
let flip: Bool
let clip: Bool
......@@ -69,14 +69,22 @@ class PriorBoxOp<P: PrecisionType>: Operator<PriorBoxKernel<P>, PriorBoxParam<P>
}
func delogOutput() {
print(" \(type) output: ")
print(" \(type) output: ")
// output
let outputArray = para.output.metalTexture.floatArray { (o: Float32) -> Float32 in
return o
}
let outputArray = para.output.metalTexture.float32Array()
print(outputArray)
// output
// print(" \(type) output: ")
// let originDim = para.output.originDim
// if para.output.transpose == [0, 1, 2, 3] {
// let outputArray: [Float32] = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]), texturePrecision: computePrecision)
// print(outputArray.strideArray())
// } else if para.output.transpose == [0, 2, 3, 1] {
// print(para.output.metalTexture.toTensor(dim: (n: originDim[0], c: originDim[1], h: originDim[2], w: originDim[3]), texturePrecision: computePrecision).strideArray())
// } else {
// print(" not implement")
// }
// writeToLibrary(fileName: "box_out", array: outputArray)
......
......@@ -46,7 +46,7 @@ class ReluOp<P: PrecisionType>: Operator<ReluKernel<P>, ReluParam<P>>, Runable,
func delogOutput() {
print(" \(type) output: ")
print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3])).strideArray())
print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3]), texturePrecision: computePrecision).strideArray())
}
}
......
......@@ -76,7 +76,7 @@ class ReshapeOp<P: PrecisionType>: Operator<ReshapeKernel<P>, ReshapeParam<P>>,
let originDim = para.output.originDim
let outputArray = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]))
let outputArray: [Float32] = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]), texturePrecision: computePrecision)
print(outputArray.strideArray())
}
......
......@@ -52,9 +52,9 @@ class SoftmaxOp<P: PrecisionType>: Operator<SoftmaxKernel<P>, SoftmaxParam<P>>,
func delogOutput() {
print("softmax delog")
let originDim = para.output.originDim
let outputArray = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]))
let outputArray: [Float32] = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]), texturePrecision: computePrecision)
print(outputArray.strideArray())
}
}
......@@ -48,9 +48,15 @@ class TransposeOp<P: PrecisionType>: Operator<TransposeKernel<P>, TransposeParam
func delogOutput() {
print(" \(type) output: ")
let originDim = para.output.tensorDim
let outputArray = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]))
print(outputArray.strideArray())
let originDim = para.output.originDim
if para.output.transpose == [0, 1, 2, 3] {
let outputArray = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]))
print(outputArray.strideArray())
} else if para.output.transpose == [0, 2, 3, 1] {
print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3])).strideArray())
} else {
print(" not implement")
}
}
}
......
......@@ -48,8 +48,10 @@ extension BlockDesc: CustomStringConvertible, CustomDebugStringConvertible {
var description: String {
var str = ""
for op in ops {
str += op.description
for i in 0..<ops.count {
str += " op \(i): "
let op = ops[i]
str += op.description
}
for varDesc in vars {
......
......@@ -12,249 +12,244 @@
See the License for the specific language governing permissions and
limitations under the License. */
import Accelerate
import Foundation
protocol Tensorial: CustomStringConvertible, CustomDebugStringConvertible{
var dim: Dim { get set }
func numel() -> Int
var layout: DataLayout { get }
var dim: Dim { get set }
func numel() -> Int
var layout: DataLayout { get }
}
extension Tensorial {
func numel() -> Int {
return dim.numel()
}
func numel() -> Int {
return dim.numel()
}
}
public enum ComputePrecision {
case Float32, Float16
}
class Tensor<P: PrecisionType>: Tensorial {
enum BufferPrecision {
case Float32, Float16
var data: Data
var dim: Dim
var buffer: MTLBuffer!
private(set) var layout: DataLayout
class Data {
init(inSize: Int, inPointer: UnsafeMutablePointer<P>) {
size = inSize
pointer = inPointer
}
var data: Data
var dim: Dim
var buffer: MTLBuffer!
private(set) var layout: DataLayout
class Data {
init(inSize: Int, inPointer: UnsafeMutablePointer<P>) {
size = inSize
pointer = inPointer
}
let size: Int
var pointer: UnsafeMutablePointer<P>
subscript(index: Int) -> P{
get {
return pointer[index]
}
set {
pointer[index] = newValue
}
}
func release() {
pointer.deinitialize(count: size)
pointer.deallocate()
}
deinit {
// release()
}
let size: Int
var pointer: UnsafeMutablePointer<P>
subscript(index: Int) -> P{
get {
return pointer[index]
}
set {
pointer[index] = newValue
}
}
required init(inDim: Dim, inLayout: DataLayout = DataLayout.NCHW()) {
dim = inDim
let size = inDim.numel() * MemoryLayout<P>.size
let pointer = UnsafeMutablePointer<P>.allocate(capacity: size)
data = Data.init(inSize: size, inPointer: pointer)
layout = inLayout
func release() {
pointer.deinitialize(count: size)
pointer.deallocate()
}
deinit {
// release()
}
}
required init(inDim: Dim, inLayout: DataLayout = DataLayout.NCHW()) {
dim = inDim
let size = inDim.numel() * MemoryLayout<P>.size
let pointer = UnsafeMutablePointer<P>.allocate(capacity: size)
data = Data.init(inSize: size, inPointer: pointer)
layout = inLayout
}
func convert(to: DataLayout) {
guard to != layout else {
return
}
func convert(to: DataLayout) {
guard to != layout else {
return
}
guard dim.cout() == 4 else {
return
}
guard layout == DataLayout.NCHW() && to == DataLayout.NHWC() else {
// other not support
return
}
let newPointer = UnsafeMutablePointer<P>.allocate(capacity: data.size)
if layout == DataLayout.NCHW() {
NCHW2NHWC(newPtr: newPointer)
}
data.release()
data.pointer = newPointer
layout = to
guard dim.cout() == 4 else {
return
}
func float32ToFloat16(input: UnsafeMutablePointer<Float32>, output: UnsafeMutableRawPointer, count: Int) {
var float32Buffer = vImage_Buffer(data: input, height: 1, width: UInt(count), rowBytes: count * 4)
var float16buffer = vImage_Buffer(data: output, height: 1, width: UInt(count), rowBytes: count * 2)
guard vImageConvert_PlanarFtoPlanar16F(&float32Buffer, &float16buffer, 0) == kvImageNoError else {
fatalError(" float 32 to float 16 error ! ")
}
guard layout == DataLayout.NCHW() && to == DataLayout.NHWC() else {
// other not support
return
}
let newPointer = UnsafeMutablePointer<P>.allocate(capacity: data.size)
func initBuffer(device: MTLDevice, precision: BufferPrecision = .Float32) {
guard let floatPointer = data.pointer as? UnsafeMutablePointer<Float32> else {
fatalError(" not support yet ")
}
let precisionSize: Int
switch precision {
case .Float32:
precisionSize = 4
case .Float16:
precisionSize = 2
}
if dim.cout() == 4 {
if layout == DataLayout.NHWC() {
let C = dim[3]
let cSlices = (C + 3) / 4
let paddedC = cSlices * 4
let count = paddedC * dim[0] * dim[1] * dim[2]
if C == paddedC {
buffer = device.makeBuffer(length: count * precisionSize)
switch precision {
case .Float32:
buffer?.contents().copyMemory(from: data.pointer, byteCount: count * MemoryLayout<P>.stride)
case .Float16:
float32ToFloat16(input: floatPointer, output: buffer.contents(), count: count)
}
} else if C == 1 {
buffer = device.makeBuffer(length: numel() * precisionSize)
switch precision {
case .Float32:
buffer?.contents().copyMemory(from: data.pointer, byteCount: numel() * MemoryLayout<P>.stride)
case .Float16:
float32ToFloat16(input: floatPointer, output: buffer.contents(), count: numel())
}
} else {
buffer = device.makeBuffer(length: count * precisionSize)
let convertedPointer = UnsafeMutablePointer<Float32>.allocate(capacity: count)
var tmpPointer = floatPointer
var dstPtr = convertedPointer
for _ in 0..<dim[0] * dim[1] * dim[2] {
for j in 0..<paddedC {
if j < C {
dstPtr[j] = tmpPointer[j]
}
}
tmpPointer += C
dstPtr += paddedC
}
switch precision {
case .Float32:
buffer?.contents().copyMemory(from: convertedPointer, byteCount: count * MemoryLayout<P>.stride)
case .Float16:
float32ToFloat16(input: convertedPointer, output: buffer.contents(), count: count)
}
convertedPointer.deinitialize(count: count)
convertedPointer.deallocate()
}
}
} else if dim.cout() == 1 {
buffer = device.makeBuffer(length: numel() * precisionSize)
switch precision {
case .Float32:
buffer?.contents().copyMemory(from: data.pointer, byteCount: numel() * MemoryLayout<P>.stride)
case .Float16:
float32ToFloat16(input: floatPointer, output: buffer.contents(), count: numel())
}
} else {
fatalError(" not support !")
}
//TODO: release
data.release()
if layout == DataLayout.NCHW() {
NCHW2NHWC(newPtr: newPointer)
}
var width: Int {
get {
if dim.cout() == 4 {
return dim[1]
} else {
fatalError()
}
}
data.release()
data.pointer = newPointer
layout = to
}
func initBuffer(device: MTLDevice, precision: ComputePrecision = .Float16) {
guard let floatPointer = data.pointer as? UnsafeMutablePointer<Float32> else {
fatalError(" not support yet ")
}
var height: Int {
get {
if dim.cout() == 4 {
return dim[2]
} else {
fatalError()
}
}
let precisionSize: Int
switch precision {
case .Float32:
precisionSize = 4
case .Float16:
precisionSize = 2
}
var channel: Int {
get {
if dim.cout() == 4 {
return dim[3]
} else {
fatalError()
if dim.cout() == 4 {
if layout == DataLayout.NHWC() {
let C = dim[3]
let cSlices = (C + 3) / 4
let paddedC = cSlices * 4
let count = paddedC * dim[0] * dim[1] * dim[2]
if C == paddedC {
buffer = device.makeBuffer(length: count * precisionSize)
switch precision {
case .Float32:
buffer?.contents().copyMemory(from: data.pointer, byteCount: count * MemoryLayout<P>.stride)
case .Float16:
float32ToFloat16(input: floatPointer, output: buffer.contents(), count: count)
}
} else if C == 1 {
buffer = device.makeBuffer(length: numel() * precisionSize)
switch precision {
case .Float32:
buffer?.contents().copyMemory(from: data.pointer, byteCount: numel() * MemoryLayout<P>.stride)
case .Float16:
float32ToFloat16(input: floatPointer, output: buffer.contents(), count: numel())
}
} else {
buffer = device.makeBuffer(length: count * precisionSize)
let convertedPointer = UnsafeMutablePointer<Float32>.allocate(capacity: count)
var tmpPointer = floatPointer
var dstPtr = convertedPointer
for _ in 0..<dim[0] * dim[1] * dim[2] {
for j in 0..<paddedC {
if j < C {
dstPtr[j] = tmpPointer[j]
}
}
}
tmpPointer += C
dstPtr += paddedC
}
switch precision {
case .Float32:
buffer?.contents().copyMemory(from: convertedPointer, byteCount: count * MemoryLayout<P>.stride)
case .Float16:
float32ToFloat16(input: convertedPointer, output: buffer.contents(), count: count)
}
convertedPointer.deinitialize(count: count)
convertedPointer.deallocate()
}
}
} else if dim.cout() == 1 {
let num = ((numel() + 3) / 4) * 4
buffer = device.makeBuffer(length: num * precisionSize)
switch precision {
case .Float32:
buffer?.contents().copyMemory(from: data.pointer, byteCount: num * MemoryLayout<P>.stride)
case .Float16:
float32ToFloat16(input: floatPointer, output: buffer.contents(), count: num)
}
} else {
fatalError(" not support !")
}
//TODO: release
data.release()
}
var width: Int {
get {
if dim.cout() == 4 {
return dim[1]
} else {
fatalError()
}
}
}
var height: Int {
get {
if dim.cout() == 4 {
return dim[2]
} else {
fatalError()
}
}
}
var channel: Int {
get {
if dim.cout() == 4 {
return dim[3]
} else {
fatalError()
}
}
}
func NCHW2NHWC(newPtr: UnsafeMutablePointer<P>) {
let N = dim[0]
let C = dim[1]
let H = dim[2]
let W = dim[3]
let HXW = H * W
let CXHXW = C * H * W
func NCHW2NHWC(newPtr: UnsafeMutablePointer<P>) {
let N = dim[0]
let C = dim[1]
let H = dim[2]
let W = dim[3]
let HXW = H * W
let CXHXW = C * H * W
var index: Int = 0
for n in 0..<N {
for h in 0..<H{
for w in 0..<W{
for c in 0..<C{
newPtr[index] = data.pointer[n * CXHXW + c * HXW + h * W + w]
index += 1
}
}
}
}
dim.swapeDimAt(index1: 1, index2: 3)
var index: Int = 0
for n in 0..<N {
for h in 0..<H{
for w in 0..<W{
for c in 0..<C{
newPtr[index] = data.pointer[n * CXHXW + c * HXW + h * W + w]
index += 1
}
}
}
}
dim.swapeDimAt(index1: 1, index2: 3)
}
}
extension Tensor {
var debugDescription: String {
var str = "dim: \(dim) \n"
str += "MTLBuffer: \(self.buffer) \n"
for i in 0..<buffer.length/MemoryLayout<P>.size {
str += " \(buffer.contents().assumingMemoryBound(to: P.self)[i])"
}
return str
var debugDescription: String {
var str = "dim: \(dim) \n"
str += "MTLBuffer: \(self.buffer) \n"
for i in 0..<buffer.length/MemoryLayout<P>.size {
str += " \(buffer.contents().assumingMemoryBound(to: P.self)[i])"
}
func logDataPointer(header: String = "") {
print(header)
var str = ""
str += "data size: \(data.size) \n"
str += "dim: \(dim) \n"
for i in 0..<numel() {
str += " \(data.pointer[i])"
}
print(str)
return str
}
func logDataPointer(header: String = "") {
print(header)
var str = ""
str += "data size: \(data.size) \n"
str += "dim: \(dim) \n"
for i in 0..<numel() {
str += " \(data.pointer[i])"
}
var description: String {
return debugDescription
}
print(str)
}
var description: String {
return debugDescription
}
}
......@@ -46,7 +46,7 @@ public class Texture<P: PrecisionType>: Tensorial {
public var metalTexture: MTLTexture!
var transpose: [Int] = [0, 1, 2, 3]
func initTexture(device: MTLDevice, inTranspose: [Int] = [0, 1, 2, 3]) {
func initTexture(device: MTLDevice, inTranspose: [Int] = [0, 1, 2, 3], computePrecision: ComputePrecision = .Float16) {
transpose = inTranspose
let newDim = transpose.map { originDim[$0] }
......@@ -64,12 +64,10 @@ public class Texture<P: PrecisionType>: Tensorial {
tmpTextureDes.depth = 1
tmpTextureDes.arrayLength = ((newDim[0]) * (newDim[3]) + 3) / 4
tmpTextureDes.textureType = .type2DArray
if MemoryLayout<P>.size == 1 {
tmpTextureDes.pixelFormat = .rgba8Unorm
} else if MemoryLayout<P>.size == 2 {
if computePrecision == .Float16 {
tmpTextureDes.pixelFormat = .rgba16Float
} else if MemoryLayout<P>.size == 4 {
} else if computePrecision == .Float32 {
tmpTextureDes.pixelFormat = .rgba32Float
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册