提交 73e66a44 编写于 作者: H hjchen2

Remove x86 code

上级 2fa5e3f9
......@@ -7,7 +7,6 @@ option(DEBUGING "enable debug mode" ON)
option(USE_EXCEPTION "use std exception" OFF)
option(LOG_PROFILE "log profile" OFF)
# select the platform to build
option(X86 "x86" OFF)
option(CPU "armv7 with neon" ON)
option(MALI_GPU "mali gpu" OFF)
option(FPGA "fpga" OFF)
......@@ -57,8 +56,6 @@ endif()
if(CPU)
add_definitions(-DPADDLE_MOBILE_CPU)
elseif(X86)
add_definitions(-DPADDLE_MOBILE_X86)
else()
file(GLOB_RECURSE _tmp_list src/operators/kernel/arm/*.cpp src/operators/kernel/arm/*.cc)
foreach(f ${_tmp_list})
......
......@@ -39,7 +39,7 @@ struct PrecisionTrait<Precision::FP16> {
};
//! device type
enum DeviceTypeEnum { kINVALID = -1, kCPU = 0, kFPGA = 1, kGPU_MALI = 2, kX86 = 3 };
enum DeviceTypeEnum { kINVALID = -1, kCPU = 0, kFPGA = 1, kGPU_MALI = 2 };
template <DeviceTypeEnum T>
struct DeviceType {};
......@@ -47,7 +47,6 @@ struct DeviceType {};
typedef DeviceType<kCPU> CPU;
typedef DeviceType<kFPGA> FPGA;
typedef DeviceType<kGPU_MALI> GPU_MALI;
typedef DeviceType<kX86> X86;
//! data type
enum DataType {
......
......@@ -116,8 +116,5 @@ class OpRegistry {
#define REGISTER_OPERATOR_FPGA(op_type, op_class) \
REGISTER_OPERATOR(op_type, op_class, fpga, paddle_mobile::FPGA);
#define REGISTER_OPERATOR_X86(op_type, op_class) \
REGISTER_OPERATOR(op_type, op_class, x86, paddle_mobile::X86);
} // namespace framework
} // namespace paddle_mobile
......@@ -76,7 +76,6 @@ void OperatorBase<Dtype>::Run() const {
template class OperatorBase<CPU>;
template class OperatorBase<FPGA>;
template class OperatorBase<GPU_MALI>;
template class OperatorBase<X86>;
} // namespace framework
} // namespace paddle_mobile
......@@ -396,6 +396,5 @@ std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
template class Executor<CPU, Precision::FP32>;
template class Executor<GPU_MALI, Precision::FP32>;
template class Executor<FPGA, Precision::FP32>;
template class Executor<X86, Precision::FP32>;
} // namespace paddle_mobile
......@@ -197,6 +197,5 @@ const framework::Program<Dtype, P> Loader<Dtype, P>::LoadCombinedMemory(
template class Loader<CPU, Precision::FP32>;
template class Loader<FPGA, Precision::FP32>;
template class Loader<GPU_MALI, Precision::FP32>;
template class Loader<X86, Precision::FP32>;
} // namespace paddle_mobile
......@@ -125,6 +125,5 @@ PaddleMobile<Dtype, P>::~PaddleMobile() {
template class PaddleMobile<CPU, Precision::FP32>;
template class PaddleMobile<FPGA, Precision::FP32>;
template class PaddleMobile<GPU_MALI, Precision::FP32>;
template class PaddleMobile<X86, Precision::FP32>;
} // namespace paddle_mobile
......@@ -40,5 +40,4 @@ REGISTER_OPERATOR_MALI_GPU(batch_norm, ops::BatchNormOp);
#ifdef PADDLE_MOBILE_FPGA
#endif
REGISTER_OPERATOR_X86(batch_norm, ops::BatchNormOp);
#endif
......@@ -53,6 +53,4 @@ REGISTER_OPERATOR_CPU(bilinear_interp, ops::BilinearOp);
#ifdef PADDLE_MOBILE_FPGA
#endif
REGISTER_OPERATOR_X86(bilinear_interp, ops::BilinearOp);
#endif
......@@ -60,6 +60,4 @@ REGISTER_OPERATOR_CPU(box_coder, ops::BoxCoderOp);
#ifdef PADDLE_MOBILE_FPGA
#endif
REGISTER_OPERATOR_X86(box_coder, ops::BoxCoderOp);
#endif
......@@ -73,6 +73,4 @@ REGISTER_OPERATOR_MALI_GPU(concat, ops::ConcatOp);
REGISTER_OPERATOR_FPGA(concat, ops::ConcatOp);
#endif
REGISTER_OPERATOR_X86(concat, ops::ConcatOp);
#endif
......@@ -62,6 +62,4 @@ REGISTER_OPERATOR_MALI_GPU(conv2d, ops::ConvOp);
REGISTER_OPERATOR_FPGA(conv2d, ops::ConvOp);
#endif
REGISTER_OPERATOR_X86(conv2d, ops::ConvOp);
#endif
......@@ -29,6 +29,4 @@ REGISTER_OPERATOR_CPU(conv2d_transpose, ops::ConvOpTranspose);
#ifdef PADDLE_MOBILE_FPGA
#endif
REGISTER_OPERATOR_X86(conv2d_transpose, ops::ConvOpTranspose);
#endif
......@@ -52,6 +52,5 @@ REGISTER_OPERATOR_CPU(crf_decoding, ops::CrfOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
#endif
REGISTER_OPERATOR_X86(crf_decoding, ops::CrfOp);
#endif
......@@ -56,7 +56,5 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(depthwise_conv2d, ops::DepthwiseConvOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(depthwise_conv2d, ops::DepthwiseConvOp);
#endif
#endif
......@@ -30,7 +30,4 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(dequantize, ops::DequantizeOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(dequantize, ops::DequantizeOp);
#endif
......@@ -30,9 +30,6 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(dropout, ops::DropoutOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(dropout, ops::DropoutOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(dropout, ops::DropoutOp);
#endif
......
......@@ -35,8 +35,5 @@ REGISTER_OPERATOR_CPU(elementwise_add, ops::ElementwiseAddOp);
#ifdef PADDLE_MOBILE_MALI_GPU
REGISTER_OPERATOR_MALI_GPU(elementwise_add, ops::ElementwiseAddOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(elementwise_add, ops::ElementwiseAddOp);
#endif
#endif
......@@ -26,6 +26,4 @@ REGISTER_OPERATOR_MALI_GPU(feed, ops::FeedOp);
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(feed, ops::FeedOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(feed, ops::FeedOp);
#endif
......@@ -27,6 +27,4 @@ REGISTER_OPERATOR_MALI_GPU(fetch, ops::FetchOp);
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(fetch, ops::FetchOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(fetch, ops::FetchOp);
#endif
......@@ -53,9 +53,6 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(flatten, ops::FlattenOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(flatten, ops::FlattenOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
#endif
......
......@@ -51,13 +51,11 @@ static framework::FusionOpRegistrar fusion_conv_add_add_prelu_registrar(
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
#if defined(PADDLE_MOBILE_CPU)
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(fusion_conv_add_add_prelu, ops::FusionConvAddAddPReluOp);
#elif defined(PADDLE_MOBILE_MALI_GPU)
#elif defined(PADDLE_MOBILE_FPGA)
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(fusion_conv_add_add_prelu, ops::FusionConvAddAddPReluOp);
#else
REGISTER_OPERATOR_X86(fusion_conv_add_add_prelu, ops::FusionConvAddAddPReluOp);
#endif
#endif // FUSION_CONVADDADDPRELU_OP
......@@ -55,9 +55,6 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(fusion_conv_add_bn, ops::FusionConvAddBNOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(fusion_conv_add_bn, ops::FusionConvAddBNOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(fusion_conv_add_bn, ops::FusionConvAddBNOp);
#endif
......
......@@ -55,9 +55,6 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(fusion_conv_add_bn_relu, ops::FusionConvAddBNReluOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(fusion_conv_add_bn_relu, ops::FusionConvAddBNReluOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(fusion_conv_add_bn_relu, ops::FusionConvAddBNReluOp);
#endif
......
......@@ -58,8 +58,5 @@ REGISTER_OPERATOR_CPU(fusion_conv_add, ops::FusionConvAddOp);
#ifdef PADDLE_MOBILE_MALI_GPU
REGISTER_OPERATOR_MALI_GPU(fusion_conv_add, ops::FusionConvAddOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(fusion_conv_add, ops::FusionConvAddOp);
#endif
#endif
......@@ -54,9 +54,6 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(fusion_conv_add_prelu, ops::FusionConvAddPReluOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(fusion_conv_add_prelu, ops::FusionConvAddPReluOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(fusion_conv_add_prelu, ops::FusionConvAddPReluOp);
#endif
......
......@@ -54,9 +54,6 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(fusion_conv_add_relu, ops::FusionConvAddReluOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(fusion_conv_add_relu, ops::FusionConvAddReluOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(fusion_conv_add_relu, ops::FusionConvAddReluOp);
#endif
......
......@@ -55,9 +55,6 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(fusion_conv_bn_add_relu, ops::FusionConvBNAddReluOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(fusion_conv_bn_add_relu, ops::FusionConvBNAddReluOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(fusion_conv_bn_add_relu, ops::FusionConvBNAddReluOp);
#endif
......
......@@ -54,9 +54,6 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(fusion_conv_bn, ops::FusionConvBNOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(fusion_conv_bn, ops::FusionConvBNOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(fusion_conv_bn, ops::FusionConvBNOp);
#endif
......
......@@ -55,9 +55,6 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(fusion_conv_bn_relu, ops::FusionConvBNReluOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(fusion_conv_bn_relu, ops::FusionConvBNReluOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(fusion_conv_bn_relu, ops::FusionConvBNReluOp);
#endif
......
......@@ -55,9 +55,6 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(fusion_dwconv_bn_relu, ops::FusionDWConvBNReluOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(fusion_dwconv_bn_relu, ops::FusionDWConvBNReluOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
#endif
......
......@@ -58,14 +58,14 @@ void FusionFcOp<Dtype, T>::InferShape() const {
namespace ops = paddle_mobile::operators;
#if defined(PADDLE_MOBILE_CPU)
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(fusion_fc, ops::FusionFcOp);
#elif defined(PADDLE_MOBILE_MALI_GPU)
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
REGISTER_OPERATOR_MALI_GPU(fusion_fc, ops::FusionFcOp);
#elif defined(PADDLE_MOBILE_FPGA)
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(fusion_fc, ops::FusionFcOp);
#else
REGISTER_OPERATOR_X86(fusion_fc, ops::FusionFcOp);
#endif
#endif // FUSION_FC_OP
......@@ -66,8 +66,5 @@ REGISTER_OPERATOR_MALI_GPU(fusion_fc_relu, ops::FusionFcReluOp);
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(fusion_fc_relu, ops::FusionFcReluOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(fusion_fc_relu, ops::FusionFcReluOp);
#endif
#endif
......@@ -64,9 +64,6 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(gru, ops::GruOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(gru, ops::GruOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
#endif
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef BATCHNORM_OP
#include "operators/kernel/batchnorm_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool BatchNormKernel<X86, float>::Init(BatchNormParam<X86> *param) {
return true;
}
template <>
void BatchNormKernel<X86, float>::Compute(
const BatchNormParam<X86> &param) const {
// TODO
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef BILINEAR_INTERP_OP
#include "operators/kernel/bilinear_interp_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool BilinearInterpKernel<X86, float>::Init(BilinearInterpParam<X86> *param) {
return true;
}
template <>
void BilinearInterpKernel<X86, float>::Compute(
const BilinearInterpParam<X86> &param) const {
// TODO
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef BOXCODER_OP
#include "operators/kernel/box_coder_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool BoxCoderKernel<X86, float>::Init(BoxCoderParam<X86> *param) {
return true;
}
template <>
void BoxCoderKernel<X86, float>::Compute(
const BoxCoderParam<X86> &param) const {
// TODO
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONCAT_OP
#include "operators/kernel/concat_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ConcatKernel<X86, float>::Init(ConcatParam<X86> *param) {
return true;
}
template <>
void ConcatKernel<X86, float>::Compute(const ConcatParam<X86> &param) const {
// TODO
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADDADDPRELU_OP
#include "operators/kernel/conv_add_add_prelu_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ConvAddAddPReluKernel<X86, float>::Init(
FusionConvAddAddPReluParam<X86> *param) {
return true;
}
template <>
void ConvAddAddPReluKernel<X86, float>::Compute(
const FusionConvAddAddPReluParam<X86> &param) const {
// TODO
}
template class ConvAddAddPReluKernel<X86, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADDBNRELU_OP
#include "operators/kernel/conv_add_bn_relu_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ConvAddBNReluKernel<X86, float>::Init(
FusionConvAddBNReluParam<X86> *param) {
const Tensor *mean = param->InputMean();
const Tensor *variance = param->InputVariance();
const Tensor *scale = param->InputScale();
const Tensor *bias = param->InputBias();
const float epsilon = param->Epsilon();
auto mean_ptr = mean->data<float>();
auto variance_ptr = variance->data<float>();
auto scale_ptr = scale->data<float>();
auto bias_ptr = bias->data<float>();
const int C = mean->numel();
float inv_std_ptr[C];
for (int i = 0; i < C; i++) {
inv_std_ptr[i] =
1 / static_cast<float>(pow((variance_ptr[i] + epsilon), 0.5));
}
Tensor *new_scale = new Tensor();
Tensor *new_bias = new Tensor();
auto new_scale_ptr = new_scale->mutable_data<float>({C});
auto new_bias_ptr = new_bias->mutable_data<float>({C});
for (int i = 0; i < C; i++) {
new_scale_ptr[i] = inv_std_ptr[i] * scale_ptr[i];
new_bias_ptr[i] = bias_ptr[i] - mean_ptr[i] * inv_std_ptr[i] * scale_ptr[i];
}
param->SetNewScale(new_scale);
param->SetNewBias(new_bias);
return true;
}
template <>
void ConvAddBNReluKernel<X86, float>::Compute(
const FusionConvAddBNReluParam<X86> &param) const {
// TODO
}
template class ConvAddBNReluKernel<X86, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADD_OP
#include "operators/kernel/conv_add_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ConvAddKernel<X86, float>::Init(FusionConvAddParam<X86> *param) {
return true;
}
template <>
void ConvAddKernel<X86, float>::Compute(
const FusionConvAddParam<X86> &param) const {
// TODO
}
template class ConvAddKernel<X86, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADDPRELU_OP
#include "operators/kernel/conv_add_prelu_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ConvAddPReluKernel<X86, float>::Init(FusionConvAddPReluParam<X86> *param) {
return true;
}
template <>
void ConvAddPReluKernel<X86, float>::Compute(
const FusionConvAddPReluParam<X86> &param) const {
// TODO
}
template class ConvAddPReluKernel<X86, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADDRELU_OP
#include "operators/kernel/conv_add_relu_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ConvAddReluKernel<X86, float>::Init(FusionConvAddReluParam<X86> *param) {
return true;
}
template <>
void ConvAddReluKernel<X86, float>::Compute(
const FusionConvAddReluParam<X86> &param) const {
// TODO
}
template class ConvAddReluKernel<X86, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVBNADDRELU_OP
#include "operators/kernel/conv_bn_add_relu_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ConvBNAddReluKernel<X86, float>::Init(
FusionConvBNAddReluParam<X86> *param) {
const Tensor *mean = param->InputMean();
const Tensor *variance = param->InputVariance();
const Tensor *scale = param->InputScale();
const Tensor *bias = param->InputBias();
const float epsilon = param->Epsilon();
auto mean_ptr = mean->data<float>();
auto variance_ptr = variance->data<float>();
auto scale_ptr = scale->data<float>();
auto bias_ptr = bias->data<float>();
const int C = mean->numel();
float inv_std_ptr[C];
for (int i = 0; i < C; i++) {
inv_std_ptr[i] =
1 / static_cast<float>(pow((variance_ptr[i] + epsilon), 0.5));
}
Tensor *new_scale = new Tensor();
Tensor *new_bias = new Tensor();
auto new_scale_ptr = new_scale->mutable_data<float>({C});
auto new_bias_ptr = new_bias->mutable_data<float>({C});
for (int i = 0; i < C; i++) {
new_scale_ptr[i] = inv_std_ptr[i] * scale_ptr[i];
new_bias_ptr[i] = bias_ptr[i] - mean_ptr[i] * inv_std_ptr[i] * scale_ptr[i];
}
param->SetNewScale(new_scale);
param->SetNewBias(new_bias);
return true;
}
template <>
void ConvBNAddReluKernel<X86, float>::Compute(
const FusionConvBNAddReluParam<X86> &param) const {
// TODO
}
template class ConvBNAddReluKernel<X86, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVBNRELU_OP
#include "operators/kernel/conv_bn_relu_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ConvBNReluKernel<X86, float>::Init(FusionConvBNReluParam<X86> *param) {
const Tensor *mean = param->InputMean();
const Tensor *variance = param->InputVariance();
const Tensor *scale = param->InputScale();
const Tensor *bias = param->InputBias();
const float epsilon = param->Epsilon();
// DLOG << "variance: " << *variance;
auto mean_ptr = mean->data<float>();
auto variance_ptr = variance->data<float>();
auto scale_ptr = scale->data<float>();
auto bias_ptr = bias->data<float>();
const int C = mean->numel();
float inv_std_ptr[C];
for (int i = 0; i < C; i++) {
inv_std_ptr[i] =
1 / static_cast<float>(pow((variance_ptr[i] + epsilon), 0.5));
}
Tensor *new_scale = new Tensor();
Tensor *new_bias = new Tensor();
auto new_scale_ptr = new_scale->mutable_data<float>({C});
auto new_bias_ptr = new_bias->mutable_data<float>({C});
for (int i = 0; i < C; i++) {
new_scale_ptr[i] = inv_std_ptr[i] * scale_ptr[i];
new_bias_ptr[i] = bias_ptr[i] - mean_ptr[i] * inv_std_ptr[i] * scale_ptr[i];
}
param->SetNewScale(new_scale);
param->SetNewBias(new_bias);
return true;
}
template <>
void ConvBNReluKernel<X86, float>::Compute(
const FusionConvBNReluParam<X86> &param) const {
// TODO
}
template class ConvBNReluKernel<X86, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONV_OP
#include "operators/kernel/conv_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ConvKernel<X86, float>::Init(ConvParam<X86> *param) {
return true;
}
template <>
void ConvKernel<X86, float>::Compute(const ConvParam<X86> &param) const {
// TODO
}
template class ConvKernel<X86, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONV_TRANSPOSE
#include "operators/kernel/conv_transpose_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ConvTransposeKernel<X86, float>::Init(ConvTransposeParam<X86> *param) {
return true;
}
template <>
void ConvTransposeKernel<X86, float>::Compute(
const ConvTransposeParam<X86> &param) const {
// TODO
}
template class ConvTransposeKernel<X86, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CRF_OP
#include "operators/kernel/crf_kernel.h"
#include "common/types.h"
namespace paddle_mobile {
namespace operators {
template <>
bool CrfKernel<X86, float>::Init(CrfParam<X86> *param) {
return true;
}
template <>
void CrfKernel<X86, float>::Compute(const CrfParam<X86> &param) const {
// TODO
}
template class CrfKernel<X86, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef DEPTHWISECONV_OP
#include "operators/kernel/depthwise_conv_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool DepthwiseConvKernel<X86, float>::Init(ConvParam<X86> *param) {
return true;
}
template <>
void DepthwiseConvKernel<X86, float>::Compute(
const ConvParam<X86> &param) const {
// TODO
}
template class DepthwiseConvKernel<X86, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/kernel/dequantize_kernel.h"
namespace paddle_mobile {
namespace operators {
template<>
bool DequantizeKernel<X86, float>::Init(DequantizeParam<X86> *param) {
return true;
}
template<>
void DequantizeKernel<X86, float>::Compute(
const DequantizeParam<X86> &param) const {
// TODO
const Tensor *input = param.input_;
Tensor *output = param.out_;
float activation_scale = param.activation_scale_->data<float>()[0];
float weight_scale = param.weight_scale_;
const int32_t *x = input->data<const int32_t>();
float *y = output->mutable_data<float>();
for (size_t i = 0; i < output->numel(); ++i) {
y[i] = x[i] / activation_scale / weight_scale;
}
}
} // namespace paddle_mobile
} // namespace operators
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef DROPOUT_OP
#include "operators/kernel/dropout_kernel.h"
#include <operators/math/transform.h>
namespace paddle_mobile {
namespace operators {
template <>
bool DropoutKernel<X86, float>::Init(DropoutParam<X86> *para) {
return true;
}
template <>
void DropoutKernel<X86, float>::Compute(const DropoutParam<X86> &param) const {
// TODO
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_DWCONVBNRELU_OP
#include "operators/kernel/dwconv_bn_relu_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool DWConvBNReluKernel<X86, float>::Init(FusionDWConvBNReluParam<X86> *param) {
const Tensor *mean = param->InputMean();
const Tensor *variance = param->InputVariance();
const Tensor *scale = param->InputScale();
const Tensor *bias = param->InputBias();
const float epsilon = param->Epsilon();
auto mean_ptr = mean->data<float>();
auto variance_ptr = variance->data<float>();
auto scale_ptr = scale->data<float>();
auto bias_ptr = bias->data<float>();
const int C = mean->numel();
float inv_std_ptr[C];
for (int i = 0; i < C; i++) {
inv_std_ptr[i] =
1 / static_cast<float>(pow((variance_ptr[i] + epsilon), 0.5));
}
Tensor *new_scale = new Tensor();
Tensor *new_bias = new Tensor();
auto new_scale_ptr = new_scale->mutable_data<float>({C});
auto new_bias_ptr = new_bias->mutable_data<float>({C});
for (int i = 0; i < C; i++) {
new_scale_ptr[i] = inv_std_ptr[i] * scale_ptr[i];
new_bias_ptr[i] = bias_ptr[i] - mean_ptr[i] * inv_std_ptr[i] * scale_ptr[i];
}
param->SetNewScale(new_scale);
param->SetNewBias(new_bias);
return true;
}
template <>
void DWConvBNReluKernel<X86, float>::Compute(
const FusionDWConvBNReluParam<X86> &param) const {
// TODO
}
template class DWConvBNReluKernel<X86, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef ELEMENTWISEADD_OP
#include "operators/kernel/elementwise_add_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ElementwiseAddKernel<X86, float>::Init(ElementwiseAddParam<X86> *param) {
return true;
}
template <>
void ElementwiseAddKernel<X86, float>::Compute(
const ElementwiseAddParam<X86> &param) const {
// TODO
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FLATTEN_OP
#include "operators/kernel/flatten_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool FlattenKernel<X86, float>::Init(FlattenParam<X86> *param) {
return true;
}
template <>
void FlattenKernel<X86, float>::Compute(const FlattenParam<X86> &param) const {
// TODO
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_FC_OP
#include "operators/kernel/fusion_fc_kernel.h"
namespace paddle_mobile {
namespace operators {
template<>
bool FusionFcKernel<X86, float>::Init(FusionFcParam<X86> *param) {
return true;
}
template<>
void FusionFcKernel<X86, float>::Compute(
const FusionFcParam<X86> &param) const {
// TODO
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef GRU_OP
#include "operators/kernel/gru_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool GruKernel<X86, float>::Init(GruParam<X86> *param) {
return true;
}
template <>
void GruKernel<X86, float>::Compute(const GruParam<X86> &param) const {
// TODO
}
template class GruKernel<X86, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef LRN_OP
#include "operators/kernel/lrn_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool LrnKernel<X86, float>::Init(LrnParam<X86> *param) {
return true;
}
template <>
void LrnKernel<X86, float>::Compute(const LrnParam<X86> &param) const {
// TODO
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef MUL_OP
#include "operators/kernel/mul_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool MulKernel<X86, float>::Init(MulParam<X86> *param) {
return true;
}
template <>
void MulKernel<X86, float>::Compute(const MulParam<X86> &param) const {
// TODO
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef MULTICLASSNMS_OP
#include "operators/kernel/multiclass_nms_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool MultiClassNMSKernel<X86, float>::Init(MultiClassNMSParam<X86> *param) {
return true;
}
template <>
void MultiClassNMSKernel<X86, float>::Compute(
const MultiClassNMSParam<X86> &param) const {
// TODO
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef POOL_OP
#include "operators/kernel/pool_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool PoolKernel<X86, float>::Init(PoolParam<X86> *param) {
return true;
}
template <>
void PoolKernel<X86, float>::Compute(const PoolParam<X86> &param) const {
// TODO
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PRELU_OP
#include "operators/kernel/prelu_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
void PReluKernel<X86, float>::Compute(const PReluParam<X86> &param) const {
// TODO
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PRIORBOX_OP
#include "operators/kernel/prior_box_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool PriorBoxKernel<X86, float>::Init(PriorBoxParam<X86> *param) {
return true;
}
template <>
void PriorBoxKernel<X86, float>::Compute(
const PriorBoxParam<X86> &param) const {
// TODO
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_MOBILE_X86
#include "operators/kernel/quantize_kernel.h"
#include <cmath>
#include <limits>
namespace paddle_mobile {
namespace operators {
static float find_abs_max(const Tensor *input) {
float max_abs = float(0);
const float *x = input->data<const float>();
for (size_t i = 0; i < input->numel(); ++i) {
float value = std::abs(x[i]);
if (value > max_abs) {
max_abs = value;
}
}
return max_abs;
}
static void quantize_round_to_even(const Tensor *input,
const float scale,
Tensor *output) {
const float *x = input->data<const float>();
int8_t *y = output->data<int8_t>();
for (size_t i = 0; i < input->numel(); ++i) {
float value = x[i] * scale;
long long quant = llround(value);
if (abs(abs(round(value) - value) - 0.5) > 0) {
y[i] = quant;
} else {
if (abs(quant) % 2 == 0) {
y[i] = quant;
} else {
y[i] = quant + (quant > 0) ? -1 : 1;
}
}
}
}
static void quantize_round_to_zero(const Tensor *input,
const float scale,
Tensor *output) {
const float *x = input->data<const float>();
int8_t *y = output->data<int8_t>();
for (size_t i = 0; i < input->numel(); ++i) {
y[i] = trunc(x[i] * scale);
}
}
static void quantize_round_to_nearest(const Tensor *input,
const float scale,
Tensor *output) {
const float *x = input->data<const float>();
int8_t *y = output->data<int8_t>();
for (size_t i = 0; i < input->numel(); ++i) {
y[i] = round(x[i] * scale);
}
}
template<>
bool QuantizeKernel<X86, float>::Init(QuantizeParam<X86> *param) {
return true;
}
template<>
void QuantizeKernel<X86, float>::Compute(
const QuantizeParam<X86> &param) const {
// TODO
float max_abs = 0.f;
const Tensor *input = param.input_;
Tensor *output = param.out_;
Tensor *output_scale = param.online_scale_;
if (param.is_static_) {
max_abs = param.static_scale_;
} else {
max_abs = find_abs_max(input);
}
if (max_abs < std::numeric_limits<float>::min()) {
max_abs = std::numeric_limits<float>::min();
}
// only support int8 currently
float online_scale = 127 / max_abs;
param.online_scale_->mutable_data<float>()[0] = online_scale;
switch (param.round_type_) {
case ROUND_NEAREST_TO_EVEN:
quantize_round_to_even(input, online_scale, output);
break;
case ROUND_NEAREST_TOWARDS_ZERO:
quantize_round_to_zero(input, online_scale, output);
break;
case ROUND_NEAREST_AWAY_ZERO:
quantize_round_to_nearest(input, online_scale, output);
default:
LOG(kLOG_ERROR) << "round type is not supported.";
break;
}
}
} // namespace paddle_mobile
} // namespace operators
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef RELU_OP
#include "operators/kernel/relu_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ReluKernel<X86, float>::Init(ReluParam<X86> *param) {
return true;
}
template <>
void ReluKernel<X86, float>::Compute(const ReluParam<X86> &param) const {
// TODO
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef RESHAPE_OP
#include "operators/kernel/reshape_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ReshapeKernel<X86, float>::Init(ReshapeParam<X86> *param) {
return true;
}
template <>
void ReshapeKernel<X86, float>::Compute(const ReshapeParam<X86> &param) const {
// TODO
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef RESIZE_OP
#include "operators/kernel/resize_kernel.h"
#include <cmath>
namespace paddle_mobile {
namespace operators {
template <>
void ResizeKernel<X86, float>::Compute(const ResizeParam<X86>& param) const {
// TODO
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef SCALE_OP
#include "operators/kernel/scale_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
void ScaleKernel<X86, float>::Compute(const ScaleParam<X86> &param) const {
const auto *input_x = param.InputX();
auto *input_x_ptr = input_x->data<float>();
auto *out = param.Out();
auto *out_ptr = out->mutable_data<float>();
const vector<float> scales = param.Scales();
bool has_bias = param.HasBias();
const int dim_size = input_x->dims().size();
switch (dim_size) {
case 1: {
const int input_width = input_x->dims()[0];
if (has_bias) {
const vector<float> biases = param.Biases();
#pragma omp parallel for
for (int w = 0; w < input_width; w++) {
out_ptr[w] = input_x_ptr[w] * scales[w] + biases[w];
}
} else {
#pragma omp parallel for
for (int w = 0; w < input_width; w++) {
out_ptr[w] = input_x_ptr[w] * scales[w];
}
}
} break;
case 2: {
const int input_height = input_x->dims()[0];
const int input_width = input_x->dims()[1];
if (has_bias) {
const vector<float> biases = param.Biases();
#pragma omp parallel for
for (int h = 0; h < input_height; ++h) {
const float *iptr = input_x_ptr + h * input_width;
float *optr = out_ptr + h * input_width;
for (int w = 0; w < input_width; ++w) {
optr[w] = iptr[w] * scales[w] + biases[w];
}
}
} else {
#pragma omp parallel for
for (int h = 0; h < input_height; ++h) {
const float *iptr = input_x_ptr + h * input_width;
float *optr = out_ptr + h * input_width;
for (int w = 0; w < input_width; ++w) {
optr[w] = iptr[w] * scales[w];
}
}
}
} break;
case 3: {
const int chan_size = input_x->dims()[0];
const int input_height = input_x->dims()[1];
const int input_width = input_x->dims()[2];
int size = input_width * input_height;
if (has_bias) {
const vector<float> biases = param.Biases();
#pragma omp parallel for
for (int c = 0; c < chan_size; ++c) {
const float *iptr = input_x_ptr + c * size;
float *optr = out_ptr + c * size;
for (int i = 0; i < size; ++i) {
optr[i] = iptr[i] * scales[c] + biases[c];
}
}
} else {
#pragma omp parallel for
for (int c = 0; c < chan_size; ++c) {
const float *iptr = input_x_ptr + c * size;
float *optr = out_ptr + c * size;
for (int i = 0; i < size; ++i) {
optr[i] = iptr[i] * scales[c];
}
}
}
} break;
case 4: {
const int batch_size = input_x->dims()[0];
const int chan_size = input_x->dims()[0];
const int input_height = input_x->dims()[1];
const int input_width = input_x->dims()[2];
int size = input_width * input_height;
if (has_bias) {
const vector<float> biases = param.Biases();
#pragma omp parallel for
for (int b = 0; b < batch_size; ++b) {
for (int c = 0; c < chan_size; ++c) {
const float *iptr = input_x_ptr + b * c * size;
float *optr = out_ptr + b * c * size;
for (int i = 0; i < size; ++i) {
optr[i] = iptr[i] * scales[c] + biases[c];
}
}
}
} else {
#pragma omp parallel for
for (int b = 0; b < batch_size; ++b) {
for (int c = 0; c < chan_size; ++c) {
const float *iptr = input_x_ptr + b * c * size;
float *optr = out_ptr + b * c * size;
for (int i = 0; i < size; ++i) {
optr[i] = iptr[i] * scales[c];
}
}
}
}
} break;
default:
break;
}
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef SHAPE_OP
#include "operators/kernel/shape_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ShapeKernel<X86, float>::Init(ShapeParam<X86> *param) {
return true;
}
template <>
void ShapeKernel<X86, float>::Compute(const ShapeParam<X86> &param) const {
// TODO
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef SIGMOID_OP
#include "operators/kernel/sigmoid_kernel.h"
#include <cmath>
namespace paddle_mobile {
namespace operators {
using framework::DDim;
using framework::Tensor;
template <>
bool SigmoidKernel<X86, float>::Init(SigmoidParam<X86> *param) {
return true;
}
template <>
void SigmoidKernel<X86, float>::Compute(const SigmoidParam<X86> &param) const {
// TODO
}
template class SigmoidKernel<X86, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef SOFTMAX_OP
#include "../softmax_kernel.h"
#include "operators/math/softmax.h"
namespace paddle_mobile {
namespace operators {
template <>
bool SoftmaxKernel<X86, float>::Init(SoftmaxParam<X86> *param) {
return true;
}
template <>
void SoftmaxKernel<X86, float>::Compute(const SoftmaxParam<X86> &param) const {
// TODO
}
template class SoftmaxKernel<X86, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef SPLIT_OP
#include "operators/kernel/split_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool SplitKernel<X86, float>::Init(SplitParam<X86> *param) {
return true;
}
template <>
void SplitKernel<X86, float>::Compute(const SplitParam<X86> &param) const {
// TODO
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef TRANSPOSE_OP
#include "operators/kernel/transpose_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool TransposeKernel<X86, float>::Init(TransposeParam<X86> *param) {
return true;
}
template <>
void TransposeKernel<X86, float>::Compute(
const TransposeParam<X86> &param) const {
// TODO
}
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -35,8 +35,5 @@ REGISTER_OPERATOR_CPU(lrn, ops::LrnOp);
#ifdef PADDLE_MOBILE_MALI_GPU
REGISTER_OPERATOR_MALI_GPU(lrn, ops::LrnOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(lrn, ops::LrnOp);
#endif
#endif
......@@ -55,13 +55,11 @@ void MulOp<Dtype, T>::InferShape() const {
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
#if defined(PADDLE_MOBILE_CPU)
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(mul, ops::MulOp);
#elif defined(PADDLE_MOBILE_MALI_GPU)
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
REGISTER_OPERATOR_MALI_GPU(mul, ops::MulOp);
#elif defined(PADDLE_MOBILE_FPGA)
#else
REGISTER_OPERATOR_X86(mul, ops::MulOp);
#endif
#endif
......@@ -39,12 +39,8 @@ void MultiClassNMSOp<Dtype, T>::InferShape() const {
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
#if defined(PADDLE_MOBILE_CPU)
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(multiclass_nms, ops::MultiClassNMSOp);
#elif defined(PADDLE_MOBILE_MALI_GPU)
#elif defined(PADDLE_MOBILE_FPGA)
#else
REGISTER_OPERATOR_X86(multiclass_nms, ops::MultiClassNMSOp);
#endif
#endif
......@@ -42,33 +42,28 @@ Print &operator<<(Print &printer, const ConvParam<CPU> &conv_param) {
template class ConvParam<CPU>;
template class ConvParam<FPGA>;
template class ConvParam<GPU_MALI>;
template class ConvParam<X86>;
#endif
template class ElementwiseAddParam<CPU>;
template class ElementwiseAddParam<FPGA>;
template class ElementwiseAddParam<GPU_MALI>;
template class ElementwiseAddParam<X86>;
#ifdef MUL_OP
template class MulParam<CPU>;
template class MulParam<FPGA>;
template class MulParam<GPU_MALI>;
template class MulParam<X86>;
#endif
#ifdef CONCAT_OP
template class ConcatParam<CPU>;
template class ConcatParam<FPGA>;
template class ConcatParam<GPU_MALI>;
template class ConcatParam<X86>;
#endif
#ifdef LRN_OP
template class LrnParam<CPU>;
template class LrnParam<FPGA>;
template class LrnParam<GPU_MALI>;
template class LrnParam<X86>;
#endif
#ifdef FUSION_CONVADD_OP
......
......@@ -68,8 +68,5 @@ REGISTER_OPERATOR_MALI_GPU(pool2d, ops::PoolOp);
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(pool2d, ops::PoolOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(pool2d, ops::PoolOp);
#endif
#endif
......@@ -39,8 +39,5 @@ REGISTER_OPERATOR_CPU(prelu, ops::PReluOp);
#ifdef PADDLE_MOBILE_MALI_GPU
REGISTER_OPERATOR_MALI_GPU(prelu, ops::PReluOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(prelu, ops::PReluOp);
#endif
#endif
......@@ -54,8 +54,5 @@ REGISTER_OPERATOR_CPU(prior_box, ops::PriorBoxOp);
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(prior_box, ops::PriorBoxOp);
#endif
#endif
......@@ -32,7 +32,4 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(quantize, ops::QuantizeOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(quantize, ops::QuantizeOp);
#endif
......@@ -39,8 +39,5 @@ REGISTER_OPERATOR_CPU(relu, ops::ReluOp);
#ifdef PADDLE_MOBILE_MALI_GPU
REGISTER_OPERATOR_MALI_GPU(relu, ops::ReluOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(relu, ops::ReluOp);
#endif
#endif
......@@ -38,8 +38,5 @@ REGISTER_OPERATOR_CPU(reshape, ops::ReshapeOp);
#ifdef PADDLE_MOBILE_MALI_GPU
REGISTER_OPERATOR_MALI_GPU(reshape, ops::ReshapeOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(reshape, ops::ReshapeOp);
#endif
#endif
......@@ -35,8 +35,5 @@ REGISTER_OPERATOR_CPU(resize, ops::ResizeOp);
#ifdef PADDLE_MOBILE_MALI_GPU
REGISTER_OPERATOR_MALI_GPU(resize, ops::ResizeOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(resize, ops::ResizeOp);
#endif
#endif
......@@ -35,8 +35,5 @@ REGISTER_OPERATOR_CPU(scale, ops::ScaleOp);
#ifdef PADDLE_MOBILE_MALI_GPU
REGISTER_OPERATOR_MALI_GPU(scale, ops::ScaleOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(scale, ops::ScaleOp);
#endif
#endif
......@@ -36,8 +36,5 @@ REGISTER_OPERATOR_CPU(shape, ops::ShapeOp);
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(shape, ops::ShapeOp);
#endif
#endif
......@@ -27,12 +27,8 @@ void SigmoidOp<DeviceType, T>::InferShape() const {
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
#if defined(PADDLE_MOBILE_CPU)
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(sigmoid, ops::SigmoidOp);
#elif defined(PADDLE_MOBILE_MALI_GPU)
#elif defined(PADDLE_MOBILE_FPGA)
#else
REGISTER_OPERATOR_X86(sigmoid, ops::SigmoidOp);
#endif
#endif
......@@ -34,8 +34,5 @@ REGISTER_OPERATOR_CPU(slice, ops::SliceOp);
#ifdef PADDLE_MOBILE_MALI_GPU
REGISTER_OPERATOR_MALI_GPU(slice, ops::SliceOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(slice, ops::SliceOp);
#endif
#endif
......@@ -36,8 +36,5 @@ REGISTER_OPERATOR_MALI_GPU(softmax, ops::SoftmaxOp);
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(softmax, ops::SoftmaxOp);
#endif
#ifdef PADDLE_MOBILE_X86
REGISTER_OPERATOR_X86(softmax, ops::SoftmaxOp);
#endif
#endif
......@@ -80,12 +80,8 @@ void SplitOp<DeviceType, T>::InferShape() const {
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
#if defined(PADDLE_MOBILE_CPU)
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(split, ops::SplitOp);
#elif defined(PADDLE_MOBILE_MALI_GPU)
#elif defined(PADDLE_MOBILE_FPGA)
#else
REGISTER_OPERATOR_X86(split, ops::SplitOp);
#endif
#endif // SPLIT_OP
......@@ -52,12 +52,8 @@ void TransposeOp<Dtype, T>::InferShape() const {
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
#if defined(PADDLE_MOBILE_CPU)
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(transpose, ops::TransposeOp);
#elif defined(PADDLE_MOBILE_MALI_GPU)
#elif defined(PADDLE_MOBILE_FPGA)
#else
REGISTER_OPERATOR_X86(transpose, ops::TransposeOp);
#endif
#endif // TRANSPOSE_OP
......@@ -17,11 +17,7 @@ limitations under the License. */
#include "../test_include.h"
int main() {
#if defined(PADDLE_MOBILE_CPU)
paddle_mobile::PaddleMobile<paddle_mobile::CPU> paddle_mobile;
#elif defined(PADDLE_MOBILE_X86)
paddle_mobile::PaddleMobile<paddle_mobile::X86> paddle_mobile;
#endif
paddle_mobile.SetThreadNum(4);
bool optimize = true;
auto time1 = time();
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册