Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
7421f560
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7421f560
编写于
8月 24, 2018
作者:
Y
yangfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
imp fusion_conv_add_prelu and fusion_conv_add_add_prelu op
上级
a1a7b05b
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
427 addition
and
419 deletion
+427
-419
src/operators/fusion_conv_add_add_prelu.cpp
src/operators/fusion_conv_add_add_prelu.cpp
+27
-27
src/operators/fusion_conv_add_add_prelu_op.h
src/operators/fusion_conv_add_add_prelu_op.h
+55
-53
src/operators/fusion_conv_add_prelu_op.cpp
src/operators/fusion_conv_add_prelu_op.cpp
+28
-28
src/operators/fusion_conv_add_prelu_op.h
src/operators/fusion_conv_add_prelu_op.h
+50
-50
src/operators/kernel/arm/conv_add_add_prelu_kernel.cpp
src/operators/kernel/arm/conv_add_add_prelu_kernel.cpp
+16
-15
src/operators/kernel/arm/conv_add_prelu_kernel.cpp
src/operators/kernel/arm/conv_add_prelu_kernel.cpp
+12
-12
src/operators/kernel/central-arm-func/conv_add_add_prelu_arm_func.h
...ors/kernel/central-arm-func/conv_add_add_prelu_arm_func.h
+112
-109
src/operators/kernel/central-arm-func/conv_add_prelu_arm_func.h
...erators/kernel/central-arm-func/conv_add_prelu_arm_func.h
+102
-99
src/operators/kernel/conv_add_add_prelu_kernel.h
src/operators/kernel/conv_add_add_prelu_kernel.h
+11
-11
src/operators/kernel/conv_add_prelu_kernel.h
src/operators/kernel/conv_add_prelu_kernel.h
+11
-11
src/operators/math/gemm.cpp
src/operators/math/gemm.cpp
+1
-1
src/operators/math/math_function.cpp
src/operators/math/math_function.cpp
+2
-3
未找到文件。
src/operators/fusion_conv_add_add_prelu.cpp
浏览文件 @
7421f560
...
...
@@ -18,33 +18,33 @@ limitations under the License. */
#include "operators/math/conv_func.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
Dtype
,
typename
T
>
void
FusionConvAddAddPReluOp
<
Dtype
,
T
>::
InferShape
()
const
{
auto
in_dims
=
this
->
param_
.
Input
()
->
dims
();
auto
filter_dims
=
this
->
param_
.
Filter
()
->
dims
();
const
std
::
vector
<
int
>
&
strides
=
this
->
param_
.
Strides
();
std
::
vector
<
int
>
paddings
=
this
->
param_
.
Paddings
();
int
groups
=
this
->
param_
.
Groups
();
std
::
vector
<
int
>
dilations
=
this
->
param_
.
Dilations
();
PADDLE_MOBILE_ENFORCE
((
in_dims
.
size
()
==
filter_dims
.
size
()
&&
dilations
.
size
()
==
paddings
.
size
()
&&
paddings
.
size
()
==
strides
.
size
()),
"ConvParam is not suitable"
);
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
],
filter_dims
[
0
]});
for
(
size_t
i
=
0
;
i
<
strides
.
size
();
++
i
)
{
output_shape
.
push_back
(
math
::
ConvOutputSize
(
in_dims
[
i
+
2
],
filter_dims
[
i
+
2
],
dilations
[
i
],
paddings
[
i
],
strides
[
i
]));
}
framework
::
DDim
ddim
=
framework
::
make_ddim
(
output_shape
);
this
->
param_
.
Output
()
->
Resize
(
ddim
);
}
}
// namespace operators
namespace
operators
{
template
<
typename
Dtype
,
typename
T
>
void
FusionConvAddAddPReluOp
<
Dtype
,
T
>::
InferShape
()
const
{
auto
in_dims
=
this
->
param_
.
Input
()
->
dims
();
auto
filter_dims
=
this
->
param_
.
Filter
()
->
dims
();
const
std
::
vector
<
int
>
&
strides
=
this
->
param_
.
Strides
();
std
::
vector
<
int
>
paddings
=
this
->
param_
.
Paddings
();
int
groups
=
this
->
param_
.
Groups
();
std
::
vector
<
int
>
dilations
=
this
->
param_
.
Dilations
();
PADDLE_MOBILE_ENFORCE
((
in_dims
.
size
()
==
filter_dims
.
size
()
&&
dilations
.
size
()
==
paddings
.
size
()
&&
paddings
.
size
()
==
strides
.
size
()),
"ConvParam is not suitable"
);
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
],
filter_dims
[
0
]});
for
(
size_t
i
=
0
;
i
<
strides
.
size
();
++
i
)
{
output_shape
.
push_back
(
math
::
ConvOutputSize
(
in_dims
[
i
+
2
],
filter_dims
[
i
+
2
],
dilations
[
i
],
paddings
[
i
],
strides
[
i
]));
}
framework
::
DDim
ddim
=
framework
::
make_ddim
(
output_shape
);
this
->
param_
.
Output
()
->
Resize
(
ddim
);
}
}
// namespace operators
}
// namespace paddle_mobile
namespace
ops
=
paddle_mobile
::
operators
;
...
...
src/operators/fusion_conv_add_add_prelu_op.h
浏览文件 @
7421f560
...
...
@@ -24,62 +24,64 @@ limitations under the License. */
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
class
FusionConvAddAddPReluOpMatcher
:
public
framework
::
FusionOpMatcher
{
public:
FusionConvAddAddPReluOpMatcher
()
{
node_
=
framework
::
Node
(
G_OP_TYPE_CONV
);
node_
>
std
::
make_shared
<
framework
::
Node
>
(
G_OP_TYPE_ELEMENTWISE_ADD
)
>
std
::
make_shared
<
framework
::
Node
>
(
G_OP_TYPE_ELEMENTWISE_ADD
)
>
std
::
make_shared
<
framework
::
Node
>
(
G_OP_TYPE_PRELU
);
}
void
FolderNodes
(
framework
::
Node
*
node
,
std
::
vector
<
std
::
shared_ptr
<
framework
::
Node
>>
*
removed_nodes
)
{
node
->
Folder
(
node_
.
Depth
(),
Type
(),
{{
G_OP_TYPE_ELEMENTWISE_ADD
,
{{
"Y"
,
"Y"
},
{
"Out"
,
"addOut"
},{
"X"
,
"addX"
}}},
{
G_OP_TYPE_PRELU
,
{{
"Alpha"
,
"Alpha"
}}}
},
removed_nodes
);
}
std
::
string
Type
()
{
return
G_OP_TYPE_FUSION_CONV_ADD_ADD_PRELU
;
}
std
::
vector
<
std
::
pair
<
int
,
std
::
string
>>
NeedCheck
()
{
DLOG
<<
" conv add add prelu check add X "
;
return
{{
2
,
"Y"
},
{
2
,
"X"
}};
}
};
template
<
typename
DeviceType
,
typename
T
>
class
FusionConvAddAddPReluOp
:
public
framework
::
OperatorWithKernel
<
DeviceType
,
FusionConvAddAddPReluParam
<
DeviceType
>
,
operators
::
ConvAddAddPReluKernel
<
DeviceType
,
T
>>
{
public:
FusionConvAddAddPReluOp
(
const
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
std
::
shared_ptr
<
framework
::
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
,
FusionConvAddAddPReluParam
<
DeviceType
>
,
operators
::
ConvAddAddPReluKernel
<
DeviceType
,
T
>>
(
type
,
inputs
,
outputs
,
attrs
,
scope
)
{}
using
framework
::
OperatorWithKernel
<
DeviceType
,
FusionConvAddAddPReluParam
<
DeviceType
>
,
operators
::
ConvAddAddPReluKernel
<
DeviceType
,
T
>>::
OperatorWithKernel
;
void
InferShape
()
const
override
;
protected:
};
namespace
operators
{
class
FusionConvAddAddPReluOpMatcher
:
public
framework
::
FusionOpMatcher
{
public:
FusionConvAddAddPReluOpMatcher
()
{
node_
=
framework
::
Node
(
G_OP_TYPE_CONV
);
node_
>
std
::
make_shared
<
framework
::
Node
>
(
G_OP_TYPE_ELEMENTWISE_ADD
)
>
std
::
make_shared
<
framework
::
Node
>
(
G_OP_TYPE_ELEMENTWISE_ADD
)
>
std
::
make_shared
<
framework
::
Node
>
(
G_OP_TYPE_PRELU
);
}
void
FolderNodes
(
framework
::
Node
*
node
,
std
::
vector
<
std
::
shared_ptr
<
framework
::
Node
>>
*
removed_nodes
)
{
node
->
Folder
(
node_
.
Depth
(),
Type
(),
{{
G_OP_TYPE_ELEMENTWISE_ADD
,
{{
"Y"
,
"Y"
},
{
"Out"
,
"addOut"
},
{
"X"
,
"addX"
}}},
{
G_OP_TYPE_PRELU
,
{{
"Alpha"
,
"Alpha"
}}}},
removed_nodes
);
}
std
::
string
Type
()
{
return
G_OP_TYPE_FUSION_CONV_ADD_ADD_PRELU
;
}
std
::
vector
<
std
::
pair
<
int
,
std
::
string
>>
NeedCheck
()
{
DLOG
<<
" conv add add prelu check add X "
;
return
{{
2
,
"Y"
},
{
2
,
"X"
}};
}
};
template
<
typename
DeviceType
,
typename
T
>
class
FusionConvAddAddPReluOp
:
public
framework
::
OperatorWithKernel
<
DeviceType
,
FusionConvAddAddPReluParam
<
DeviceType
>
,
operators
::
ConvAddAddPReluKernel
<
DeviceType
,
T
>>
{
public:
FusionConvAddAddPReluOp
(
const
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
std
::
shared_ptr
<
framework
::
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
,
FusionConvAddAddPReluParam
<
DeviceType
>
,
operators
::
ConvAddAddPReluKernel
<
DeviceType
,
T
>>
(
type
,
inputs
,
outputs
,
attrs
,
scope
)
{}
using
framework
::
OperatorWithKernel
<
DeviceType
,
FusionConvAddAddPReluParam
<
DeviceType
>
,
operators
::
ConvAddAddPReluKernel
<
DeviceType
,
T
>>::
OperatorWithKernel
;
void
InferShape
()
const
override
;
protected:
};
#ifdef PADDLE_MOBILE_CPU
#ifndef CONV_ADD_ADD_PRELU_REGISTER
#define CONV_ADD_ADD_PRELU_REGISTER
static
framework
::
FusionOpRegistrar
fusion_conv_add_add_prelu_registrar
(
new
FusionConvAddAddPReluOpMatcher
());
static
framework
::
FusionOpRegistrar
fusion_conv_add_add_prelu_registrar
(
new
FusionConvAddAddPReluOpMatcher
());
#endif
#endif
...
...
@@ -87,7 +89,7 @@ namespace paddle_mobile {
#endif
#ifdef PADDLE_MOBILE_FPGA
#ifndef CONV_ADD_ADD_PRELU_REGISTER
#ifndef CONV_ADD_ADD_PRELU_REGISTER
#define CONV_ADD_ADD_PRELU_REGISTER
static
framework
::
FusionOpRegistrar
fusion_conv_add_add_prelu_registrar
(
new
FusionConvAddAddPReluOpMatcher
());
...
...
@@ -95,7 +97,7 @@ static framework::FusionOpRegistrar fusion_conv_add_add_prelu_registrar(
#endif
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
#ifdef PADDLE_MOBILE_CPU
...
...
src/operators/fusion_conv_add_prelu_op.cpp
浏览文件 @
7421f560
...
...
@@ -18,38 +18,38 @@ limitations under the License. */
#include "operators/math/conv_func.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
Dtype
,
typename
T
>
void
FusionConvAddPReluOp
<
Dtype
,
T
>::
InferShape
()
const
{
auto
in_dims
=
this
->
param_
.
Input
()
->
dims
();
auto
filter_dims
=
this
->
param_
.
Filter
()
->
dims
();
const
std
::
vector
<
int
>
&
strides
=
this
->
param_
.
Strides
();
std
::
vector
<
int
>
paddings
=
this
->
param_
.
Paddings
();
int
groups
=
this
->
param_
.
Groups
();
std
::
vector
<
int
>
dilations
=
this
->
param_
.
Dilations
();
PADDLE_MOBILE_ENFORCE
((
in_dims
.
size
()
==
filter_dims
.
size
()
&&
dilations
.
size
()
==
paddings
.
size
()
&&
paddings
.
size
()
==
strides
.
size
()),
"ConvParam is not suitable"
);
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
],
filter_dims
[
0
]});
for
(
size_t
i
=
0
;
i
<
strides
.
size
();
++
i
)
{
output_shape
.
push_back
(
math
::
ConvOutputSize
(
in_dims
[
i
+
2
],
filter_dims
[
i
+
2
],
dilations
[
i
],
paddings
[
i
],
strides
[
i
]));
}
framework
::
DDim
ddim
=
framework
::
make_ddim
(
output_shape
);
this
->
param_
.
Output
()
->
Resize
(
ddim
);
}
}
// namespace operators
namespace
operators
{
template
<
typename
Dtype
,
typename
T
>
void
FusionConvAddPReluOp
<
Dtype
,
T
>::
InferShape
()
const
{
auto
in_dims
=
this
->
param_
.
Input
()
->
dims
();
auto
filter_dims
=
this
->
param_
.
Filter
()
->
dims
();
const
std
::
vector
<
int
>
&
strides
=
this
->
param_
.
Strides
();
std
::
vector
<
int
>
paddings
=
this
->
param_
.
Paddings
();
int
groups
=
this
->
param_
.
Groups
();
std
::
vector
<
int
>
dilations
=
this
->
param_
.
Dilations
();
PADDLE_MOBILE_ENFORCE
((
in_dims
.
size
()
==
filter_dims
.
size
()
&&
dilations
.
size
()
==
paddings
.
size
()
&&
paddings
.
size
()
==
strides
.
size
()),
"ConvParam is not suitable"
);
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
],
filter_dims
[
0
]});
for
(
size_t
i
=
0
;
i
<
strides
.
size
();
++
i
)
{
output_shape
.
push_back
(
math
::
ConvOutputSize
(
in_dims
[
i
+
2
],
filter_dims
[
i
+
2
],
dilations
[
i
],
paddings
[
i
],
strides
[
i
]));
}
framework
::
DDim
ddim
=
framework
::
make_ddim
(
output_shape
);
this
->
param_
.
Output
()
->
Resize
(
ddim
);
}
}
// namespace operators
}
// namespace paddle_mobile
namespace
ops
=
paddle_mobile
::
operators
;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU
(
fusion_conv_add_prelu
,
ops
::
FusionConvAddPReluOp
);
REGISTER_OPERATOR_CPU
(
fusion_conv_add_prelu
,
ops
::
FusionConvAddPReluOp
);
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
#endif
...
...
src/operators/fusion_conv_add_prelu_op.h
浏览文件 @
7421f560
...
...
@@ -24,59 +24,59 @@ limitations under the License. */
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
class
FusionConvAddPReluOpMatcher
:
public
framework
::
FusionOpMatcher
{
public:
FusionConvAddPReluOpMatcher
()
{
node_
=
framework
::
Node
(
G_OP_TYPE_CONV
);
node_
>
std
::
make_shared
<
framework
::
Node
>
(
G_OP_TYPE_ELEMENTWISE_ADD
)
>
std
::
make_shared
<
framework
::
Node
>
(
G_OP_TYPE_PRELU
);
}
void
FolderNodes
(
framework
::
Node
*
node
,
std
::
vector
<
std
::
shared_ptr
<
framework
::
Node
>>
*
removed_nodes
)
{
node
->
Folder
(
node_
.
Depth
(),
Type
(),
{{
G_OP_TYPE_ELEMENTWISE_ADD
,
{{
"Y"
,
"Y"
}}},
{
G_OP_TYPE_PRELU
,
{{
"Alpha"
,
"Alpha"
}}}
},
removed_nodes
);
}
std
::
string
Type
()
{
return
G_OP_TYPE_FUSION_CONV_ADD_PRELU
;
}
};
template
<
typename
DeviceType
,
typename
T
>
class
FusionConvAddPReluOp
:
public
framework
::
OperatorWithKernel
<
DeviceType
,
FusionConvAddPReluParam
<
DeviceType
>
,
operators
::
ConvAddPReluKernel
<
DeviceType
,
T
>>
{
public:
FusionConvAddPReluOp
(
const
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
std
::
shared_ptr
<
framework
::
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
,
FusionConvAddPReluParam
<
DeviceType
>
,
operators
::
ConvAddPReluKernel
<
DeviceType
,
T
>>
(
type
,
inputs
,
outputs
,
attrs
,
scope
)
{}
using
framework
::
OperatorWithKernel
<
DeviceType
,
FusionConvAddPReluParam
<
DeviceType
>
,
operators
::
ConvAddPReluKernel
<
DeviceType
,
T
>>::
OperatorWithKernel
;
void
InferShape
()
const
override
;
protected:
};
namespace
operators
{
class
FusionConvAddPReluOpMatcher
:
public
framework
::
FusionOpMatcher
{
public:
FusionConvAddPReluOpMatcher
()
{
node_
=
framework
::
Node
(
G_OP_TYPE_CONV
);
node_
>
std
::
make_shared
<
framework
::
Node
>
(
G_OP_TYPE_ELEMENTWISE_ADD
)
>
std
::
make_shared
<
framework
::
Node
>
(
G_OP_TYPE_PRELU
);
}
void
FolderNodes
(
framework
::
Node
*
node
,
std
::
vector
<
std
::
shared_ptr
<
framework
::
Node
>>
*
removed_nodes
)
{
node
->
Folder
(
node_
.
Depth
(),
Type
(),
{{
G_OP_TYPE_ELEMENTWISE_ADD
,
{{
"Y"
,
"Y"
}}},
{
G_OP_TYPE_PRELU
,
{{
"Alpha"
,
"Alpha"
}}}
},
removed_nodes
);
}
std
::
string
Type
()
{
return
G_OP_TYPE_FUSION_CONV_ADD_PRELU
;
}
};
template
<
typename
DeviceType
,
typename
T
>
class
FusionConvAddPReluOp
:
public
framework
::
OperatorWithKernel
<
DeviceType
,
FusionConvAddPReluParam
<
DeviceType
>
,
operators
::
ConvAddPReluKernel
<
DeviceType
,
T
>>
{
public:
FusionConvAddPReluOp
(
const
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
std
::
shared_ptr
<
framework
::
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
,
FusionConvAddPReluParam
<
DeviceType
>
,
operators
::
ConvAddPReluKernel
<
DeviceType
,
T
>>
(
type
,
inputs
,
outputs
,
attrs
,
scope
)
{}
using
framework
::
OperatorWithKernel
<
DeviceType
,
FusionConvAddPReluParam
<
DeviceType
>
,
operators
::
ConvAddPReluKernel
<
DeviceType
,
T
>>::
OperatorWithKernel
;
void
InferShape
()
const
override
;
protected:
};
#ifdef PADDLE_MOBILE_CPU
#ifndef CONV_ADD_PRELU_REGISTER
#define CONV_ADD_PRELU_REGISTER
static
framework
::
FusionOpRegistrar
fusion_conv_add_prelu_registrar
(
new
FusionConvAddPReluOpMatcher
());
static
framework
::
FusionOpRegistrar
fusion_conv_add_prelu_registrar
(
new
FusionConvAddPReluOpMatcher
());
#endif
#endif
...
...
@@ -84,7 +84,7 @@ namespace paddle_mobile {
#endif
#ifdef PADDLE_MOBILE_FPGA
#ifndef CONV_ADD_PRELU_REGISTER
#ifndef CONV_ADD_PRELU_REGISTER
#define CONV_ADD_PRELU_REGISTER
static
framework
::
FusionOpRegistrar
fusion_conv_add_prelu_registrar
(
new
FusionConvAddPReluOpMatcher
());
...
...
@@ -92,7 +92,7 @@ static framework::FusionOpRegistrar fusion_conv_add_prelu_registrar(
#endif
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
#ifdef PADDLE_MOBILE_CPU
...
...
src/operators/kernel/arm/conv_add_add_prelu_kernel.cpp
浏览文件 @
7421f560
...
...
@@ -18,21 +18,22 @@ limitations under the License. */
#include "operators/kernel/central-arm-func/conv_add_add_prelu_arm_func.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
ConvAddAddPReluKernel
<
CPU
,
float
>::
Init
(
FusionConvAddAddPReluParam
<
CPU
>
*
param
)
{
return
true
;
}
template
<
>
void
ConvAddAddPReluKernel
<
CPU
,
float
>::
Compute
(
const
FusionConvAddAddPReluParam
<
CPU
>
&
param
)
const
{
ConvAddAddPReluCompute
<
float
>
(
param
);
}
template
class
ConvAddAddPReluKernel
<
CPU
,
float
>;
}
// namespace operators
namespace
operators
{
template
<
>
bool
ConvAddAddPReluKernel
<
CPU
,
float
>::
Init
(
FusionConvAddAddPReluParam
<
CPU
>
*
param
)
{
return
true
;
}
template
<
>
void
ConvAddAddPReluKernel
<
CPU
,
float
>::
Compute
(
const
FusionConvAddAddPReluParam
<
CPU
>
&
param
)
const
{
ConvAddAddPReluCompute
<
float
>
(
param
);
}
template
class
ConvAddAddPReluKernel
<
CPU
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/arm/conv_add_prelu_kernel.cpp
浏览文件 @
7421f560
...
...
@@ -18,21 +18,21 @@ limitations under the License. */
#include "operators/kernel/central-arm-func/conv_add_prelu_arm_func.h"
namespace
paddle_mobile
{
namespace
operators
{
namespace
operators
{
template
<
>
bool
ConvAddPReluKernel
<
CPU
,
float
>::
Init
(
FusionConvAddPReluParam
<
CPU
>
*
param
)
{
return
true
;
}
template
<
>
bool
ConvAddPReluKernel
<
CPU
,
float
>::
Init
(
FusionConvAddPReluParam
<
CPU
>
*
param
)
{
return
true
;
}
template
<
>
void
ConvAddPReluKernel
<
CPU
,
float
>::
Compute
(
const
FusionConvAddPReluParam
<
CPU
>
&
param
)
const
{
ConvAddPReluCompute
<
float
>
(
param
);
}
template
class
ConvAddPReluKernel
<
CPU
,
float
>;
template
<
>
void
ConvAddPReluKernel
<
CPU
,
float
>::
Compute
(
const
FusionConvAddPReluParam
<
CPU
>
&
param
)
const
{
ConvAddPReluCompute
<
float
>
(
param
);
}
template
class
ConvAddPReluKernel
<
CPU
,
float
>;
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/central-arm-func/conv_add_add_prelu_arm_func.h
浏览文件 @
7421f560
...
...
@@ -23,115 +23,118 @@ limitations under the License. */
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
P
>
void
ConvAddAddPReluCompute
(
const
FusionConvAddAddPReluParam
<
CPU
>
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
bias
=
*
param
.
Bias
();
Tensor
bias1
=
*
param
.
Bias1
();
int
axis
=
param
.
Axis
();
Tensor
*
output
=
param
.
Output
();
float
*
biase_data
=
bias
.
data
<
float
>
();
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
std
::
vector
<
int
>
dilations
=
param
.
Dilations
();
Tensor
aa
=
*
param
.
InputAlpha
();
float
*
p
=
aa
.
data
<
float
>
();
std
::
string
mode
=
param
.
Mode
();
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
math
::
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
mutable_data
<
float
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
framework
::
DDim
output_matrix_shape
=
{
output
->
dims
()[
1
],
output
->
numel
()
/
(
output
->
dims
()[
0
]
*
output
->
dims
()[
1
])};
// convolution operator: im2col(or vol2col) + gemm
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
output
->
dims
()[
1
])
/
groups
;
math
::
Vol2ColFunctor
<
CPU
,
float
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
float
>
im2col
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
Tensor
bias1_batch
=
bias1
.
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
in_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
bias1_slice
=
bias1_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
float
*
biase_data1
=
bias1_slice
.
data
<
float
>
();
// int n = bias1_slice.dims()[0];
// int m = bias1_slice.dims()[1];
// for(int i=0;i<n*m;i++){
// if(biase_data1[i]!=0)
// DLOG<<biase_data1[i]<<",yangfei";
// }
// math::matmul<float>(filter_slice, false, col_matrix, false,
// static_cast<float>(1), &out_slice,
// static_cast<float>(1), true, biase_data);
math
::
matmulWithPRelu
(
filter_slice
,
false
,
col_matrix
,
false
,
&
out_slice
,
p
,
mode
,
biase_data
,
biase_data1
);
}
}
}
}
// namespace operators
namespace
operators
{
template
<
typename
P
>
void
ConvAddAddPReluCompute
(
const
FusionConvAddAddPReluParam
<
CPU
>
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
bias
=
*
param
.
Bias
();
Tensor
bias1
=
*
param
.
Bias1
();
int
axis
=
param
.
Axis
();
Tensor
*
output
=
param
.
Output
();
float
*
biase_data
=
bias
.
data
<
float
>
();
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
std
::
vector
<
int
>
dilations
=
param
.
Dilations
();
Tensor
aa
=
*
param
.
InputAlpha
();
float
*
p
=
aa
.
data
<
float
>
();
std
::
string
mode
=
param
.
Mode
();
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
math
::
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
mutable_data
<
float
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
framework
::
DDim
output_matrix_shape
=
{
output
->
dims
()[
1
],
output
->
numel
()
/
(
output
->
dims
()[
0
]
*
output
->
dims
()[
1
])};
// convolution operator: im2col(or vol2col) + gemm
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
output
->
dims
()[
1
])
/
groups
;
math
::
Vol2ColFunctor
<
CPU
,
float
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
float
>
im2col
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
Tensor
bias1_batch
=
bias1
.
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
in_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
bias1_slice
=
bias1_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
float
*
biase_data1
=
bias1_slice
.
data
<
float
>
();
// int n = bias1_slice.dims()[0];
// int m = bias1_slice.dims()[1];
// for(int i=0;i<n*m;i++){
// if(biase_data1[i]!=0)
// DLOG<<biase_data1[i]<<",yangfei";
// }
// math::matmul<float>(filter_slice, false, col_matrix,
// false,
// static_cast<float>(1),
// &out_slice,
// static_cast<float>(1), true,
// biase_data);
math
::
matmulWithPRelu
(
filter_slice
,
false
,
col_matrix
,
false
,
&
out_slice
,
p
,
mode
,
biase_data
,
biase_data1
);
}
}
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/central-arm-func/conv_add_prelu_arm_func.h
浏览文件 @
7421f560
...
...
@@ -23,105 +23,108 @@ limitations under the License. */
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
P
>
void
ConvAddPReluCompute
(
const
FusionConvAddPReluParam
<
CPU
>
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
bias
=
*
param
.
Bias
();
// DLOG<<"yangfei";
// DLOG<<bias.dims();
int
axis
=
param
.
Axis
();
Tensor
*
output
=
param
.
Output
();
float
*
biase_data
=
bias
.
data
<
float
>
();
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
std
::
vector
<
int
>
dilations
=
param
.
Dilations
();
Tensor
aa
=
*
param
.
InputAlpha
();
float
*
p
=
aa
.
data
<
float
>
();
std
::
string
mode
=
param
.
Mode
();
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
math
::
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
mutable_data
<
float
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
framework
::
DDim
output_matrix_shape
=
{
output
->
dims
()[
1
],
output
->
numel
()
/
(
output
->
dims
()[
0
]
*
output
->
dims
()[
1
])};
// convolution operator: im2col(or vol2col) + gemm
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
output
->
dims
()[
1
])
/
groups
;
math
::
Vol2ColFunctor
<
CPU
,
float
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
float
>
im2col
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
in_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
// math::matmul<float>(filter_slice, false, col_matrix, false,
// static_cast<float>(1), &out_slice,
// static_cast<float>(1), true, biase_data);
math
::
matmulWithPRelu
(
filter_slice
,
false
,
col_matrix
,
false
,
&
out_slice
,
p
,
mode
,
biase_data
,
nullptr
);
}
}
}
}
// namespace operators
namespace
operators
{
template
<
typename
P
>
void
ConvAddPReluCompute
(
const
FusionConvAddPReluParam
<
CPU
>
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
bias
=
*
param
.
Bias
();
// DLOG<<"yangfei";
// DLOG<<bias.dims();
int
axis
=
param
.
Axis
();
Tensor
*
output
=
param
.
Output
();
float
*
biase_data
=
bias
.
data
<
float
>
();
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
std
::
vector
<
int
>
dilations
=
param
.
Dilations
();
Tensor
aa
=
*
param
.
InputAlpha
();
float
*
p
=
aa
.
data
<
float
>
();
std
::
string
mode
=
param
.
Mode
();
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
math
::
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
mutable_data
<
float
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
framework
::
DDim
output_matrix_shape
=
{
output
->
dims
()[
1
],
output
->
numel
()
/
(
output
->
dims
()[
0
]
*
output
->
dims
()[
1
])};
// convolution operator: im2col(or vol2col) + gemm
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
output
->
dims
()[
1
])
/
groups
;
math
::
Vol2ColFunctor
<
CPU
,
float
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
float
>
im2col
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
in_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
// math::matmul<float>(filter_slice, false, col_matrix,
// false,
// static_cast<float>(1),
// &out_slice,
// static_cast<float>(1), true,
// biase_data);
math
::
matmulWithPRelu
(
filter_slice
,
false
,
col_matrix
,
false
,
&
out_slice
,
p
,
mode
,
biase_data
,
nullptr
);
}
}
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/conv_add_add_prelu_kernel.h
浏览文件 @
7421f560
...
...
@@ -26,20 +26,20 @@ limitations under the License. */
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
namespace
operators
{
using
framework
::
DDim
;
using
framework
::
OpKernelBase
;
using
framework
::
DDim
;
using
framework
::
OpKernelBase
;
template
<
typename
DeviceType
,
typename
T
>
class
ConvAddAddPReluKernel
:
public
OpKernelBase
<
DeviceType
,
FusionConvAddAddPReluParam
<
DeviceType
>>
{
public:
void
Compute
(
const
FusionConvAddAddPReluParam
<
DeviceType
>
&
param
)
const
;
bool
Init
(
FusionConvAddAddPReluParam
<
DeviceType
>
*
param
);
};
template
<
typename
DeviceType
,
typename
T
>
class
ConvAddAddPReluKernel
:
public
OpKernelBase
<
DeviceType
,
FusionConvAddAddPReluParam
<
DeviceType
>>
{
public:
void
Compute
(
const
FusionConvAddAddPReluParam
<
DeviceType
>
&
param
)
const
;
bool
Init
(
FusionConvAddAddPReluParam
<
DeviceType
>
*
param
);
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/conv_add_prelu_kernel.h
浏览文件 @
7421f560
...
...
@@ -26,20 +26,20 @@ limitations under the License. */
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
namespace
operators
{
using
framework
::
DDim
;
using
framework
::
OpKernelBase
;
using
framework
::
DDim
;
using
framework
::
OpKernelBase
;
template
<
typename
DeviceType
,
typename
T
>
class
ConvAddPReluKernel
:
public
OpKernelBase
<
DeviceType
,
FusionConvAddPReluParam
<
DeviceType
>>
{
public:
void
Compute
(
const
FusionConvAddPReluParam
<
DeviceType
>
&
param
)
const
;
bool
Init
(
FusionConvAddPReluParam
<
DeviceType
>
*
param
);
};
template
<
typename
DeviceType
,
typename
T
>
class
ConvAddPReluKernel
:
public
OpKernelBase
<
DeviceType
,
FusionConvAddPReluParam
<
DeviceType
>>
{
public:
void
Compute
(
const
FusionConvAddPReluParam
<
DeviceType
>
&
param
)
const
;
bool
Init
(
FusionConvAddPReluParam
<
DeviceType
>
*
param
);
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/math/gemm.cpp
浏览文件 @
7421f560
...
...
@@ -3172,7 +3172,7 @@ void SgemmWithPRelu_omp(int m, int n, int k, const float *A, int lda,
int
max_threads
=
1
;
#endif
int
L1
=
16
/
max_threads
*
1024
;
int
L1
=
32
*
1024
;
KC
=
k
;
if
(
m
>
n
)
{
// 对 A 分块
...
...
src/operators/math/math_function.cpp
浏览文件 @
7421f560
...
...
@@ -110,9 +110,8 @@ void matmulWithPRelu(const framework::Tensor &matrix_a, bool trans_a,
int
K
=
(
!
trans_a
)
?
dim_a
[
1
]
:
dim_a
[
0
];
#ifdef _OPENMP
xsSgemmWithPRelu_omp
(
M
,
N
,
K
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
matrix_out
->
data
<
float
>
(),
N
,
p
,
mode
,
bias
,
bias1
);
SgemmWithPRelu_omp
(
M
,
N
,
K
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
matrix_out
->
data
<
float
>
(),
N
,
p
,
mode
,
bias
,
bias1
);
#else
SgemmWithPRelu
(
M
,
N
,
K
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
matrix_out
->
data
<
float
>
(),
N
,
p
,
mode
,
bias
,
bias1
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录