Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
7315defa
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7315defa
编写于
8月 27, 2018
作者:
L
liuruilong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
align result
上级
9540e39b
变更
45
展开全部
隐藏空白更改
内联
并排
Showing
45 changed file
with
2517 addition
and
2130 deletion
+2517
-2130
metal/paddle-mobile-demo/paddle-mobile-demo.xcodeproj/project.pbxproj
...-mobile-demo/paddle-mobile-demo.xcodeproj/project.pbxproj
+4
-0
metal/paddle-mobile-demo/paddle-mobile-demo/Base.lproj/Main.storyboard
...mobile-demo/paddle-mobile-demo/Base.lproj/Main.storyboard
+15
-14
metal/paddle-mobile-demo/paddle-mobile-demo/ModelHelper.swift
...l/paddle-mobile-demo/paddle-mobile-demo/ModelHelper.swift
+36
-20
metal/paddle-mobile-demo/paddle-mobile-demo/ViewController.swift
...addle-mobile-demo/paddle-mobile-demo/ViewController.swift
+6
-4
metal/paddle-mobile/paddle-mobile.xcodeproj/project.pbxproj
metal/paddle-mobile/paddle-mobile.xcodeproj/project.pbxproj
+8
-0
metal/paddle-mobile/paddle-mobile/Common/Extensions.swift
metal/paddle-mobile/paddle-mobile/Common/Extensions.swift
+68
-53
metal/paddle-mobile/paddle-mobile/Common/MetalExtension.swift
...l/paddle-mobile/paddle-mobile/Common/MetalExtension.swift
+332
-325
metal/paddle-mobile/paddle-mobile/Common/Types.swift
metal/paddle-mobile/paddle-mobile/Common/Types.swift
+177
-174
metal/paddle-mobile/paddle-mobile/Executor.swift
metal/paddle-mobile/paddle-mobile/Executor.swift
+131
-111
metal/paddle-mobile/paddle-mobile/Operators/Base/Operator.swift
...paddle-mobile/paddle-mobile/Operators/Base/Operator.swift
+67
-66
metal/paddle-mobile/paddle-mobile/Operators/BatchNormOp.swift
...l/paddle-mobile/paddle-mobile/Operators/BatchNormOp.swift
+39
-34
metal/paddle-mobile/paddle-mobile/Operators/BoxcoderOp.swift
metal/paddle-mobile/paddle-mobile/Operators/BoxcoderOp.swift
+64
-45
metal/paddle-mobile/paddle-mobile/Operators/ConcatOp.swift
metal/paddle-mobile/paddle-mobile/Operators/ConcatOp.swift
+54
-31
metal/paddle-mobile/paddle-mobile/Operators/ConvAddBatchNormReluOp.swift
...bile/paddle-mobile/Operators/ConvAddBatchNormReluOp.swift
+109
-104
metal/paddle-mobile/paddle-mobile/Operators/ConvAddOp.swift
metal/paddle-mobile/paddle-mobile/Operators/ConvAddOp.swift
+92
-64
metal/paddle-mobile/paddle-mobile/Operators/ConvBNReluOp.swift
.../paddle-mobile/paddle-mobile/Operators/ConvBNReluOp.swift
+148
-99
metal/paddle-mobile/paddle-mobile/Operators/ConvOp.swift
metal/paddle-mobile/paddle-mobile/Operators/ConvOp.swift
+67
-62
metal/paddle-mobile/paddle-mobile/Operators/ConvTransposeOp.swift
...ddle-mobile/paddle-mobile/Operators/ConvTransposeOp.swift
+4
-0
metal/paddle-mobile/paddle-mobile/Operators/DepthwiseConvOp.swift
...ddle-mobile/paddle-mobile/Operators/DepthwiseConvOp.swift
+46
-41
metal/paddle-mobile/paddle-mobile/Operators/DwConvBNReluOp.swift
...addle-mobile/paddle-mobile/Operators/DwConvBNReluOp.swift
+68
-64
metal/paddle-mobile/paddle-mobile/Operators/ElementwiseAddOp.swift
...dle-mobile/paddle-mobile/Operators/ElementwiseAddOp.swift
+27
-23
metal/paddle-mobile/paddle-mobile/Operators/FeedOp.swift
metal/paddle-mobile/paddle-mobile/Operators/FeedOp.swift
+47
-43
metal/paddle-mobile/paddle-mobile/Operators/FetchOp.swift
metal/paddle-mobile/paddle-mobile/Operators/FetchOp.swift
+32
-28
metal/paddle-mobile/paddle-mobile/Operators/Kernels/ConvAddBatchNormReluKernel.swift
...mobile/Operators/Kernels/ConvAddBatchNormReluKernel.swift
+1
-1
metal/paddle-mobile/paddle-mobile/Operators/Kernels/ConvAddKernel.swift
...obile/paddle-mobile/Operators/Kernels/ConvAddKernel.swift
+1
-1
metal/paddle-mobile/paddle-mobile/Operators/Kernels/ConvBNReluKernel.swift
...le/paddle-mobile/Operators/Kernels/ConvBNReluKernel.swift
+12
-8
metal/paddle-mobile/paddle-mobile/Operators/Kernels/PriorBoxKernel.swift
...bile/paddle-mobile/Operators/Kernels/PriorBoxKernel.swift
+86
-75
metal/paddle-mobile/paddle-mobile/Operators/Kernels/Texture2DTo2DArrayKernel.swift
...e-mobile/Operators/Kernels/Texture2DTo2DArrayKernel.swift
+1
-1
metal/paddle-mobile/paddle-mobile/Operators/Kernels/TransposeKernel.swift
...ile/paddle-mobile/Operators/Kernels/TransposeKernel.swift
+78
-66
metal/paddle-mobile/paddle-mobile/Operators/Kernels/metal/Common.metal
...mobile/paddle-mobile/Operators/Kernels/metal/Common.metal
+55
-0
metal/paddle-mobile/paddle-mobile/Operators/Kernels/metal/ConvKernel.metal
...le/paddle-mobile/Operators/Kernels/metal/ConvKernel.metal
+6
-8
metal/paddle-mobile/paddle-mobile/Operators/Kernels/metal/Kernels.metal
...obile/paddle-mobile/Operators/Kernels/metal/Kernels.metal
+197
-286
metal/paddle-mobile/paddle-mobile/Operators/Kernels/metal/PriorBoxKernel.metal
...addle-mobile/Operators/Kernels/metal/PriorBoxKernel.metal
+3
-2
metal/paddle-mobile/paddle-mobile/Operators/Kernels/metal/ReshapeKernel.metal
...paddle-mobile/Operators/Kernels/metal/ReshapeKernel.metal
+82
-0
metal/paddle-mobile/paddle-mobile/Operators/MulticlassNMSOp.swift
...ddle-mobile/paddle-mobile/Operators/MulticlassNMSOp.swift
+5
-1
metal/paddle-mobile/paddle-mobile/Operators/PoolOp.swift
metal/paddle-mobile/paddle-mobile/Operators/PoolOp.swift
+49
-45
metal/paddle-mobile/paddle-mobile/Operators/PreluOp.swift
metal/paddle-mobile/paddle-mobile/Operators/PreluOp.swift
+4
-0
metal/paddle-mobile/paddle-mobile/Operators/PriorBoxOp.swift
metal/paddle-mobile/paddle-mobile/Operators/PriorBoxOp.swift
+76
-45
metal/paddle-mobile/paddle-mobile/Operators/ReluOp.swift
metal/paddle-mobile/paddle-mobile/Operators/ReluOp.swift
+26
-22
metal/paddle-mobile/paddle-mobile/Operators/ReshapeOp.swift
metal/paddle-mobile/paddle-mobile/Operators/ReshapeOp.swift
+35
-31
metal/paddle-mobile/paddle-mobile/Operators/SoftmaxOp.swift
metal/paddle-mobile/paddle-mobile/Operators/SoftmaxOp.swift
+31
-27
metal/paddle-mobile/paddle-mobile/Operators/TransposeOp.swift
...l/paddle-mobile/paddle-mobile/Operators/TransposeOp.swift
+41
-22
metal/paddle-mobile/paddle-mobile/Program/TensorDesc.swift
metal/paddle-mobile/paddle-mobile/Program/TensorDesc.swift
+2
-2
metal/paddle-mobile/paddle-mobile/framework/Tensor.swift
metal/paddle-mobile/paddle-mobile/framework/Tensor.swift
+1
-1
metal/paddle-mobile/paddle-mobile/framework/Texture.swift
metal/paddle-mobile/paddle-mobile/framework/Texture.swift
+84
-81
未找到文件。
metal/paddle-mobile-demo/paddle-mobile-demo.xcodeproj/project.pbxproj
浏览文件 @
7315defa
...
...
@@ -16,6 +16,7 @@
FC039B8C20E11C560081E9F8
/* LaunchScreen.storyboard in Resources */
=
{
isa
=
PBXBuildFile
;
fileRef
=
FC039B8A20E11C560081E9F8
/* LaunchScreen.storyboard */
;
};
FC918191211DBC3500B6F354
/* paddle-mobile.png in Resources */
=
{
isa
=
PBXBuildFile
;
fileRef
=
FC918190211DBC3500B6F354
/* paddle-mobile.png */
;
};
FC918193211DC70500B6F354
/* iphone.JPG in Resources */
=
{
isa
=
PBXBuildFile
;
fileRef
=
FC918192211DC70500B6F354
/* iphone.JPG */
;
};
FCA3A16121313E1F00084FE5
/* hand.jpg in Resources */
=
{
isa
=
PBXBuildFile
;
fileRef
=
FCA3A16021313E1F00084FE5
/* hand.jpg */
;
};
FCBCCC522122EEDC00D94F7E
/* ssd_hand_params in Resources */
=
{
isa
=
PBXBuildFile
;
fileRef
=
FCBCCC502122EEDC00D94F7E
/* ssd_hand_params */
;
};
FCBCCC532122EEDC00D94F7E
/* ssd_hand_model in Resources */
=
{
isa
=
PBXBuildFile
;
fileRef
=
FCBCCC512122EEDC00D94F7E
/* ssd_hand_model */
;
};
FCBCCC552122EF5500D94F7E
/* MetalHelper.swift in Sources */
=
{
isa
=
PBXBuildFile
;
fileRef
=
FCBCCC542122EF5400D94F7E
/* MetalHelper.swift */
;
};
...
...
@@ -56,6 +57,7 @@
FC039B8D20E11C560081E9F8
/* Info.plist */
=
{
isa
=
PBXFileReference
;
lastKnownFileType
=
text.plist.xml
;
path
=
Info.plist
;
sourceTree
=
"<group>"
;
};
FC918190211DBC3500B6F354
/* paddle-mobile.png */
=
{
isa
=
PBXFileReference
;
lastKnownFileType
=
image.png
;
path
=
"paddle-mobile.png"
;
sourceTree
=
"<group>"
;
};
FC918192211DC70500B6F354
/* iphone.JPG */
=
{
isa
=
PBXFileReference
;
lastKnownFileType
=
image.jpeg
;
path
=
iphone.JPG
;
sourceTree
=
"<group>"
;
};
FCA3A16021313E1F00084FE5
/* hand.jpg */
=
{
isa
=
PBXFileReference
;
lastKnownFileType
=
image.jpeg
;
path
=
hand.jpg
;
sourceTree
=
"<group>"
;
};
FCBCCC502122EEDC00D94F7E
/* ssd_hand_params */
=
{
isa
=
PBXFileReference
;
lastKnownFileType
=
file
;
path
=
ssd_hand_params
;
sourceTree
=
"<group>"
;
};
FCBCCC512122EEDC00D94F7E
/* ssd_hand_model */
=
{
isa
=
PBXFileReference
;
lastKnownFileType
=
file
;
path
=
ssd_hand_model
;
sourceTree
=
"<group>"
;
};
FCBCCC542122EF5400D94F7E
/* MetalHelper.swift */
=
{
isa
=
PBXFileReference
;
fileEncoding
=
4
;
lastKnownFileType
=
sourcecode.swift
;
path
=
MetalHelper.swift
;
sourceTree
=
"<group>"
;
};
...
...
@@ -137,6 +139,7 @@
FC0E2C1D20EDC030009C1FAC
/* images */
=
{
isa
=
PBXGroup
;
children
=
(
FCA3A16021313E1F00084FE5
/* hand.jpg */
,
FC918192211DC70500B6F354
/* iphone.JPG */
,
FC918190211DBC3500B6F354
/* paddle-mobile.png */
,
FCDFD41A211D91C7005AB38B
/* synset.txt */
,
...
...
@@ -245,6 +248,7 @@
FCDFD41B211D91C7005AB38B
/* synset.txt in Resources */
,
FCD04E6420F3146B0007374F
/* model in Resources */
,
FC039B8720E11C550081E9F8
/* Main.storyboard in Resources */
,
FCA3A16121313E1F00084FE5
/* hand.jpg in Resources */
,
FCBCCC532122EEDC00D94F7E
/* ssd_hand_model in Resources */
,
);
runOnlyForDeploymentPostprocessing
=
0
;
...
...
metal/paddle-mobile-demo/paddle-mobile-demo/Base.lproj/Main.storyboard
浏览文件 @
7315defa
...
...
@@ -19,10 +19,10 @@
<rect
key=
"frame"
x=
"0.0"
y=
"0.0"
width=
"375"
height=
"667"
/>
<autoresizingMask
key=
"autoresizingMask"
widthSizable=
"YES"
heightSizable=
"YES"
/>
<subviews>
<imageView
userInteractionEnabled=
"NO"
contentMode=
"scaleAspectFit"
horizontalHuggingPriority=
"251"
verticalHuggingPriority=
"251"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"ZZh-fw-LwK"
>
<imageView
userInteractionEnabled=
"NO"
contentMode=
"scaleAspectFit"
horizontalHuggingPriority=
"251"
verticalHuggingPriority=
"251"
ambiguous=
"YES"
image=
"hand.jpg"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"ZZh-fw-LwK"
>
<rect
key=
"frame"
x=
"0.0"
y=
"20"
width=
"375"
height=
"247"
/>
</imageView>
<label
opaque=
"NO"
userInteractionEnabled=
"NO"
contentMode=
"left"
horizontalHuggingPriority=
"251"
verticalHuggingPriority=
"251"
text=
"Thread:"
textAlignment=
"natural"
lineBreakMode=
"tailTruncation"
baselineAdjustment=
"alignBaselines"
adjustsFontSizeToFit=
"NO"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"2EB-m2-a3L"
>
<label
opaque=
"NO"
userInteractionEnabled=
"NO"
contentMode=
"left"
horizontalHuggingPriority=
"251"
verticalHuggingPriority=
"251"
ambiguous=
"YES"
text=
"Thread:"
textAlignment=
"natural"
lineBreakMode=
"tailTruncation"
baselineAdjustment=
"alignBaselines"
adjustsFontSizeToFit=
"NO"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"2EB-m2-a3L"
>
<rect
key=
"frame"
x=
"10"
y=
"538"
width=
"68"
height=
"24"
/>
<constraints>
<constraint
firstAttribute=
"width"
constant=
"68"
id=
"Q5J-tq-JSX"
/>
...
...
@@ -32,19 +32,19 @@
<nil
key=
"textColor"
/>
<nil
key=
"highlightedColor"
/>
</label>
<pickerView
contentMode=
"scaleToFill"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"DlO-dk-RMr"
>
<pickerView
contentMode=
"scaleToFill"
ambiguous=
"YES"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"DlO-dk-RMr"
>
<rect
key=
"frame"
x=
"88"
y=
"510.5"
width=
"287"
height=
"80"
/>
<constraints>
<constraint
firstAttribute=
"height"
constant=
"80"
id=
"Sbi-05-Mwd"
/>
</constraints>
</pickerView>
<pickerView
contentMode=
"scaleToFill"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"6MG-gv-hD5"
>
<pickerView
contentMode=
"scaleToFill"
ambiguous=
"YES"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"6MG-gv-hD5"
>
<rect
key=
"frame"
x=
"85"
y=
"401"
width=
"290"
height=
"80"
/>
<constraints>
<constraint
firstAttribute=
"height"
constant=
"80"
id=
"yAL-JY-G6b"
/>
</constraints>
</pickerView>
<label
opaque=
"NO"
userInteractionEnabled=
"NO"
contentMode=
"left"
horizontalHuggingPriority=
"251"
verticalHuggingPriority=
"251"
text=
"Models"
textAlignment=
"natural"
lineBreakMode=
"tailTruncation"
baselineAdjustment=
"alignBaselines"
adjustsFontSizeToFit=
"NO"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"avL-VK-Kha"
>
<label
opaque=
"NO"
userInteractionEnabled=
"NO"
contentMode=
"left"
horizontalHuggingPriority=
"251"
verticalHuggingPriority=
"251"
ambiguous=
"YES"
text=
"Models"
textAlignment=
"natural"
lineBreakMode=
"tailTruncation"
baselineAdjustment=
"alignBaselines"
adjustsFontSizeToFit=
"NO"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"avL-VK-Kha"
>
<rect
key=
"frame"
x=
"10"
y=
"429"
width=
"65"
height=
"24"
/>
<constraints>
<constraint
firstAttribute=
"width"
constant=
"65"
id=
"6oA-g2-Xq4"
/>
...
...
@@ -54,7 +54,7 @@
<nil
key=
"textColor"
/>
<nil
key=
"highlightedColor"
/>
</label>
<button
opaque=
"NO"
contentMode=
"scaleToFill"
contentHorizontalAlignment=
"center"
contentVerticalAlignment=
"center"
buttonType=
"roundedRect"
showsTouchWhenHighlighted=
"YES"
lineBreakMode=
"middleTruncation"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"wUL-9N-u1V"
>
<button
opaque=
"NO"
contentMode=
"scaleToFill"
ambiguous=
"YES"
contentHorizontalAlignment=
"center"
contentVerticalAlignment=
"center"
buttonType=
"roundedRect"
showsTouchWhenHighlighted=
"YES"
lineBreakMode=
"middleTruncation"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"wUL-9N-u1V"
>
<rect
key=
"frame"
x=
"16"
y=
"597"
width=
"63.5"
height=
"30"
/>
<color
key=
"backgroundColor"
white=
"0.0"
alpha=
"1"
colorSpace=
"custom"
customColorSpace=
"genericGamma22GrayColorSpace"
/>
<state
key=
"normal"
title=
"Image"
>
...
...
@@ -64,7 +64,7 @@
<action
selector=
"selectImageAct:"
destination=
"BYZ-38-t0r"
eventType=
"touchUpInside"
id=
"5uR-SM-fKO"
/>
</connections>
</button>
<button
opaque=
"NO"
contentMode=
"scaleToFill"
contentHorizontalAlignment=
"center"
contentVerticalAlignment=
"center"
buttonType=
"roundedRect"
showsTouchWhenHighlighted=
"YES"
lineBreakMode=
"middleTruncation"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"XpL-9M-UOp"
>
<button
opaque=
"NO"
contentMode=
"scaleToFill"
ambiguous=
"YES"
contentHorizontalAlignment=
"center"
contentVerticalAlignment=
"center"
buttonType=
"roundedRect"
showsTouchWhenHighlighted=
"YES"
lineBreakMode=
"middleTruncation"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"XpL-9M-UOp"
>
<rect
key=
"frame"
x=
"109.5"
y=
"597"
width=
"63"
height=
"30"
/>
<color
key=
"backgroundColor"
white=
"0.0"
alpha=
"1"
colorSpace=
"custom"
customColorSpace=
"genericGamma22GrayColorSpace"
/>
<state
key=
"normal"
title=
"Load"
>
...
...
@@ -74,7 +74,7 @@
<action
selector=
"loadAct:"
destination=
"BYZ-38-t0r"
eventType=
"touchUpInside"
id=
"fZ5-CQ-jCY"
/>
</connections>
</button>
<button
opaque=
"NO"
contentMode=
"scaleToFill"
contentHorizontalAlignment=
"center"
contentVerticalAlignment=
"center"
buttonType=
"roundedRect"
showsTouchWhenHighlighted=
"YES"
lineBreakMode=
"middleTruncation"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"R90-Yf-S6g"
>
<button
opaque=
"NO"
contentMode=
"scaleToFill"
ambiguous=
"YES"
contentHorizontalAlignment=
"center"
contentVerticalAlignment=
"center"
buttonType=
"roundedRect"
showsTouchWhenHighlighted=
"YES"
lineBreakMode=
"middleTruncation"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"R90-Yf-S6g"
>
<rect
key=
"frame"
x=
"202.5"
y=
"597"
width=
"63.5"
height=
"30"
/>
<color
key=
"backgroundColor"
white=
"0.0"
alpha=
"1"
colorSpace=
"custom"
customColorSpace=
"genericGamma22GrayColorSpace"
/>
<state
key=
"normal"
title=
"Predict"
>
...
...
@@ -84,7 +84,7 @@
<action
selector=
"predictAct:"
destination=
"BYZ-38-t0r"
eventType=
"touchUpInside"
id=
"Iyy-sY-gt4"
/>
</connections>
</button>
<button
opaque=
"NO"
contentMode=
"scaleToFill"
contentHorizontalAlignment=
"center"
contentVerticalAlignment=
"center"
buttonType=
"roundedRect"
showsTouchWhenHighlighted=
"YES"
lineBreakMode=
"middleTruncation"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"a3K-ri-NVs"
>
<button
opaque=
"NO"
contentMode=
"scaleToFill"
ambiguous=
"YES"
contentHorizontalAlignment=
"center"
contentVerticalAlignment=
"center"
buttonType=
"roundedRect"
showsTouchWhenHighlighted=
"YES"
lineBreakMode=
"middleTruncation"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"a3K-ri-NVs"
>
<rect
key=
"frame"
x=
"296"
y=
"597"
width=
"63"
height=
"30"
/>
<color
key=
"backgroundColor"
white=
"0.0"
alpha=
"1"
colorSpace=
"custom"
customColorSpace=
"genericGamma22GrayColorSpace"
/>
<state
key=
"normal"
title=
"Clear"
>
...
...
@@ -94,7 +94,7 @@
<action
selector=
"clearAct:"
destination=
"BYZ-38-t0r"
eventType=
"touchUpInside"
id=
"JYf-UX-rCR"
/>
</connections>
</button>
<view
contentMode=
"scaleToFill"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"w7H-Sk-Rai"
>
<view
contentMode=
"scaleToFill"
ambiguous=
"YES"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"w7H-Sk-Rai"
>
<rect
key=
"frame"
x=
"79.5"
y=
"597"
width=
"30"
height=
"30"
/>
<color
key=
"backgroundColor"
white=
"1"
alpha=
"1"
colorSpace=
"custom"
customColorSpace=
"genericGamma22GrayColorSpace"
/>
<constraints>
...
...
@@ -102,7 +102,7 @@
<constraint
firstAttribute=
"width"
constant=
"30"
id=
"vYd-Fc-KAj"
/>
</constraints>
</view>
<view
contentMode=
"scaleToFill"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"T4O-nx-ciH"
>
<view
contentMode=
"scaleToFill"
ambiguous=
"YES"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"T4O-nx-ciH"
>
<rect
key=
"frame"
x=
"266"
y=
"597"
width=
"30"
height=
"30"
/>
<color
key=
"backgroundColor"
white=
"1"
alpha=
"1"
colorSpace=
"custom"
customColorSpace=
"genericGamma22GrayColorSpace"
/>
<constraints>
...
...
@@ -110,7 +110,7 @@
<constraint
firstAttribute=
"width"
constant=
"30"
id=
"fXE-S7-ZXL"
/>
</constraints>
</view>
<view
contentMode=
"scaleToFill"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"976-fk-Kx2"
>
<view
contentMode=
"scaleToFill"
ambiguous=
"YES"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"976-fk-Kx2"
>
<rect
key=
"frame"
x=
"172.5"
y=
"597"
width=
"30"
height=
"30"
/>
<color
key=
"backgroundColor"
white=
"1"
alpha=
"1"
colorSpace=
"custom"
customColorSpace=
"genericGamma22GrayColorSpace"
/>
<constraints>
...
...
@@ -118,7 +118,7 @@
<constraint
firstAttribute=
"width"
constant=
"30"
id=
"L4p-hP-s5C"
/>
</constraints>
</view>
<label
opaque=
"NO"
userInteractionEnabled=
"NO"
contentMode=
"left"
horizontalHuggingPriority=
"251"
verticalHuggingPriority=
"251"
text=
"耗时:"
lineBreakMode=
"tailTruncation"
numberOfLines=
"0"
baselineAdjustment=
"alignBaselines"
adjustsFontSizeToFit=
"NO"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"m5L-O7-P31"
>
<label
opaque=
"NO"
userInteractionEnabled=
"NO"
contentMode=
"left"
horizontalHuggingPriority=
"251"
verticalHuggingPriority=
"251"
ambiguous=
"YES"
text=
"耗时:"
lineBreakMode=
"tailTruncation"
numberOfLines=
"0"
baselineAdjustment=
"alignBaselines"
adjustsFontSizeToFit=
"NO"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"m5L-O7-P31"
>
<rect
key=
"frame"
x=
"15"
y=
"277"
width=
"350"
height=
"38"
/>
<constraints>
<constraint
firstAttribute=
"height"
constant=
"38"
id=
"6SS-sb-7I2"
/>
...
...
@@ -133,7 +133,7 @@
<constraint
firstAttribute=
"width"
secondItem=
"4ey-Xr-U4e"
secondAttribute=
"height"
multiplier=
"6.5:1"
id=
"8c5-FF-lB9"
/>
</constraints>
</imageView>
<textView
clipsSubviews=
"YES"
multipleTouchEnabled=
"YES"
contentMode=
"scaleToFill"
editable=
"NO"
text=
"结果:"
textAlignment=
"natural"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"VQn-bS-fWp"
>
<textView
clipsSubviews=
"YES"
multipleTouchEnabled=
"YES"
contentMode=
"scaleToFill"
ambiguous=
"YES"
editable=
"NO"
text=
"结果:"
textAlignment=
"natural"
translatesAutoresizingMaskIntoConstraints=
"NO"
id=
"VQn-bS-fWp"
>
<rect
key=
"frame"
x=
"10"
y=
"323"
width=
"355"
height=
"70"
/>
<color
key=
"backgroundColor"
white=
"1"
alpha=
"1"
colorSpace=
"custom"
customColorSpace=
"genericGamma22GrayColorSpace"
/>
<constraints>
...
...
@@ -203,6 +203,7 @@
</scene>
</scenes>
<resources>
<image
name=
"hand.jpg"
width=
"564"
height=
"664"
/>
<image
name=
"paddle-mobile.png"
width=
"402"
height=
"62"
/>
</resources>
</document>
metal/paddle-mobile-demo/paddle-mobile-demo/ModelHelper.swift
浏览文件 @
7315defa
...
...
@@ -30,6 +30,7 @@ protocol Net {
var
preprocessKernel
:
CusomKernel
{
get
}
func
getTexture
(
image
:
CGImage
,
getTexture
:
@escaping
(
MTLTexture
)
->
Void
)
func
resultStr
(
res
:
[
Float
])
->
String
func
fetchResult
(
paddleMobileRes
:
ResultHolder
<
Float32
>
)
->
[
Float32
]
}
extension
Net
{
...
...
@@ -39,10 +40,13 @@ extension Net {
getTexture
(
resTexture
)
}
}
func
fetchResult
(
paddleMobileRes
:
ResultHolder
<
Float32
>
)
->
[
Float32
]
{
return
paddleMobileRes
.
resultArr
}
}
struct
MobileNet
:
Net
{
class
MobilenetPreProccess
:
CusomKernel
{
init
(
device
:
MTLDevice
)
{
let
s
=
CusomKernel
.
Shape
.
init
(
inWidth
:
224
,
inHeight
:
224
,
inChannel
:
3
)
...
...
@@ -100,7 +104,8 @@ struct MobileNet_ssd_hand: Net{
}
func
resultStr
(
res
:
[
Float
])
->
String
{
fatalError
()
return
"哈哈哈, 还没好"
// fatalError()
}
func
bboxArea
(
box
:
[
Float32
],
normalized
:
Bool
)
->
Float32
{
...
...
@@ -117,7 +122,6 @@ struct MobileNet_ssd_hand: Net{
}
}
func
jaccardOverLap
(
box1
:
[
Float32
],
box2
:
[
Float32
],
normalized
:
Bool
)
->
Float32
{
if
box2
[
0
]
>
box1
[
2
]
||
box2
[
2
]
<
box1
[
0
]
||
box2
[
1
]
>
box1
[
3
]
||
box2
[
3
]
<
box1
[
1
]
{
...
...
@@ -136,9 +140,11 @@ struct MobileNet_ssd_hand: Net{
}
}
func
fetchResult
(
paddleMobileRes
:
[
String
:
Texture
<
Float32
>
])
->
[
Float32
]{
let
bbox
=
paddleMobileRes
[
"box_coder_0.tmp_0"
]
?
!
" no bbox "
let
scores
=
paddleMobileRes
[
"transpose_12.tmp_0"
]
?
!
" no scores "
func
fetchResult
(
paddleMobileRes
:
ResultHolder
<
Float32
>
)
->
[
Float32
]{
let
scores
=
paddleMobileRes
.
intermediateResults
!
[
0
]
as!
Texture
<
Float32
>
let
bbox
=
paddleMobileRes
.
intermediateResults
!
[
1
]
as!
Texture
<
Float32
>
// let bbox = paddleMobileRes["box_coder_0.tmp_0"] ?! " no bbox "
// let scores = paddleMobileRes["transpose_12.tmp_0"] ?! " no scores "
let
score_thredshold
:
Float32
=
0.01
let
nms_top_k
=
400
let
keep_top_k
=
200
...
...
@@ -156,20 +162,29 @@ struct MobileNet_ssd_hand: Net{
var
scoreFormatArr
:
[
Float32
]
=
[]
var
outputArr
:
[
Float32
]
=
[]
let
numOfOneC
=
(
scores
.
originDim
[
2
]
+
3
)
/
4
// 480
let
cNumOfOneClass
=
numOfOneC
*
4
// 1920
let
numOfOneC
=
(
scores
.
tensorDim
[
2
]
+
3
)
/
4
// 480
let
boxSize
=
bbox
.
originDim
[
2
]
// 4
let
classNum
=
scores
.
originDim
[
1
]
// 7
let
cNumOfOneClass
=
scores
.
tensorDim
[
2
]
// 1917
let
cPaddedNumOfOneClass
=
numOfOneC
*
4
// 1920
let
boxSize
=
bbox
.
tensorDim
[
2
]
// 4
let
classNum
=
scores
.
tensorDim
[
1
]
// 7
let
classNumOneTexture
=
classNum
*
4
// 28
for
c
in
0
..<
classNum
{
for
n
in
0
..<
numOfOneC
{
let
to
=
n
*
classNumOneTexture
+
c
*
4
scoreFormatArr
.
append
(
scoresArr
[
to
])
scoreFormatArr
.
append
(
scoresArr
[
to
+
1
])
scoreFormatArr
.
append
(
scoresArr
[
to
+
2
])
scoreFormatArr
.
append
(
scoresArr
[
to
+
3
])
if
n
==
numOfOneC
-
1
{
for
i
in
0
..<
(
4
-
(
cPaddedNumOfOneClass
-
cNumOfOneClass
))
{
scoreFormatArr
.
append
(
scoresArr
[
to
+
i
])
}
}
else
{
scoreFormatArr
.
append
(
scoresArr
[
to
])
scoreFormatArr
.
append
(
scoresArr
[
to
+
1
])
scoreFormatArr
.
append
(
scoresArr
[
to
+
2
])
scoreFormatArr
.
append
(
scoresArr
[
to
+
3
])
}
}
}
...
...
@@ -178,13 +193,13 @@ struct MobileNet_ssd_hand: Net{
var
numDet
:
Int
=
0
for
i
in
0
..<
classNum
{
var
sliceScore
=
scoreFormatArr
[(
i
*
cNumOfOneClass
)
..<
((
i
+
1
)
*
cNumOfOneClass
)]
var
sliceScore
=
Array
<
Float32
>
(
scoreFormatArr
[(
i
*
cNumOfOneClass
)
..<
((
i
+
1
)
*
cNumOfOneClass
)])
var
scoreThresholdArr
:
[(
Float32
,
Int
)]
=
[]
for
i
in
0
..<
cNumOfOneClass
{
if
sliceScore
[
i
]
>
score_thredshold
{
scoreThresholdArr
.
append
((
sliceScore
[
i
],
i
))
for
j
in
0
..<
cNumOfOneClass
{
if
sliceScore
[
j
]
>
score_thredshold
{
scoreThresholdArr
.
append
((
sliceScore
[
j
],
j
))
}
}
...
...
@@ -204,7 +219,7 @@ struct MobileNet_ssd_hand: Net{
if
keep
{
let
keptIdx
=
selectedIndex
[
j
]
.
0
let
box1
=
Array
<
Float32
>
(
bboxArr
[(
idx
*
boxSize
)
..<
(
idx
*
boxSize
+
4
)])
let
box2
=
Array
<
Float32
>
(
bboxArr
[(
i
dx
*
boxSize
)
..<
(
keptIdx
*
boxSize
+
4
)])
let
box2
=
Array
<
Float32
>
(
bboxArr
[(
keptI
dx
*
boxSize
)
..<
(
keptIdx
*
boxSize
+
4
)])
let
overlap
=
jaccardOverLap
(
box1
:
box1
,
box2
:
box2
,
normalized
:
true
)
keep
=
(
overlap
<=
nms_threshold
)
...
...
@@ -259,7 +274,8 @@ struct MobileNet_ssd_hand: Net{
outputArr
.
append
(
contentsOf
:
subBox
)
}
}
print
(
" fuck success !"
)
print
(
outputArr
)
return
outputArr
}
...
...
metal/paddle-mobile-demo/paddle-mobile-demo/ViewController.swift
浏览文件 @
7315defa
...
...
@@ -75,7 +75,7 @@ class ViewController: UIViewController {
}
do
{
let
max
=
1
0
let
max
=
1
var
startDate
=
Date
.
init
()
for
i
in
0
..<
max
{
try
inExecutor
.
predict
(
input
:
inTexture
,
expect
:
modelHelper
.
dim
,
completionHandle
:
{
[
weak
self
]
(
result
)
in
...
...
@@ -87,14 +87,16 @@ class ViewController: UIViewController {
startDate
=
Date
.
init
()
}
let
resultArr
=
sSelf
.
modelHelper
.
fetchResult
(
paddleMobileRes
:
result
)
if
i
==
max
-
1
{
let
time
=
Date
.
init
()
.
timeIntervalSince
(
startDate
)
DispatchQueue
.
main
.
async
{
sSelf
.
resultTextView
.
text
=
sSelf
.
modelHelper
.
resultStr
(
res
:
result
.
result
Arr
)
sSelf
.
resultTextView
.
text
=
sSelf
.
modelHelper
.
resultStr
(
res
:
resultArr
)
sSelf
.
elapsedTimeLabel
.
text
=
"平均耗时:
\(
time
/
Double
(
max
/
2
)
*
1000.0
)
ms"
}
}
},
preProcessKernle
:
self
.
modelHelper
.
preprocessKernel
)
},
preProcessKernle
:
self
.
modelHelper
.
preprocessKernel
,
except
:
2
)
}
}
catch
let
error
{
print
(
error
)
...
...
@@ -108,7 +110,7 @@ class ViewController: UIViewController {
threadPickerView
.
delegate
=
self
threadPickerView
.
dataSource
=
self
selectImage
=
UIImage
.
init
(
named
:
"
banana.jpe
g"
)
selectImage
=
UIImage
.
init
(
named
:
"
hand.jp
g"
)
selectImageView
.
image
=
selectImage
modelHelper
.
getTexture
(
image
:
selectImage
!.
cgImage
!
)
{[
weak
self
]
(
texture
)
in
self
?
.
toPredictTexture
=
texture
...
...
metal/paddle-mobile/paddle-mobile.xcodeproj/project.pbxproj
浏览文件 @
7315defa
...
...
@@ -46,6 +46,8 @@
FC9D038020E22FBB000F735A
/* FeedOp.swift in Sources */
=
{
isa
=
PBXBuildFile
;
fileRef
=
FC9D037F20E22FBB000F735A
/* FeedOp.swift */
;
};
FC9D038220E2312E000F735A
/* FetchOp.swift in Sources */
=
{
isa
=
PBXBuildFile
;
fileRef
=
FC9D038120E2312E000F735A
/* FetchOp.swift */
;
};
FC9D038420E23B01000F735A
/* Texture.swift in Sources */
=
{
isa
=
PBXBuildFile
;
fileRef
=
FC9D038320E23B01000F735A
/* Texture.swift */
;
};
FCA3A1632132A4AC00084FE5
/* ReshapeKernel.metal in Sources */
=
{
isa
=
PBXBuildFile
;
fileRef
=
FCA3A1622132A4AC00084FE5
/* ReshapeKernel.metal */
;
};
FCA3A1652132A5EB00084FE5
/* Common.metal in Sources */
=
{
isa
=
PBXBuildFile
;
fileRef
=
FCA3A1642132A5EB00084FE5
/* Common.metal */
;
};
FCBCCC572122F41300D94F7E
/* DwConvBNReluOp.swift in Sources */
=
{
isa
=
PBXBuildFile
;
fileRef
=
FCBCCC562122F41300D94F7E
/* DwConvBNReluOp.swift */
;
};
FCBCCC592122F42700D94F7E
/* ConvBNReluOp.swift in Sources */
=
{
isa
=
PBXBuildFile
;
fileRef
=
FCBCCC582122F42700D94F7E
/* ConvBNReluOp.swift */
;
};
FCBCCC5B2122F66F00D94F7E
/* ConvBNReluKernel.swift in Sources */
=
{
isa
=
PBXBuildFile
;
fileRef
=
FCBCCC5A2122F66F00D94F7E
/* ConvBNReluKernel.swift */
;
};
...
...
@@ -126,6 +128,8 @@
FC9D037F20E22FBB000F735A
/* FeedOp.swift */
=
{
isa
=
PBXFileReference
;
lastKnownFileType
=
sourcecode.swift
;
path
=
FeedOp.swift
;
sourceTree
=
"<group>"
;
};
FC9D038120E2312E000F735A
/* FetchOp.swift */
=
{
isa
=
PBXFileReference
;
lastKnownFileType
=
sourcecode.swift
;
path
=
FetchOp.swift
;
sourceTree
=
"<group>"
;
};
FC9D038320E23B01000F735A
/* Texture.swift */
=
{
isa
=
PBXFileReference
;
lastKnownFileType
=
sourcecode.swift
;
path
=
Texture.swift
;
sourceTree
=
"<group>"
;
};
FCA3A1622132A4AC00084FE5
/* ReshapeKernel.metal */
=
{
isa
=
PBXFileReference
;
lastKnownFileType
=
sourcecode.metal
;
path
=
ReshapeKernel.metal
;
sourceTree
=
"<group>"
;
};
FCA3A1642132A5EB00084FE5
/* Common.metal */
=
{
isa
=
PBXFileReference
;
lastKnownFileType
=
sourcecode.metal
;
path
=
Common.metal
;
sourceTree
=
"<group>"
;
};
FCBCCC562122F41300D94F7E
/* DwConvBNReluOp.swift */
=
{
isa
=
PBXFileReference
;
lastKnownFileType
=
sourcecode.swift
;
path
=
DwConvBNReluOp.swift
;
sourceTree
=
"<group>"
;
};
FCBCCC582122F42700D94F7E
/* ConvBNReluOp.swift */
=
{
isa
=
PBXFileReference
;
lastKnownFileType
=
sourcecode.swift
;
path
=
ConvBNReluOp.swift
;
sourceTree
=
"<group>"
;
};
FCBCCC5A2122F66F00D94F7E
/* ConvBNReluKernel.swift */
=
{
isa
=
PBXFileReference
;
lastKnownFileType
=
sourcecode.swift
;
path
=
ConvBNReluKernel.swift
;
sourceTree
=
"<group>"
;
};
...
...
@@ -349,6 +353,8 @@
FCDDC6C9212FDF6800E5EF74
/* BatchNormKernel.metal */
,
FCDDC6CB212FDFDB00E5EF74
/* ReluKernel.metal */
,
FCDDC6CE212FE14700E5EF74
/* PriorBoxKernel.metal */
,
FCA3A1622132A4AC00084FE5
/* ReshapeKernel.metal */
,
FCA3A1642132A5EB00084FE5
/* Common.metal */
,
);
path
=
metal
;
sourceTree
=
"<group>"
;
...
...
@@ -482,6 +488,7 @@
FC039BB820E11CC20081E9F8
/* framework.pb.swift in Sources */
,
FC039B9920E11C9A0081E9F8
/* Types.swift in Sources */
,
FC4CB74920F0B954007C0C6D
/* ConvKernel.metal in Sources */
,
FCA3A1632132A4AC00084FE5
/* ReshapeKernel.metal in Sources */
,
FCBCCC592122F42700D94F7E
/* ConvBNReluOp.swift in Sources */
,
FC039BA920E11CBC0081E9F8
/* ConvOp.swift in Sources */
,
FC9D038420E23B01000F735A
/* Texture.swift in Sources */
,
...
...
@@ -503,6 +510,7 @@
FCBCCC69212306D300D94F7E
/* ConcatKernel.swift in Sources */
,
FCDDC6C8212FA3CA00E5EF74
/* ConvTransposeKernel.swift in Sources */
,
FC82735920E3C04200BE430A
/* OpCreator.swift in Sources */
,
FCA3A1652132A5EB00084FE5
/* Common.metal in Sources */
,
FCBCCC5D2122F8A100D94F7E
/* DepthwiseConvOp.swift in Sources */
,
FC0E2DBE20EE460D009C1FAC
/* BatchNormKernel.swift in Sources */
,
FC039BAB20E11CBC0081E9F8
/* Operator.swift in Sources */
,
...
...
metal/paddle-mobile/paddle-mobile/Common/Extensions.swift
浏览文件 @
7315defa
...
...
@@ -16,95 +16,110 @@ import Foundation
// 自定义 ?! 如果 ?! 前的返回值为一个可选值, 则进行隐式解包, 如果有值则返回这个值, 如果为nil 则fatalError 传入的信息
precedencegroup
ExecutedOrFatalError
{
associativity
:
left
higherThan
:
AssignmentPrecedence
associativity
:
left
higherThan
:
AssignmentPrecedence
}
infix
operator
?
!
:
ExecutedOrFatalError
public
func
?
!<
T
>
(
option
:
T
?,
excuteOrError
:
@autoclosure
()
->
String
)
->
T
{
if
let
inOpt
=
option
{
return
inOpt
}
else
{
print
(
excuteOrError
())
fatalError
(
excuteOrError
())
}
if
let
inOpt
=
option
{
return
inOpt
}
else
{
print
(
excuteOrError
())
fatalError
(
excuteOrError
())
}
}
//Lense
struct
Lense
<
A
,
B
>
{
let
from
:
(
A
)
->
B
let
to
:
(
B
,
A
)
->
A
let
from
:
(
A
)
->
B
let
to
:
(
B
,
A
)
->
A
}
precedencegroup
CombineLense
{
associativity
:
left
higherThan
:
AssignmentPrecedence
associativity
:
left
higherThan
:
AssignmentPrecedence
}
infix
operator
>>>
:
CombineLense
func
>>><
A
,
B
,
C
>
(
left
:
Lense
<
B
,
C
>
,
right
:
Lense
<
A
,
B
>
)
->
Lense
<
A
,
C
>
{
return
Lense
<
A
,
C
>.
init
(
from
:
{
(
a
)
->
C
in
left
.
from
(
right
.
from
(
a
))
},
to
:
{
(
c
,
a
)
->
A
in
right
.
to
(
left
.
to
(
c
,
right
.
from
(
a
)),
a
)
})
return
Lense
<
A
,
C
>.
init
(
from
:
{
(
a
)
->
C
in
left
.
from
(
right
.
from
(
a
))
},
to
:
{
(
c
,
a
)
->
A
in
right
.
to
(
left
.
to
(
c
,
right
.
from
(
a
)),
a
)
})
}
protocol
CIntIndex
{
associatedtype
T
;
subscript
(
index
:
CInt
)
->
T
{
get
set
};
associatedtype
T
;
subscript
(
index
:
CInt
)
->
T
{
get
set
};
}
extension
Array
:
CIntIndex
{
typealias
T
=
Element
subscript
(
index
:
CInt
)
->
T
{
get
{
guard
Int64
(
Int
.
max
)
>=
Int64
(
index
)
else
{
fatalError
(
"cint index out of Int range"
)
}
return
self
[
Int
(
index
)]
}
set
{
guard
Int64
(
Int
.
max
)
>=
Int64
(
index
)
else
{
fatalError
(
"cint index out of Int range"
)
}
self
[
Int
(
index
)]
=
newValue
}
typealias
T
=
Element
subscript
(
index
:
CInt
)
->
T
{
get
{
guard
Int64
(
Int
.
max
)
>=
Int64
(
index
)
else
{
fatalError
(
"cint index out of Int range"
)
}
return
self
[
Int
(
index
)]
}
set
{
guard
Int64
(
Int
.
max
)
>=
Int64
(
index
)
else
{
fatalError
(
"cint index out of Int range"
)
}
self
[
Int
(
index
)]
=
newValue
}
}
}
extension
Array
where
Element
:
AnyObject
{
mutating
func
remove
(
element
:
Element
)
{
if
let
index
=
index
(
where
:
{
(
node
)
->
Bool
in
return
unsafeBitCast
(
element
,
to
:
Int
.
self
)
==
unsafeBitCast
(
node
,
to
:
Int
.
self
)
})
{
remove
(
at
:
index
)
}
mutating
func
remove
(
element
:
Element
)
{
if
let
index
=
index
(
where
:
{
(
node
)
->
Bool
in
return
unsafeBitCast
(
element
,
to
:
Int
.
self
)
==
unsafeBitCast
(
node
,
to
:
Int
.
self
)
})
{
remove
(
at
:
index
)
}
}
}
//MARK: Array extension
extension
Array
where
Element
:
Comparable
{
/// 返回数组前 r 个元素, 并将元素处于原数组的位置作为元组的第一个元素返回
///
/// - Parameter r: 前 r 个元素
/// - Returns: [(原有位置, 排好位置的元素)]
public
func
top
(
r
:
Int
)
->
[(
Int
,
Element
)]
{
precondition
(
r
<=
self
.
count
)
return
Array
<
(
Int
,
Element
)
>
(
zip
(
0
..<
self
.
count
,
self
)
.
sorted
{
$0
.
1
>
$1
.
1
}
.
prefix
(
through
:
r
-
1
))
/// 返回数组前 r 个元素, 并将元素处于原数组的位置作为元组的第一个元素返回
///
/// - Parameter r: 前 r 个元素
/// - Returns: [(原有位置, 排好位置的元素)]
public
func
top
(
r
:
Int
)
->
[(
Int
,
Element
)]
{
precondition
(
r
<=
self
.
count
)
return
Array
<
(
Int
,
Element
)
>
(
zip
(
0
..<
self
.
count
,
self
)
.
sorted
{
$0
.
1
>
$1
.
1
}
.
prefix
(
through
:
r
-
1
))
}
}
extension
Array
{
func
strideArray
(
inCount
:
Int
=
20
)
->
Array
<
Element
>
{
if
count
<
inCount
{
return
self
}
else
{
let
stride
=
count
/
inCount
var
newArray
:
[
Element
]
=
[]
for
i
in
0
..<
inCount
{
newArray
.
append
(
self
[
i
*
stride
])
}
return
newArray
}
}
}
extension
String
{
func
cStr
()
->
UnsafePointer
<
Int8
>
?
{
return
(
self
as
NSString
)
.
utf8String
}
func
cStr
()
->
UnsafePointer
<
Int8
>
?
{
return
(
self
as
NSString
)
.
utf8String
}
}
func
address
<
T
:
AnyObject
>
(
o
:
T
)
->
String
{
return
String
.
init
(
format
:
"%018p"
,
unsafeBitCast
(
o
,
to
:
Int
.
self
))
return
String
.
init
(
format
:
"%018p"
,
unsafeBitCast
(
o
,
to
:
Int
.
self
))
}
...
...
metal/paddle-mobile/paddle-mobile/Common/MetalExtension.swift
浏览文件 @
7315defa
此差异已折叠。
点击以展开。
metal/paddle-mobile/paddle-mobile/Common/Types.swift
浏览文件 @
7315defa
...
...
@@ -15,207 +15,210 @@
import
Foundation
public
protocol
SummableMultipliable
:
Equatable
{
static
func
+
(
lhs
:
Self
,
rhs
:
Self
)
->
Self
static
func
*
(
lhs
:
Self
,
rhs
:
Self
)
->
Self
static
func
-
(
lhs
:
Self
,
rhs
:
Self
)
->
Self
static
func
+
(
lhs
:
Self
,
rhs
:
Self
)
->
Self
static
func
*
(
lhs
:
Self
,
rhs
:
Self
)
->
Self
static
func
-
(
lhs
:
Self
,
rhs
:
Self
)
->
Self
}
public
protocol
PrecisionType
:
SummableMultipliable
{
init
(
inFloat
:
Float32
)
init
(
inFloat16
:
Float16
)
init
<
P
:
PrecisionType
>
(
_
inP
:
P
)
static
var
bitSize
:
UInt
{
get
}
init
(
inFloat
:
Float32
)
init
(
inFloat16
:
Float16
)
init
<
P
:
PrecisionType
>
(
_
inP
:
P
)
static
var
bitSize
:
UInt
{
get
}
}
public
typealias
Float16
=
Int16
extension
Float16
:
PrecisionType
{
public
static
func
*
(
prefix
:
Float16
,
postfix
:
Float16
)
{
return
prefix
*
postfix
}
public
init
<
P
>
(
_
inP
:
P
)
where
P
:
PrecisionType
{
if
P
.
bitSize
==
Float32
.
bitSize
{
self
=
Float16
(
inFloat
:
inP
as!
Float32
)
}
else
if
P
.
bitSize
==
Float16
.
bitSize
{
self
=
inP
as!
Float16
}
else
{
fatalError
()
}
}
public
static
var
bitSize
:
UInt
{
return
16
}
public
init
(
inFloat16
:
Float16
)
{
self
=
inFloat16
}
public
init
(
inFloat
:
Float32
)
{
self
=
Int16
(
inFloat
)
}
public
static
func
*
(
prefix
:
Float16
,
postfix
:
Float16
)
{
return
prefix
*
postfix
}
public
init
<
P
>
(
_
inP
:
P
)
where
P
:
PrecisionType
{
if
P
.
bitSize
==
Float32
.
bitSize
{
self
=
Float16
(
inFloat
:
inP
as!
Float32
)
}
else
if
P
.
bitSize
==
Float16
.
bitSize
{
self
=
inP
as!
Float16
}
else
{
fatalError
()
}
}
public
static
var
bitSize
:
UInt
{
return
16
}
public
init
(
inFloat16
:
Float16
)
{
self
=
inFloat16
}
public
init
(
inFloat
:
Float32
)
{
self
=
Int16
(
inFloat
)
}
}
extension
Float32
:
PrecisionType
{
public
init
<
P
>
(
_
inP
:
P
)
where
P
:
PrecisionType
{
if
P
.
bitSize
==
Float32
.
bitSize
{
self
=
inP
as!
Float32
}
else
if
P
.
bitSize
==
Float16
.
bitSize
{
self
=
Float32
.
init
(
inP
as!
Float16
)
}
else
{
fatalError
()
}
}
public
init
(
inFloat
:
Float32
)
{
self
=
inFloat
}
public
init
(
inFloat16
:
Float16
)
{
self
=
Float32
.
init
(
inFloat16
)
}
public
static
var
bitSize
:
UInt
{
return
32
}
public
init
<
P
>
(
_
inP
:
P
)
where
P
:
PrecisionType
{
if
P
.
bitSize
==
Float32
.
bitSize
{
self
=
inP
as!
Float32
}
else
if
P
.
bitSize
==
Float16
.
bitSize
{
self
=
Float32
.
init
(
inP
as!
Float16
)
}
else
{
fatalError
()
}
}
public
init
(
inFloat
:
Float32
)
{
self
=
inFloat
}
public
init
(
inFloat16
:
Float16
)
{
self
=
Float32
.
init
(
inFloat16
)
}
public
static
var
bitSize
:
UInt
{
return
32
}
}
// N - 0 C - 1 H - 2 W - 3
struct
DataLayout
{
static
func
NCHW
(
dim
:
Dim
=
Dim
.
init
(
inDim
:
[
0
,
0
,
0
,
0
]))
->
DataLayout
{
return
DataLayout
.
init
([(
.
N
,
dim
[
0
]),
(
.
C
,
dim
[
1
]),
(
.
H
,
dim
[
2
]),
(
.
W
,
dim
[
3
])])
}
static
func
NHWC
(
dim
:
Dim
=
Dim
.
init
(
inDim
:
[
0
,
0
,
0
,
0
]))
->
DataLayout
{
return
DataLayout
.
init
([(
.
N
,
dim
[
0
]),
(
.
H
,
dim
[
1
]),
(
.
W
,
dim
[
2
]),
(
.
C
,
dim
[
3
])])
}
func
count
()
->
Int
{
return
layoutWithDim
.
count
}
var
N
:
Int
?
{
get
{
for
layoutDim
in
layoutWithDim
{
if
layoutDim
.
0
==
.
N
{
return
layoutDim
.
1
}
}
return
nil
}
set
{
var
newN
=
(
Layout
.
N
,
newValue
)
if
let
index
=
layoutWithDim
.
index
(
where
:
{
(
layout
:
Layout
,
dim
:
Int
)
->
Bool
in
return
layout
==
.
N
})
{
fatalError
()
}
}
}
var
C
:
Int
?
{
get
{
for
layoutDim
in
layoutWithDim
{
if
layoutDim
.
0
==
.
C
{
return
layoutDim
.
1
}
}
return
nil
}
set
{
var
newN
=
(
Layout
.
C
,
newValue
)
if
let
index
=
layoutWithDim
.
index
(
where
:
{
(
layout
:
Layout
,
dim
:
Int
)
->
Bool
in
return
layout
==
.
N
})
{
fatalError
()
}
}
}
var
H
:
Int
?
{
get
{
for
layoutDim
in
layoutWithDim
{
if
layoutDim
.
0
==
.
H
{
return
layoutDim
.
1
}
}
return
nil
static
func
NCHW
(
dim
:
Dim
=
Dim
.
init
(
inDim
:
[
0
,
0
,
0
,
0
]))
->
DataLayout
{
return
DataLayout
.
init
([(
.
N
,
dim
[
0
]),
(
.
C
,
dim
[
1
]),
(
.
H
,
dim
[
2
]),
(
.
W
,
dim
[
3
])])
}
static
func
NHWC
(
dim
:
Dim
=
Dim
.
init
(
inDim
:
[
0
,
0
,
0
,
0
]))
->
DataLayout
{
return
DataLayout
.
init
([(
.
N
,
dim
[
0
]),
(
.
H
,
dim
[
1
]),
(
.
W
,
dim
[
2
]),
(
.
C
,
dim
[
3
])])
}
func
count
()
->
Int
{
return
layoutWithDim
.
count
}
var
N
:
Int
?
{
get
{
for
layoutDim
in
layoutWithDim
{
if
layoutDim
.
0
==
.
N
{
return
layoutDim
.
1
}
set
{
var
newN
=
(
Layout
.
H
,
newValue
)
if
let
index
=
layoutWithDim
.
index
(
where
:
{
(
layout
:
Layout
,
dim
:
Int
)
->
Bool
in
return
layout
==
.
H
})
{
fatalError
()
}
}
return
nil
}
set
{
var
newN
=
(
Layout
.
N
,
newValue
)
if
let
index
=
layoutWithDim
.
index
(
where
:
{
(
layout
:
Layout
,
dim
:
Int
)
->
Bool
in
return
layout
==
.
N
})
{
fatalError
()
}
}
}
var
C
:
Int
?
{
get
{
for
layoutDim
in
layoutWithDim
{
if
layoutDim
.
0
==
.
C
{
return
layoutDim
.
1
}
}
var
W
:
Int
?
{
get
{
for
layoutDim
in
layoutWithDim
{
if
layoutDim
.
0
==
.
W
{
return
layoutDim
.
1
}
}
return
nil
}
return
nil
}
set
{
var
newN
=
(
Layout
.
C
,
newValue
)
if
let
index
=
layoutWithDim
.
index
(
where
:
{
(
layout
:
Layout
,
dim
:
Int
)
->
Bool
in
return
layout
==
.
N
})
{
fatalError
()
}
}
}
var
H
:
Int
?
{
get
{
for
layoutDim
in
layoutWithDim
{
if
layoutDim
.
0
==
.
H
{
return
layoutDim
.
1
}
set
{
var
newN
=
(
Layout
.
W
,
newValue
)
if
let
index
=
layoutWithDim
.
index
(
where
:
{
(
layout
:
Layout
,
dim
:
Int
)
->
Bool
in
return
layout
==
.
W
})
{
fatalError
()
}
}
return
nil
}
set
{
var
newN
=
(
Layout
.
H
,
newValue
)
if
let
index
=
layoutWithDim
.
index
(
where
:
{
(
layout
:
Layout
,
dim
:
Int
)
->
Bool
in
return
layout
==
.
H
})
{
fatalError
()
}
}
}
var
W
:
Int
?
{
get
{
for
layoutDim
in
layoutWithDim
{
if
layoutDim
.
0
==
.
W
{
return
layoutDim
.
1
}
}
init
(
_
inLayout
:
[(
Layout
,
Int
)])
{
layoutWithDim
=
inLayout
}
func
layout
()
->
[
Layout
]
{
return
layoutWithDim
.
map
({
(
layout
:
Layout
,
dim
:
Int
)
->
Layout
in
return
layout
})
}
var
layoutWithDim
:
[(
Layout
,
Int
)]
=
[(
.
N
,
0
),
(
.
C
,
0
),
(
.
H
,
0
),
(
.
W
,
0
)]
func
convertTo
(
inLayout
:
[
Layout
])
{
}
enum
Layout
:
Int
{
case
N
=
0
case
C
=
1
case
H
=
2
case
W
=
3
static
func
defaultLayout
()
->
[
Layout
]
{
return
[
N
,
C
,
H
,
W
]
}
}
}
return
nil
}
set
{
var
newN
=
(
Layout
.
W
,
newValue
)
if
let
index
=
layoutWithDim
.
index
(
where
:
{
(
layout
:
Layout
,
dim
:
Int
)
->
Bool
in
return
layout
==
.
W
})
{
fatalError
()
}
}
}
init
(
_
inLayout
:
[(
Layout
,
Int
)])
{
layoutWithDim
=
inLayout
}
func
layout
()
->
[
Layout
]
{
return
layoutWithDim
.
map
({
(
layout
:
Layout
,
dim
:
Int
)
->
Layout
in
return
layout
})
}
var
layoutWithDim
:
[(
Layout
,
Int
)]
=
[(
.
N
,
0
),
(
.
C
,
0
),
(
.
H
,
0
),
(
.
W
,
0
)]
func
convertTo
(
inLayout
:
[
Layout
])
{
}
enum
Layout
:
Int
{
case
N
=
0
case
C
=
1
case
H
=
2
case
W
=
3
static
func
defaultLayout
()
->
[
Layout
]
{
return
[
N
,
C
,
H
,
W
]
}
}
}
extension
DataLayout
:
Equatable
{
public
static
func
==
(
lhs
:
DataLayout
,
rhs
:
DataLayout
)
->
Bool
{
if
lhs
.
layoutWithDim
.
count
==
rhs
.
layoutWithDim
.
count
{
var
result
=
true
for
i
in
0
..<
lhs
.
layoutWithDim
.
count
{
result
=
(
lhs
.
layoutWithDim
[
i
]
==
rhs
.
layoutWithDim
[
i
])
}
return
result
}
else
{
return
false
public
static
func
==
(
lhs
:
DataLayout
,
rhs
:
DataLayout
)
->
Bool
{
if
lhs
.
layoutWithDim
.
count
==
rhs
.
layoutWithDim
.
count
{
var
result
=
true
for
i
in
0
..<
lhs
.
layoutWithDim
.
count
{
result
=
(
lhs
.
layoutWithDim
[
i
]
.
0
==
rhs
.
layoutWithDim
[
i
]
.
0
)
if
!
result
{
break
}
}
return
result
}
else
{
return
false
}
}
}
protocol
Variant
:
CustomStringConvertible
,
CustomDebugStringConvertible
{
p
ublic
p
rotocol
Variant
:
CustomStringConvertible
,
CustomDebugStringConvertible
{
}
extension
Tensor
:
Variant
{
...
...
@@ -231,5 +234,5 @@ extension InputTexture: Variant {
}
extension
MTLTexture
where
Self
:
Variant
{
}
metal/paddle-mobile/paddle-mobile/Executor.swift
浏览文件 @
7315defa
...
...
@@ -15,130 +15,150 @@
import
Foundation
public
class
ResultHolder
<
P
:
PrecisionType
>
{
public
let
dim
:
[
Int
]
public
let
resultArr
:
[
P
]
public
var
intermediateResults
:
[
Texture
<
P
>
]?
public
let
elapsedTime
:
Double
public
init
(
inDim
:
[
Int
],
inResult
:
[
P
],
inElapsedTime
:
Double
,
inIntermediateResults
:
[
Texture
<
P
>
]?
=
nil
)
{
dim
=
inDim
resultArr
=
inResult
elapsedTime
=
inElapsedTime
intermediateResults
=
inIntermediateResults
}
public
let
dim
:
[
Int
]
public
let
resultArr
:
[
P
]
public
var
intermediateResults
:
[
Variant
]?
public
let
elapsedTime
:
Double
public
init
(
inDim
:
[
Int
],
inResult
:
[
P
],
inElapsedTime
:
Double
,
inIntermediateResults
:
[
Variant
]?
=
nil
)
{
dim
=
inDim
resultArr
=
inResult
elapsedTime
=
inElapsedTime
intermediateResults
=
inIntermediateResults
}
}
extension
ResultHolder
:
CustomDebugStringConvertible
,
CustomStringConvertible
{
public
var
debugDescription
:
String
{
var
str
=
""
str
+=
"Dim:
\(
dim
)
\n
value:[ "
if
resultArr
.
count
<
20
{
for
d
in
resultArr
{
str
+=
"
\(
d
)
"
}
}
else
{
for
d
in
stride
(
from
:
0
,
to
:
resultArr
.
count
,
by
:
resultArr
.
count
/
20
)
{
str
+=
"
\(
resultArr
[
d
]
)
"
}
}
str
+=
" ]"
return
str
}
public
var
description
:
String
{
return
debugDescription
public
var
debugDescription
:
String
{
var
str
=
""
str
+=
"Dim:
\(
dim
)
\n
value:[ "
if
resultArr
.
count
<
20
{
for
d
in
resultArr
{
str
+=
"
\(
d
)
"
}
}
else
{
for
d
in
stride
(
from
:
0
,
to
:
resultArr
.
count
,
by
:
resultArr
.
count
/
20
)
{
str
+=
"
\(
resultArr
[
d
]
)
"
}
}
str
+=
" ]"
return
str
}
public
var
description
:
String
{
return
debugDescription
}
}
public
class
Executor
<
P
:
PrecisionType
>
{
var
ops
:
[
Runable
&
InferShaperable
]
=
[]
let
program
:
Program
let
device
:
MTLDevice
let
queue
:
MTLCommandQueue
public
init
(
inDevice
:
MTLDevice
,
inQueue
:
MTLCommandQueue
,
inProgram
:
Program
)
throws
{
program
=
inProgram
device
=
inDevice
queue
=
inQueue
for
block
in
inProgram
.
programDesc
.
blocks
{
//block.ops.count
for
i
in
0
..<
block
.
ops
.
count
{
let
op
=
block
.
ops
[
i
]
do
{
let
op
=
try
OpCreator
<
P
>.
shared
.
creat
(
device
:
inDevice
,
opDesc
:
op
,
scope
:
inProgram
.
scope
)
op
.
inferShape
()
ops
.
append
(
op
)
}
catch
let
error
{
throw
error
}
}
var
ops
:
[
Runable
&
InferShaperable
]
=
[]
let
program
:
Program
let
device
:
MTLDevice
let
queue
:
MTLCommandQueue
public
init
(
inDevice
:
MTLDevice
,
inQueue
:
MTLCommandQueue
,
inProgram
:
Program
)
throws
{
program
=
inProgram
device
=
inDevice
queue
=
inQueue
for
block
in
inProgram
.
programDesc
.
blocks
{
//block.ops.count
for
i
in
0
..<
39
{
let
op
=
block
.
ops
[
i
]
do
{
let
op
=
try
OpCreator
<
P
>.
shared
.
creat
(
device
:
inDevice
,
opDesc
:
op
,
scope
:
inProgram
.
scope
)
// op.inferShape()
ops
.
append
(
op
)
}
catch
let
error
{
throw
error
}
}
}
}
}
public
func
predict
(
input
:
MTLTexture
,
expect
:
[
Int
],
completionHandle
:
@escaping
(
ResultHolder
<
P
>
)
->
Void
,
preProcessKernle
:
CusomKernel
?
=
nil
,
except
:
Int
=
0
)
throws
{
guard
let
buffer
=
queue
.
makeCommandBuffer
()
else
{
throw
PaddleMobileError
.
predictError
(
message
:
"CommandBuffer is nil"
)
}
let
resInput
:
MTLTexture
if
let
inPre
=
preProcessKernle
{
do
{
try
inPre
.
compute
(
inputTexuture
:
input
,
commandBuffer
:
buffer
)
resInput
=
inPre
.
outputTexture
}
catch
let
error
{
throw
error
}
}
else
{
resInput
=
input
}
public
func
predict
(
input
:
MTLTexture
,
expect
:
[
Int
],
completionHandle
:
@escaping
(
ResultHolder
<
P
>
)
->
Void
,
preProcessKernle
:
CusomKernel
?
=
nil
)
throws
{
guard
let
buffer
=
queue
.
makeCommandBuffer
()
else
{
throw
PaddleMobileError
.
predictError
(
message
:
"CommandBuffer is nil"
)
}
let
resInput
:
MTLTexture
if
let
inPre
=
preProcessKernle
{
do
{
try
inPre
.
compute
(
inputTexuture
:
input
,
commandBuffer
:
buffer
)
resInput
=
inPre
.
outputTexture
}
catch
let
error
{
throw
error
}
}
else
{
resInput
=
input
}
let
beforeDate
=
Date
.
init
()
let
inputTexture
=
InputTexture
.
init
(
inMTLTexture
:
resInput
,
inExpectDim
:
Dim
.
init
(
inDim
:
expect
))
program
.
scope
.
setInput
(
input
:
inputTexture
)
for
op
in
ops
{
do
{
try
op
.
run
(
device
:
device
,
buffer
:
buffer
)
}
catch
let
error
{
throw
error
}
}
buffer
.
addCompletedHandler
{
(
commandbuffer
)
in
// let inputArr = resInput.floatArray(res: { (p:P) -> P in
// return p
// })
// print(inputArr)
// let stridableInput: [(index: Int, value: Float)] = input.stridableFloatArray()
// print(stridableInput)
// let _: Flo? = input.logDesc(header: "input: ", stridable: true)
// for op in self.ops {
// op.delogOutput()
// }
// return
// self.ops[2].delogOutput()
let
afterDate
=
Date
.
init
()
guard
let
outputVar
=
self
.
program
.
scope
.
output
()
else
{
fatalError
(
"output nil"
)
}
guard
let
output
=
outputVar
as?
Texture
<
P
>
else
{
fatalError
(
"output var type error"
)
}
let
resultHodlder
=
ResultHolder
<
P
>.
init
(
inDim
:
output
.
dim
.
dims
,
inResult
:
output
.
metalTexture
.
floatArray
(
res
:
{
(
p
:
P
)
->
P
in
return
p
}),
inElapsedTime
:
afterDate
.
timeIntervalSince
(
beforeDate
))
completionHandle
(
resultHodlder
)
}
buffer
.
commit
()
let
beforeDate
=
Date
.
init
()
let
inputTexture
=
InputTexture
.
init
(
inMTLTexture
:
resInput
,
inExpectDim
:
Dim
.
init
(
inDim
:
expect
))
program
.
scope
.
setInput
(
input
:
inputTexture
)
//(ops.count - except)
for
i
in
0
..<
ops
.
count
{
let
op
=
ops
[
i
]
do
{
try
op
.
run
(
device
:
device
,
buffer
:
buffer
)
}
catch
let
error
{
throw
error
}
}
public
func
clear
()
{
program
.
scope
.
clear
()
var
outputTextures
:
[
Variant
]?
if
except
>
0
{
outputTextures
=
ops
[
ops
.
count
-
except
]
.
inputs
()
}
buffer
.
addCompletedHandler
{
(
commandbuffer
)
in
// return;
// let inputArr = resInput.floatArray(res: { (p:P) -> P in
// return p
// })
// writeToLibrary(fileName: "input_hand", array: inputArr)
// print("write to library done")
// return
// print(inputArr)
// let stridableInput: [(index: Int, value: Float)] = input.stridableFloatArray()
// print(stridableInput)
// let _: Flo? = input.logDesc(header: "input: ", stridable: true)
for
op
in
self
.
ops
{
// op.delogOutput()
}
// return
self
.
ops
[
38
]
.
delogOutput
()
// self.ops[91].delogOutput()
// self.ops[92].delogOutput()
// self.ops[93].delogOutput()
return
;
let
afterDate
=
Date
.
init
()
var
resultHolder
:
ResultHolder
<
P
>
if
except
>
0
{
resultHolder
=
ResultHolder
<
P
>.
init
(
inDim
:
[],
inResult
:
[],
inElapsedTime
:
afterDate
.
timeIntervalSince
(
beforeDate
),
inIntermediateResults
:
outputTextures
)
}
else
{
let
outputVar
:
Variant
=
self
.
program
.
scope
.
output
()
!
let
output
:
Texture
<
P
>
=
outputVar
as!
Texture
<
P
>
resultHolder
=
ResultHolder
<
P
>.
init
(
inDim
:
output
.
dim
.
dims
,
inResult
:
output
.
metalTexture
.
floatArray
(
res
:
{
(
p
:
P
)
->
P
in
return
p
}),
inElapsedTime
:
afterDate
.
timeIntervalSince
(
beforeDate
))
}
completionHandle
(
resultHolder
)
}
buffer
.
commit
()
}
public
func
clear
()
{
program
.
scope
.
clear
()
}
}
//public let paddle_executor: Executor = Executor.init()
metal/paddle-mobile/paddle-mobile/Operators/Base/Operator.swift
浏览文件 @
7315defa
...
...
@@ -16,100 +16,101 @@ import Metal
import
Foundation
protocol
Fusion
{
static
func
fusionNode
()
->
Node
static
func
change
()
->
[
String
:
[(
from
:
String
,
to
:
String
)]]
static
func
fusionType
()
->
String
static
func
fusionNode
()
->
Node
static
func
change
()
->
[
String
:
[(
from
:
String
,
to
:
String
)]]
static
func
fusionType
()
->
String
}
protocol
Runable
{
func
run
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
func
delogOutput
()
func
run
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
func
delogOutput
()
func
inputs
()
->
[
Variant
]
}
extension
Runable
where
Self
:
OperatorProtocol
{
func
run
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
runImpl
(
device
:
device
,
buffer
:
buffer
)
}
catch
let
error
{
throw
error
}
// print(type + ": " + para.outputDesc())
}
func
delogOutput
()
{
print
(
type
+
": has no implementation"
)
func
run
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
runImpl
(
device
:
device
,
buffer
:
buffer
)
}
catch
let
error
{
throw
error
}
// print(type + ": " + para.outputDesc())
}
func
delogOutput
()
{
print
(
type
+
": has no implementation"
)
}
}
protocol
Creator
where
Self
:
OperatorProtocol
{
associatedtype
OpType
:
OperatorProtocol
&
Runable
&
InferShaperable
static
func
creat
(
device
:
MTLDevice
,
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
->
OpType
associatedtype
OpType
:
OperatorProtocol
&
Runable
&
InferShaperable
static
func
creat
(
device
:
MTLDevice
,
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
->
OpType
}
extension
Creator
where
Self
:
OperatorProtocol
{
static
func
creat
(
device
:
MTLDevice
,
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
->
OpType
{
do
{
return
try
OpType
.
provide
(
device
:
device
,
opDesc
:
opDesc
,
inScope
:
inScope
)
}
catch
let
error
{
throw
error
}
static
func
creat
(
device
:
MTLDevice
,
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
->
OpType
{
do
{
return
try
OpType
.
provide
(
device
:
device
,
opDesc
:
opDesc
,
inScope
:
inScope
)
}
catch
let
error
{
throw
error
}
}
}
protocol
InferShaperable
{
func
inferShape
()
func
inferShape
()
}
protocol
OperatorProtocol
{
associatedtype
ParamType
associatedtype
KerType
:
Computable
where
Self
.
KerType
.
ParamType
==
ParamType
var
type
:
String
{
get
}
var
scope
:
Scope
{
get
}
var
inputs
:
[
String
:
[
String
]]
{
get
}
var
paraInputs
:
[
String
:
[
String
]]
{
get
set
}
var
outpus
:
[
String
:
[
String
]]
{
get
}
var
attrs
:
[
String
:
Attr
]
{
get
}
var
para
:
ParamType
{
get
}
var
kernel
:
KerType
{
get
}
init
(
device
:
MTLDevice
,
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
associatedtype
ParamType
associatedtype
KerType
:
Computable
where
Self
.
KerType
.
ParamType
==
ParamType
var
type
:
String
{
get
}
var
scope
:
Scope
{
get
}
var
inputs
:
[
String
:
[
String
]]
{
get
}
var
paraInputs
:
[
String
:
[
String
]]
{
get
set
}
var
outpus
:
[
String
:
[
String
]]
{
get
}
var
attrs
:
[
String
:
Attr
]
{
get
}
var
para
:
ParamType
{
get
}
var
kernel
:
KerType
{
get
}
init
(
device
:
MTLDevice
,
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
}
extension
OperatorProtocol
{
static
func
provide
(
device
:
MTLDevice
,
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
->
Self
{
do
{
return
try
Self
.
init
(
device
:
device
,
opDesc
:
opDesc
,
inScope
:
inScope
)
}
catch
let
error
{
throw
error
}
static
func
provide
(
device
:
MTLDevice
,
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
->
Self
{
do
{
return
try
Self
.
init
(
device
:
device
,
opDesc
:
opDesc
,
inScope
:
inScope
)
}
catch
let
error
{
throw
error
}
}
}
class
Operator
<
KernelType
:
Computable
,
ParameterType
>
:
OperatorProtocol
where
KernelType
.
ParamType
==
ParameterType
{
typealias
ParamType
=
ParameterType
typealias
KerType
=
KernelType
let
type
:
String
let
inputs
:
[
String
:
[
String
]]
var
paraInputs
:
[
String
:
[
String
]]
let
outpus
:
[
String
:
[
String
]]
let
attrs
:
[
String
:
Attr
]
let
para
:
ParamType
let
scope
:
Scope
var
kernel
:
KerType
required
init
(
device
:
MTLDevice
,
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
type
=
opDesc
.
type
scope
=
inScope
inputs
=
opDesc
.
inputs
outpus
=
opDesc
.
outputs
attrs
=
opDesc
.
attrs
paraInputs
=
opDesc
.
paraInputs
do
{
para
=
try
ParamType
.
init
(
opDesc
:
opDesc
,
inScope
:
inScope
)
}
catch
let
error
{
throw
error
}
kernel
=
KernelType
.
init
(
device
:
device
,
param
:
para
)
typealias
ParamType
=
ParameterType
typealias
KerType
=
KernelType
let
type
:
String
let
inputs
:
[
String
:
[
String
]]
var
paraInputs
:
[
String
:
[
String
]]
let
outpus
:
[
String
:
[
String
]]
let
attrs
:
[
String
:
Attr
]
let
para
:
ParamType
let
scope
:
Scope
var
kernel
:
KerType
required
init
(
device
:
MTLDevice
,
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
type
=
opDesc
.
type
scope
=
inScope
inputs
=
opDesc
.
inputs
outpus
=
opDesc
.
outputs
attrs
=
opDesc
.
attrs
paraInputs
=
opDesc
.
paraInputs
do
{
para
=
try
ParamType
.
init
(
opDesc
:
opDesc
,
inScope
:
inScope
)
}
catch
let
error
{
throw
error
}
kernel
=
KernelType
.
init
(
device
:
device
,
param
:
para
)
}
}
// op infos
...
...
metal/paddle-mobile/paddle-mobile/Operators/BatchNormOp.swift
浏览文件 @
7315defa
...
...
@@ -15,45 +15,50 @@
import
Foundation
class
BatchNormParam
<
P
:
PrecisionType
>
:
OpParam
{
typealias
ParamPrecisionType
=
P
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
input
=
try
BatchNormParam
.
inputX
(
inputs
:
opDesc
.
inputs
,
from
:
inScope
)
output
=
try
BatchNormParam
.
outputY
(
outputs
:
opDesc
.
outputs
,
from
:
inScope
)
inputBias
=
try
BatchNormParam
.
inputBiase
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
inputMean
=
try
BatchNormParam
.
inputMean
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
inputScale
=
try
BatchNormParam
.
inputScale
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
inputVariance
=
try
BatchNormParam
.
inputVariance
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
epsilon
=
try
BatchNormParam
.
getAttr
(
key
:
"epsilon"
,
attrs
:
opDesc
.
attrs
)
momentum
=
try
BatchNormParam
.
getAttr
(
key
:
"momentum"
,
attrs
:
opDesc
.
attrs
)
is_test
=
try
BatchNormParam
.
getAttr
(
key
:
"is_test"
,
attrs
:
opDesc
.
attrs
)
}
catch
let
error
{
throw
error
}
typealias
ParamPrecisionType
=
P
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
input
=
try
BatchNormParam
.
inputX
(
inputs
:
opDesc
.
inputs
,
from
:
inScope
)
output
=
try
BatchNormParam
.
outputY
(
outputs
:
opDesc
.
outputs
,
from
:
inScope
)
inputBias
=
try
BatchNormParam
.
inputBiase
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
inputMean
=
try
BatchNormParam
.
inputMean
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
inputScale
=
try
BatchNormParam
.
inputScale
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
inputVariance
=
try
BatchNormParam
.
inputVariance
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
epsilon
=
try
BatchNormParam
.
getAttr
(
key
:
"epsilon"
,
attrs
:
opDesc
.
attrs
)
momentum
=
try
BatchNormParam
.
getAttr
(
key
:
"momentum"
,
attrs
:
opDesc
.
attrs
)
is_test
=
try
BatchNormParam
.
getAttr
(
key
:
"is_test"
,
attrs
:
opDesc
.
attrs
)
}
catch
let
error
{
throw
error
}
let
input
:
Texture
<
P
>
var
output
:
Texture
<
P
>
let
inputBias
:
Tensor
<
ParamPrecisionType
>
let
inputMean
:
Tensor
<
ParamPrecisionType
>
let
inputScale
:
Tensor
<
ParamPrecisionType
>
let
inputVariance
:
Tensor
<
ParamPrecisionType
>
let
epsilon
:
Float
let
momentum
:
Float
let
is_test
:
Bool
}
let
input
:
Texture
<
P
>
var
output
:
Texture
<
P
>
let
inputBias
:
Tensor
<
ParamPrecisionType
>
let
inputMean
:
Tensor
<
ParamPrecisionType
>
let
inputScale
:
Tensor
<
ParamPrecisionType
>
let
inputVariance
:
Tensor
<
ParamPrecisionType
>
let
epsilon
:
Float
let
momentum
:
Float
let
is_test
:
Bool
}
class
BatchNormOp
<
P
:
PrecisionType
>
:
Operator
<
BatchNormKernel
<
P
>
,
BatchNormParam
<
P
>>
,
Runable
,
Creator
,
InferShaperable
{
func
inferShape
()
{
para
.
output
.
dim
=
para
.
input
.
dim
}
typealias
OpType
=
BatchNormOp
<
P
>
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
func
inputs
()
->
[
Variant
]
{
return
[
para
.
input
,
para
.
inputBias
,
para
.
inputMean
,
para
.
inputScale
,
para
.
inputVariance
]
}
func
inferShape
()
{
para
.
output
.
dim
=
para
.
input
.
dim
}
typealias
OpType
=
BatchNormOp
<
P
>
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
}
}
...
...
metal/paddle-mobile/paddle-mobile/Operators/BoxcoderOp.swift
浏览文件 @
7315defa
///* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License. */
import
Foundation
class
BoxcoderParam
<
P
:
PrecisionType
>
:
OpParam
{
///* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License. */
import
Foundation
class
BoxcoderParam
<
P
:
PrecisionType
>
:
OpParam
{
typealias
ParamPrecisionType
=
P
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
priorBox
=
try
BoxcoderParam
.
getFirstTensor
(
key
:
"PriorBox"
,
map
:
opDesc
.
inputs
,
from
:
inScope
)
priorBoxVar
=
try
BoxcoderParam
.
getFirstTensor
(
key
:
"PriorBoxVar"
,
map
:
opDesc
.
inputs
,
from
:
inScope
)
targetBox
=
try
BoxcoderParam
.
getFirstTensor
(
key
:
"TargetBox"
,
map
:
opDesc
.
inputs
,
from
:
inScope
)
output
=
try
BoxcoderParam
.
getFirstTensor
(
key
:
"OutputBox"
,
map
:
opDesc
.
outputs
,
from
:
inScope
)
codeType
=
try
BoxcoderParam
.
getAttr
(
key
:
"code_type"
,
attrs
:
opDesc
.
attrs
)
boxNormalized
=
try
BoxcoderParam
.
getAttr
(
key
:
"box_normalized"
,
attrs
:
opDesc
.
attrs
)
}
catch
let
error
{
throw
error
}
assert
(
priorBox
.
transpose
==
[
0
,
1
,
2
,
3
])
assert
(
priorBoxVar
.
transpose
==
[
0
,
1
,
2
,
3
])
assert
(
targetBox
.
transpose
==
[
0
,
1
,
2
,
3
])
assert
(
codeType
==
"decode_center_size"
)
// encode_center_size is not implemented
assert
((
targetBox
.
tensorDim
.
cout
()
==
3
)
&&
(
targetBox
.
tensorDim
[
0
]
==
1
))
// N must be 1 (only handle batch size = 1)
do
{
priorBox
=
try
BoxcoderParam
.
getFirstTensor
(
key
:
"PriorBox"
,
map
:
opDesc
.
inputs
,
from
:
inScope
)
priorBoxVar
=
try
BoxcoderParam
.
getFirstTensor
(
key
:
"PriorBoxVar"
,
map
:
opDesc
.
inputs
,
from
:
inScope
)
targetBox
=
try
BoxcoderParam
.
getFirstTensor
(
key
:
"TargetBox"
,
map
:
opDesc
.
inputs
,
from
:
inScope
)
output
=
try
BoxcoderParam
.
getFirstTensor
(
key
:
"OutputBox"
,
map
:
opDesc
.
outputs
,
from
:
inScope
)
codeType
=
try
BoxcoderParam
.
getAttr
(
key
:
"code_type"
,
attrs
:
opDesc
.
attrs
)
boxNormalized
=
try
BoxcoderParam
.
getAttr
(
key
:
"box_normalized"
,
attrs
:
opDesc
.
attrs
)
}
catch
let
error
{
throw
error
}
assert
(
priorBox
.
transpose
==
[
0
,
1
,
2
,
3
])
assert
(
priorBoxVar
.
transpose
==
[
0
,
1
,
2
,
3
])
assert
(
targetBox
.
transpose
==
[
0
,
1
,
2
,
3
])
assert
(
codeType
==
"decode_center_size"
)
// encode_center_size is not implemented
assert
((
targetBox
.
tensorDim
.
cout
()
==
3
)
&&
(
targetBox
.
tensorDim
[
0
]
==
1
))
// N must be 1 (only handle batch size = 1)
}
let
priorBox
:
Texture
<
P
>
let
priorBoxVar
:
Texture
<
P
>
...
...
@@ -39,23 +39,42 @@ class BoxcoderParam<P: PrecisionType>: OpParam {
var
output
:
Texture
<
P
>
let
codeType
:
String
let
boxNormalized
:
Bool
}
class
BoxcoderOp
<
P
:
PrecisionType
>
:
Operator
<
BoxcoderKernel
<
P
>
,
BoxcoderParam
<
P
>>
,
Runable
,
Creator
,
InferShaperable
{
}
class
BoxcoderOp
<
P
:
PrecisionType
>
:
Operator
<
BoxcoderKernel
<
P
>
,
BoxcoderParam
<
P
>>
,
Runable
,
Creator
,
InferShaperable
{
func
inputs
()
->
[
Variant
]
{
return
[
para
.
priorBox
,
para
.
priorBoxVar
,
para
.
targetBox
]
}
func
inferShape
()
{
// para.output.dim = para.input.dim
// para.output.dim = para.input.dim
}
typealias
OpType
=
BoxcoderOp
<
P
>
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
}
}
func
delogOutput
()
{
let
outputArray
=
para
.
output
.
metalTexture
.
floatArray
{
(
o
:
Float32
)
->
Float32
in
return
o
}
print
(
outputArray
.
strideArray
())
//box_coder_0.tmp_0
// writeToLibrary(fileName: "boxcoder_output", array: outputArray)
print
(
para
.
output
.
metalTexture
)
print
(
" write done "
)
}
}
metal/paddle-mobile/paddle-mobile/Operators/ConcatOp.swift
浏览文件 @
7315defa
...
...
@@ -15,44 +15,67 @@
import
Foundation
class
ConcatParam
<
P
:
PrecisionType
>
:
OpParam
{
typealias
ParamPrecisionType
=
P
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
guard
let
xlist
=
opDesc
.
inputs
[
"X"
]
else
{
fatalError
()
}
for
x
in
xlist
{
guard
let
variant
=
inScope
[
x
],
let
v
=
variant
as?
Texture
<
P
>
else
{
fatalError
()
}
input
.
append
(
v
)
}
axis
=
try
ConcatParam
.
getAttr
(
key
:
"axis"
,
attrs
:
opDesc
.
attrs
)
output
=
try
ConcatParam
.
outputOut
(
outputs
:
opDesc
.
outputs
,
from
:
inScope
)
}
catch
let
error
{
throw
error
typealias
ParamPrecisionType
=
P
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
guard
let
xlist
=
opDesc
.
inputs
[
"X"
]
else
{
fatalError
()
}
for
x
in
xlist
{
guard
let
variant
=
inScope
[
x
],
let
v
=
variant
as?
Texture
<
P
>
else
{
fatalError
()
}
input
.
append
(
v
)
}
axis
=
try
ConcatParam
.
getAttr
(
key
:
"axis"
,
attrs
:
opDesc
.
attrs
)
output
=
try
ConcatParam
.
outputOut
(
outputs
:
opDesc
.
outputs
,
from
:
inScope
)
}
catch
let
error
{
throw
error
}
var
input
:
[
Texture
<
P
>
]
=
[]
var
output
:
Texture
<
P
>
let
axis
:
Int
}
var
input
:
[
Texture
<
P
>
]
=
[]
var
output
:
Texture
<
P
>
let
axis
:
Int
}
class
ConcatOp
<
P
:
PrecisionType
>
:
Operator
<
ConcatKernel
<
P
>
,
ConcatParam
<
P
>>
,
Runable
,
Creator
,
InferShaperable
{
func
inferShape
()
{
// let dim = para.input.reduce([0, 0]) {[$0[0] + $1.dim[0], $1.dim[1]]}
// para.output.dim = Dim.init(inDim: dim)
func
inputs
()
->
[
Variant
]
{
return
para
.
input
}
func
inferShape
()
{
// let dim = para.input.reduce([0, 0]) {[$0[0] + $1.dim[0], $1.dim[1]]}
// para.output.dim = Dim.init(inDim: dim)
}
typealias
OpType
=
ConcatOp
<
P
>
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
typealias
OpType
=
ConcatOp
<
P
>
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
}
func
delogOutput
()
{
let
outputArray
=
para
.
output
.
metalTexture
.
floatArray
{
(
o
:
Float32
)
->
Float32
in
return
o
}
print
(
outputArray
.
strideArray
())
let
device
:
MTLDevice
=
MTLCreateSystemDefaultDevice
()
!
// let tensorArray: [P] = device.texture2tensor(texture: para.output.metalTexture, dim: [1917, 4])
// print(tensorArray.strideArray())
// print(para.output.metalTexture)
// writeToLibrary(fileName: "concat_out", array: outputArray)
// print(" write done ")
// print(outputArray.strideArray())
}
}
...
...
metal/paddle-mobile/paddle-mobile/Operators/ConvAddBatchNormReluOp.swift
浏览文件 @
7315defa
...
...
@@ -16,120 +16,125 @@ import Foundation
class
ConvAddBatchNormReluParam
<
P
:
PrecisionType
>
:
OpParam
{
typealias
ParamPrecisionType
=
P
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
filter
=
try
ConvAddBatchNormReluParam
.
inputFilter
(
paraInputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
input
=
try
ConvAddBatchNormReluParam
.
input
(
inputs
:
opDesc
.
inputs
,
from
:
inScope
)
output
=
try
ConvAddBatchNormReluParam
.
outputOut
(
outputs
:
opDesc
.
outputs
,
from
:
inScope
)
stride
=
try
ConvAddBatchNormReluParam
.
getAttr
(
key
:
"strides"
,
attrs
:
opDesc
.
attrs
)
paddings
=
try
ConvAddBatchNormReluParam
.
getAttr
(
key
:
"paddings"
,
attrs
:
opDesc
.
attrs
)
dilations
=
try
ConvAddBatchNormReluParam
.
getAttr
(
key
:
"dilations"
,
attrs
:
opDesc
.
attrs
)
epsilon
=
try
ConvAddBatchNormReluParam
.
getAttr
(
key
:
"epsilon"
,
attrs
:
opDesc
.
attrs
)
groups
=
try
ConvAddBatchNormReluParam
.
getAttr
(
key
:
"groups"
,
attrs
:
opDesc
.
attrs
)
variance
=
try
ConvAddBatchNormReluParam
.
inputVariance
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
bias
=
try
ConvAddBatchNormReluParam
.
inputBiase
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
scale
=
try
ConvAddBatchNormReluParam
.
inputScale
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
mean
=
try
ConvAddBatchNormReluParam
.
inputMean
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
y
=
try
ConvAddBatchNormReluParam
.
inputY
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
}
catch
let
error
{
throw
error
}
typealias
ParamPrecisionType
=
P
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
filter
=
try
ConvAddBatchNormReluParam
.
inputFilter
(
paraInputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
input
=
try
ConvAddBatchNormReluParam
.
input
(
inputs
:
opDesc
.
inputs
,
from
:
inScope
)
output
=
try
ConvAddBatchNormReluParam
.
outputOut
(
outputs
:
opDesc
.
outputs
,
from
:
inScope
)
stride
=
try
ConvAddBatchNormReluParam
.
getAttr
(
key
:
"strides"
,
attrs
:
opDesc
.
attrs
)
paddings
=
try
ConvAddBatchNormReluParam
.
getAttr
(
key
:
"paddings"
,
attrs
:
opDesc
.
attrs
)
dilations
=
try
ConvAddBatchNormReluParam
.
getAttr
(
key
:
"dilations"
,
attrs
:
opDesc
.
attrs
)
epsilon
=
try
ConvAddBatchNormReluParam
.
getAttr
(
key
:
"epsilon"
,
attrs
:
opDesc
.
attrs
)
groups
=
try
ConvAddBatchNormReluParam
.
getAttr
(
key
:
"groups"
,
attrs
:
opDesc
.
attrs
)
variance
=
try
ConvAddBatchNormReluParam
.
inputVariance
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
bias
=
try
ConvAddBatchNormReluParam
.
inputBiase
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
scale
=
try
ConvAddBatchNormReluParam
.
inputScale
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
mean
=
try
ConvAddBatchNormReluParam
.
inputMean
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
y
=
try
ConvAddBatchNormReluParam
.
inputY
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
}
catch
let
error
{
throw
error
}
let
input
:
Texture
<
P
>
let
variance
:
Tensor
<
ParamPrecisionType
>
let
bias
:
Tensor
<
ParamPrecisionType
>
let
mean
:
Tensor
<
ParamPrecisionType
>
let
scale
:
Tensor
<
ParamPrecisionType
>
let
y
:
Tensor
<
ParamPrecisionType
>
let
filter
:
Tensor
<
ParamPrecisionType
>
let
epsilon
:
Float32
var
newScale
:
MTLBuffer
?
var
newBiase
:
MTLBuffer
?
var
output
:
Texture
<
P
>
let
stride
:
[
Int32
]
let
paddings
:
[
Int32
]
let
dilations
:
[
Int32
]
let
groups
:
Int
}
let
input
:
Texture
<
P
>
let
variance
:
Tensor
<
ParamPrecisionType
>
let
bias
:
Tensor
<
ParamPrecisionType
>
let
mean
:
Tensor
<
ParamPrecisionType
>
let
scale
:
Tensor
<
ParamPrecisionType
>
let
y
:
Tensor
<
ParamPrecisionType
>
let
filter
:
Tensor
<
ParamPrecisionType
>
let
epsilon
:
Float32
var
newScale
:
MTLBuffer
?
var
newBiase
:
MTLBuffer
?
var
output
:
Texture
<
P
>
let
stride
:
[
Int32
]
let
paddings
:
[
Int32
]
let
dilations
:
[
Int32
]
let
groups
:
Int
}
class
ConvAddBatchNormReluOp
<
P
:
PrecisionType
>
:
Operator
<
ConvAddBatchNormReluKernel
<
P
>
,
ConvAddBatchNormReluParam
<
P
>>
,
Runable
,
Creator
,
InferShaperable
,
Fusion
{
typealias
OpType
=
ConvAddBatchNormReluOp
<
P
>
func
inputs
()
->
[
Variant
]
{
return
[
para
.
variance
,
para
.
bias
,
para
.
mean
,
para
.
scale
,
para
.
y
,
para
.
filter
,
para
.
input
]
}
typealias
OpType
=
ConvAddBatchNormReluOp
<
P
>
func
inferShape
()
{
let
inDims
=
para
.
input
.
dim
let
filterDim
=
para
.
filter
.
dim
let
strides
=
para
.
stride
let
paddings
=
para
.
paddings
let
dilations
=
para
.
dilations
func
inferShape
()
{
let
inDims
=
para
.
input
.
dim
let
filterDim
=
para
.
filter
.
dim
let
strides
=
para
.
stride
let
paddings
=
para
.
paddings
let
dilations
=
para
.
dilations
var
outDim
=
[
inDims
[
0
]]
for
i
in
0
..<
strides
.
count
{
let
dilation
:
Int
=
Int
(
dilations
[
i
])
let
filterSize
:
Int
=
filterDim
[
i
+
1
]
let
inputSize
:
Int
=
inDims
[
i
+
1
]
let
padding
:
Int
=
Int
(
paddings
[
i
])
let
stride
:
Int
=
Int
(
strides
[
i
])
let
dKernel
=
dilation
*
(
filterSize
-
1
)
+
1
let
outputSize
=
(
inputSize
+
2
*
padding
-
dKernel
)
/
stride
+
1
outDim
.
append
(
outputSize
)
}
outDim
.
append
(
filterDim
[
0
])
para
.
output
.
dim
=
Dim
.
init
(
inDim
:
outDim
)
var
outDim
=
[
inDims
[
0
]]
for
i
in
0
..<
strides
.
count
{
let
dilation
:
Int
=
Int
(
dilations
[
i
])
let
filterSize
:
Int
=
filterDim
[
i
+
1
]
let
inputSize
:
Int
=
inDims
[
i
+
1
]
let
padding
:
Int
=
Int
(
paddings
[
i
])
let
stride
:
Int
=
Int
(
strides
[
i
])
let
dKernel
=
dilation
*
(
filterSize
-
1
)
+
1
let
outputSize
=
(
inputSize
+
2
*
padding
-
dKernel
)
/
stride
+
1
outDim
.
append
(
outputSize
)
}
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
outDim
.
append
(
filterDim
[
0
])
para
.
output
.
dim
=
Dim
.
init
(
inDim
:
outDim
)
}
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
}
static
func
fusionNode
()
->
Node
{
let
beginNode
=
Node
.
init
(
inType
:
gConvType
)
_
=
beginNode
-->
Node
.
init
(
inType
:
gElementwiseAddType
)
-->
Node
.
init
(
inType
:
gBatchNormType
)
-->
Node
.
init
(
inType
:
gReluType
)
return
beginNode
}
static
func
change
()
->
[
String
:
[(
from
:
String
,
to
:
String
)]]
{
return
[:]
}
static
func
fusionType
()
->
String
{
return
gConvAddBatchNormReluType
}
func
delogOutput
()
{
static
func
fusionNode
()
->
Node
{
let
beginNode
=
Node
.
init
(
inType
:
gConvType
)
_
=
beginNode
-->
Node
.
init
(
inType
:
gElementwiseAddType
)
-->
Node
.
init
(
inType
:
gBatchNormType
)
-->
Node
.
init
(
inType
:
gReluType
)
return
beginNode
}
// let _: P? = para.input.metalTexture.logDesc(header: "conv add batchnorm relu input: ", stridable: false)
// para.filter.logDataPointer(header: "filter data pointer: ")
// print("filter: \(para.filter)")
static
func
change
()
->
[
String
:
[(
from
:
String
,
to
:
String
)]]
{
return
[:]
}
// print("biase: \(para.y)")
// print("padding: \(para.paddings)")
// print("stride: \(para.stride)")
static
func
fusionType
()
->
String
{
return
gConvAddBatchNormReluType
}
// let _: P? = para.y.buffer?.logDesc(header: " biase: ", stridable: false)
// let _: P? = para.newBiase?.logDesc(header: "new biase: ", stridable: false)
// let _: P? = para.newScale?.logDesc(header: "new scale: ", stridable: false)
func
delogOutput
()
{
// let _: P? = para.input.metalTexture.logDesc(header: "conv add batchnorm relu input: ", stridable: false)
// para.filter.logDataPointer(header: "filter data pointer: ")
// print("filter: \(para.filter)")
// print("biase: \(para.y)")
// print("padding: \(para.paddings)")
// print("stride: \(para.stride)")
// let _: P? = para.y.buffer?.logDesc(header: " biase: ", stridable: false)
// let _: P? = para.newBiase?.logDesc(header: "new biase: ", stridable: false)
// let _: P? = para.newScale?.logDesc(header: "new scale: ", stridable: false)
let
output
=
para
.
output
.
metalTexture
.
floatArray
{
(
p
:
P
)
->
P
in
return
p
}
//
writeToLibrary
(
fileName
:
"output_112x112x32_2"
,
array
:
output
)
print
(
" write done"
)
// let _: P? = para.output.metalTexture.logDesc(header: "conv add batchnorm relu output: ", stridable: false)
let
output
=
para
.
output
.
metalTexture
.
floatArray
{
(
p
:
P
)
->
P
in
return
p
}
//
writeToLibrary
(
fileName
:
"output_112x112x32_2"
,
array
:
output
)
print
(
" write done"
)
// let _: P? = para.output.metalTexture.logDesc(header: "conv add batchnorm relu output: ", stridable: false)
}
}
metal/paddle-mobile/paddle-mobile/Operators/ConvAddOp.swift
浏览文件 @
7315defa
...
...
@@ -15,80 +15,108 @@
import
Foundation
class
ConvAddParam
<
P
:
PrecisionType
>
:
OpParam
{
typealias
ParamPrecisionType
=
P
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
filter
=
try
ConvAddParam
.
inputFilter
(
paraInputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
input
=
try
ConvAddParam
.
input
(
inputs
:
opDesc
.
inputs
,
from
:
inScope
)
output
=
try
ConvAddParam
.
outputOut
(
outputs
:
opDesc
.
outputs
,
from
:
inScope
)
stride
=
try
ConvAddParam
.
getAttr
(
key
:
"strides"
,
attrs
:
opDesc
.
attrs
)
paddings
=
try
ConvAddParam
.
getAttr
(
key
:
"paddings"
,
attrs
:
opDesc
.
attrs
)
dilations
=
try
ConvAddParam
.
getAttr
(
key
:
"dilations"
,
attrs
:
opDesc
.
attrs
)
groups
=
try
ConvAddParam
.
getAttr
(
key
:
"groups"
,
attrs
:
opDesc
.
attrs
)
y
=
try
ConvAddParam
.
inputY
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
}
catch
let
error
{
throw
error
}
typealias
ParamPrecisionType
=
P
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
filter
=
try
ConvAddParam
.
inputFilter
(
paraInputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
input
=
try
ConvAddParam
.
input
(
inputs
:
opDesc
.
inputs
,
from
:
inScope
)
output
=
try
ConvAddParam
.
outputOut
(
outputs
:
opDesc
.
outputs
,
from
:
inScope
)
stride
=
try
ConvAddParam
.
getAttr
(
key
:
"strides"
,
attrs
:
opDesc
.
attrs
)
paddings
=
try
ConvAddParam
.
getAttr
(
key
:
"paddings"
,
attrs
:
opDesc
.
attrs
)
dilations
=
try
ConvAddParam
.
getAttr
(
key
:
"dilations"
,
attrs
:
opDesc
.
attrs
)
groups
=
try
ConvAddParam
.
getAttr
(
key
:
"groups"
,
attrs
:
opDesc
.
attrs
)
y
=
try
ConvAddParam
.
inputY
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
}
catch
let
error
{
throw
error
}
let
input
:
Texture
<
P
>
let
y
:
Tensor
<
ParamPrecisionType
>
let
filter
:
Tensor
<
ParamPrecisionType
>
var
output
:
Texture
<
P
>
let
stride
:
[
Int32
]
let
paddings
:
[
Int32
]
let
dilations
:
[
Int32
]
let
groups
:
Int
}
let
input
:
Texture
<
P
>
let
y
:
Tensor
<
ParamPrecisionType
>
let
filter
:
Tensor
<
ParamPrecisionType
>
var
output
:
Texture
<
P
>
let
stride
:
[
Int32
]
let
paddings
:
[
Int32
]
let
dilations
:
[
Int32
]
let
groups
:
Int
}
class
ConvAddOp
<
P
:
PrecisionType
>
:
Operator
<
ConvAddKernel
<
P
>
,
ConvAddParam
<
P
>>
,
Runable
,
Creator
,
InferShaperable
,
Fusion
{
static
func
fusionNode
()
->
Node
{
let
beginNode
=
Node
.
init
(
inType
:
gConvType
)
_
=
beginNode
-->
Node
.
init
(
inType
:
gElementwiseAddType
)
return
beginNode
}
func
delogOutput
()
{
print
(
" conv add: "
)
// print(para.input.metalTexture)
static
func
change
()
->
[
String
:
[(
from
:
String
,
to
:
String
)]]
{
return
[:]
// print(" filter array: ")
// let filterArray: [P] = para.filter.buffer.array()
// print(filterArray)
let
input
=
para
.
input
.
metalTexture
.
floatArray
{
(
p
:
P
)
->
P
in
return
p
}
// print(input)
static
func
fusionType
()
->
String
{
return
gConvAddType
let
output
=
para
.
output
.
metalTexture
.
floatArray
{
(
p
:
P
)
->
P
in
return
p
}
// print(para.output.metalTexture)
print
(
output
)
}
static
func
fusionNode
()
->
Node
{
let
beginNode
=
Node
.
init
(
inType
:
gConvType
)
_
=
beginNode
-->
Node
.
init
(
inType
:
gElementwiseAddType
)
return
beginNode
}
static
func
change
()
->
[
String
:
[(
from
:
String
,
to
:
String
)]]
{
return
[:]
}
func
inputs
()
->
[
Variant
]
{
return
[
para
.
input
,
para
.
y
,
para
.
filter
]
}
static
func
fusionType
()
->
String
{
return
gConvAddType
}
typealias
OpType
=
ConvAddOp
<
P
>
func
inferShape
()
{
typealias
OpType
=
ConvAddOp
<
P
>
let
inDims
=
para
.
input
.
dim
let
filterDim
=
para
.
filter
.
dim
let
strides
=
para
.
stride
let
paddings
=
para
.
paddings
let
dilations
=
para
.
dilations
func
inferShape
()
{
let
inDims
=
para
.
input
.
dim
let
filterDim
=
para
.
filter
.
dim
let
strides
=
para
.
stride
let
paddings
=
para
.
paddings
let
dilations
=
para
.
dilations
var
outDim
=
[
inDims
[
0
]]
for
i
in
0
..<
strides
.
count
{
let
dilation
:
Int
=
Int
(
dilations
[
i
])
let
filterSize
:
Int
=
filterDim
[
i
+
1
]
let
inputSize
:
Int
=
inDims
[
i
+
1
]
let
padding
:
Int
=
Int
(
paddings
[
i
])
let
stride
:
Int
=
Int
(
strides
[
i
])
let
dKernel
=
dilation
*
(
filterSize
-
1
)
+
1
let
outputSize
=
(
inputSize
+
2
*
padding
-
dKernel
)
/
stride
+
1
outDim
.
append
(
outputSize
)
}
outDim
.
append
(
filterDim
[
0
])
para
.
output
.
dim
=
Dim
.
init
(
inDim
:
outDim
)
var
outDim
=
[
inDims
[
0
]]
for
i
in
0
..<
strides
.
count
{
let
dilation
:
Int
=
Int
(
dilations
[
i
])
let
filterSize
:
Int
=
filterDim
[
i
+
1
]
let
inputSize
:
Int
=
inDims
[
i
+
1
]
let
padding
:
Int
=
Int
(
paddings
[
i
])
let
stride
:
Int
=
Int
(
strides
[
i
])
let
dKernel
=
dilation
*
(
filterSize
-
1
)
+
1
let
outputSize
=
(
inputSize
+
2
*
padding
-
dKernel
)
/
stride
+
1
outDim
.
append
(
outputSize
)
}
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
outDim
.
append
(
filterDim
[
0
])
para
.
output
.
dim
=
Dim
.
init
(
inDim
:
outDim
)
}
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
}
}
metal/paddle-mobile/paddle-mobile/Operators/ConvBNReluOp.swift
浏览文件 @
7315defa
...
...
@@ -15,115 +15,164 @@
import
Foundation
class
ConvBNReluParam
<
P
:
PrecisionType
>
:
OpParam
{
typealias
ParamPrecisionType
=
P
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
filter
=
try
ConvBNReluParam
.
inputFilter
(
paraInputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
input
=
try
ConvBNReluParam
.
input
(
inputs
:
opDesc
.
inputs
,
from
:
inScope
)
output
=
try
ConvBNReluParam
.
outputOut
(
outputs
:
opDesc
.
outputs
,
from
:
inScope
)
stride
=
try
ConvBNReluParam
.
getAttr
(
key
:
"strides"
,
attrs
:
opDesc
.
attrs
)
paddings
=
try
ConvBNReluParam
.
getAttr
(
key
:
"paddings"
,
attrs
:
opDesc
.
attrs
)
dilations
=
try
ConvBNReluParam
.
getAttr
(
key
:
"dilations"
,
attrs
:
opDesc
.
attrs
)
epsilon
=
try
ConvBNReluParam
.
getAttr
(
key
:
"epsilon"
,
attrs
:
opDesc
.
attrs
)
groups
=
try
ConvBNReluParam
.
getAttr
(
key
:
"groups"
,
attrs
:
opDesc
.
attrs
)
variance
=
try
ConvBNReluParam
.
inputVariance
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
bias
=
try
ConvBNReluParam
.
inputBiase
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
scale
=
try
ConvBNReluParam
.
inputScale
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
mean
=
try
ConvBNReluParam
.
inputMean
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
}
catch
let
error
{
throw
error
}
typealias
ParamPrecisionType
=
P
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
filter
=
try
ConvBNReluParam
.
inputFilter
(
paraInputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
input
=
try
ConvBNReluParam
.
input
(
inputs
:
opDesc
.
inputs
,
from
:
inScope
)
output
=
try
ConvBNReluParam
.
outputOut
(
outputs
:
opDesc
.
outputs
,
from
:
inScope
)
stride
=
try
ConvBNReluParam
.
getAttr
(
key
:
"strides"
,
attrs
:
opDesc
.
attrs
)
paddings
=
try
ConvBNReluParam
.
getAttr
(
key
:
"paddings"
,
attrs
:
opDesc
.
attrs
)
dilations
=
try
ConvBNReluParam
.
getAttr
(
key
:
"dilations"
,
attrs
:
opDesc
.
attrs
)
epsilon
=
try
ConvBNReluParam
.
getAttr
(
key
:
"epsilon"
,
attrs
:
opDesc
.
attrs
)
groups
=
try
ConvBNReluParam
.
getAttr
(
key
:
"groups"
,
attrs
:
opDesc
.
attrs
)
variance
=
try
ConvBNReluParam
.
inputVariance
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
bias
=
try
ConvBNReluParam
.
inputBiase
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
scale
=
try
ConvBNReluParam
.
inputScale
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
mean
=
try
ConvBNReluParam
.
inputMean
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
}
catch
let
error
{
throw
error
}
let
input
:
Texture
<
P
>
let
variance
:
Tensor
<
ParamPrecisionType
>
let
bias
:
Tensor
<
ParamPrecisionType
>
let
mean
:
Tensor
<
ParamPrecisionType
>
let
scale
:
Tensor
<
ParamPrecisionType
>
let
filter
:
Tensor
<
ParamPrecisionType
>
let
epsilon
:
Float32
var
newScale
:
MTLBuffer
?
var
newBiase
:
MTLBuffer
?
var
output
:
Texture
<
P
>
let
stride
:
[
Int32
]
let
paddings
:
[
Int32
]
let
dilations
:
[
Int32
]
let
groups
:
Int
}
let
input
:
Texture
<
P
>
let
variance
:
Tensor
<
ParamPrecisionType
>
let
bias
:
Tensor
<
ParamPrecisionType
>
let
mean
:
Tensor
<
ParamPrecisionType
>
let
scale
:
Tensor
<
ParamPrecisionType
>
let
filter
:
Tensor
<
ParamPrecisionType
>
let
epsilon
:
Float32
var
newScale
:
MTLBuffer
?
var
newBiase
:
MTLBuffer
?
var
output
:
Texture
<
P
>
let
stride
:
[
Int32
]
let
paddings
:
[
Int32
]
let
dilations
:
[
Int32
]
let
groups
:
Int
}
class
ConvBNReluOp
<
P
:
PrecisionType
>
:
Operator
<
ConvBNReluKernel
<
P
>
,
ConvBNReluParam
<
P
>>
,
Runable
,
Creator
,
InferShaperable
,
Fusion
{
typealias
OpType
=
ConvBNReluOp
<
P
>
typealias
OpType
=
ConvBNReluOp
<
P
>
func
inputs
()
->
[
Variant
]
{
return
[
para
.
input
,
para
.
variance
,
para
.
bias
,
para
.
mean
,
para
.
scale
,
para
.
filter
]
}
func
inferShape
()
{
let
inDims
=
para
.
input
.
dim
let
filterDim
=
para
.
filter
.
dim
let
strides
=
para
.
stride
let
paddings
=
para
.
paddings
let
dilations
=
para
.
dilations
func
inferShape
()
{
let
inDims
=
para
.
input
.
dim
let
filterDim
=
para
.
filter
.
dim
let
strides
=
para
.
stride
let
paddings
=
para
.
paddings
let
dilations
=
para
.
dilations
var
outDim
=
[
inDims
[
0
]]
for
i
in
0
..<
strides
.
count
{
let
dilation
:
Int
=
Int
(
dilations
[
i
])
let
filterSize
:
Int
=
filterDim
[
i
+
1
]
let
inputSize
:
Int
=
inDims
[
i
+
1
]
let
padding
:
Int
=
Int
(
paddings
[
i
])
let
stride
:
Int
=
Int
(
strides
[
i
])
let
dKernel
=
dilation
*
(
filterSize
-
1
)
+
1
let
outputSize
=
(
inputSize
+
2
*
padding
-
dKernel
)
/
stride
+
1
outDim
.
append
(
outputSize
)
}
outDim
.
append
(
filterDim
[
0
])
para
.
output
.
dim
=
Dim
.
init
(
inDim
:
outDim
)
var
outDim
=
[
inDims
[
0
]]
for
i
in
0
..<
strides
.
count
{
let
dilation
:
Int
=
Int
(
dilations
[
i
])
let
filterSize
:
Int
=
filterDim
[
i
+
1
]
let
inputSize
:
Int
=
inDims
[
i
+
1
]
let
padding
:
Int
=
Int
(
paddings
[
i
])
let
stride
:
Int
=
Int
(
strides
[
i
])
let
dKernel
=
dilation
*
(
filterSize
-
1
)
+
1
let
outputSize
=
(
inputSize
+
2
*
padding
-
dKernel
)
/
stride
+
1
outDim
.
append
(
outputSize
)
}
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
outDim
.
append
(
filterDim
[
0
])
para
.
output
.
dim
=
Dim
.
init
(
inDim
:
outDim
)
}
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
}
static
func
fusionNode
()
->
Node
{
let
beginNode
=
Node
.
init
(
inType
:
gConvType
)
_
=
beginNode
-->
Node
.
init
(
inType
:
gBatchNormType
)
-->
Node
.
init
(
inType
:
gReluType
)
return
beginNode
}
static
func
change
()
->
[
String
:
[(
from
:
String
,
to
:
String
)]]
{
return
[:]
}
static
func
fusionType
()
->
String
{
return
gConvBnReluType
}
func
delogOutput
()
{
static
func
fusionNode
()
->
Node
{
let
beginNode
=
Node
.
init
(
inType
:
gConvType
)
_
=
beginNode
-->
Node
.
init
(
inType
:
gBatchNormType
)
-->
Node
.
init
(
inType
:
gReluType
)
return
beginNode
}
// let _: P? = para.input.metalTexture.logDesc(header: "conv add batchnorm relu input: ", stridable: false)
// para.filter.logDataPointer(header: "filter data pointer: ")
// print("filter: \(para.filter)")
static
func
change
()
->
[
String
:
[(
from
:
String
,
to
:
String
)]]
{
return
[:]
}
// print("biase: \(para.y)")
// print("padding: \(para.paddings)")
// print("stride: \(para.stride)")
// let _: P? = para.y.buffer?.logDesc(header: " biase: ", stridable: false)
// let _: P? = para.newBiase?.logDesc(header: "new biase: ", stridable: false)
// let _: P? = para.newScale?.logDesc(header: "new scale: ", stridable: false)
static
func
fusionType
()
->
String
{
return
gConvBnReluType
}
func
delogOutput
()
{
// let _: P? = para.input.metalTexture.logDesc(header: "conv add batchnorm relu input: ", stridable: false)
// para.filter.logDataPointer(header: "filter data pointer: ")
// print("filter: \(para.filter)")
// print("biase: \(para.y)")
// print("padding: \(para.paddings)")
// print("stride: \(para.stride)")
// let _: P? = para.y.buffer?.logDesc(header: " biase: ", stridable: false)
// let _: P? = para.newBiase?.logDesc(header: "new biase: ", stridable: false)
// let _: P? = para.newScale?.logDesc(header: "new scale: ", stridable: false)
let
output
=
para
.
output
.
metalTexture
.
floatArray
{
(
p
:
P
)
->
P
in
return
p
}
//
writeToLibrary
(
fileName
:
"output_112x112x32_2"
,
array
:
output
)
print
(
" write done"
)
// let _: P? = para.output.metalTexture.logDesc(header: "conv add batchnorm relu output: ", stridable: false)
// print("input: ")
// print(para.input.metalTexture)
//
// let input = para.input.metalTexture.floatArray { (p: P) -> P in
// return p
// }
// for i in 0..<input.count {
// print(" index \(i) : \(input[i])")
// }
// print(input)
// writeToLibrary(fileName: "input35", array: input)
// print(input)
print
(
para
.
newBiase
?
.
length
)
print
(
para
.
newScale
?
.
length
)
// let newScale = para.newScale?.contents().bindMemory(to: P.self, capacity: para.newScale!.length)
// let newBiase = para.newBiase?.contents().bindMemory(to: P.self, capacity: para.newBiase!.length)
//
// let filterArray: [Float32] = para.filter.buffer.array();
//// writeToLibrary(fileName: "filter35", array: filterArray)
//
// print(filterArray)
//
// print("new scale: ")
// for i in 0..<(para.newScale!.length / MemoryLayout<P>.size) {
// print("index: \(i) \(newScale![i]) ")
// }
//
// print("new biase: ")
// for i in 0..<(para.newBiase!.length / MemoryLayout<P>.size) {
// print("index: \(i) \(newBiase![i]) ")
// }
print
(
para
.
output
.
metalTexture
)
let
output
=
para
.
output
.
metalTexture
.
floatArray
{
(
p
:
P
)
->
P
in
return
p
}
print
(
output
)
//
writeToLibrary
(
fileName
:
"batch_norm_34.tmp_2"
,
array
:
output
)
print
(
" write done"
)
//
// let _: P? = para.output.metalTexture.logDesc(header: "conv add batchnorm relu output: ", stridable: true)
}
}
metal/paddle-mobile/paddle-mobile/Operators/ConvOp.swift
浏览文件 @
7315defa
...
...
@@ -15,74 +15,79 @@
import
Foundation
class
ConvParam
<
P
:
PrecisionType
>
:
OpParam
{
typealias
ParamPrecisionType
=
P
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
filter
=
try
ConvParam
.
inputFilter
(
paraInputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
input
=
try
ConvParam
.
input
(
inputs
:
opDesc
.
inputs
,
from
:
inScope
)
output
=
try
ConvParam
.
output
(
outputs
:
opDesc
.
outputs
,
from
:
inScope
)
stride
=
try
ConvParam
.
getAttr
(
key
:
"strides"
,
attrs
:
opDesc
.
attrs
)
paddings
=
try
ConvParam
.
getAttr
(
key
:
"paddings"
,
attrs
:
opDesc
.
attrs
)
dilations
=
try
ConvParam
.
getAttr
(
key
:
"dilations"
,
attrs
:
opDesc
.
attrs
)
groups
=
try
ConvParam
.
getAttr
(
key
:
"groups"
,
attrs
:
opDesc
.
attrs
)
}
catch
let
error
{
throw
error
}
typealias
ParamPrecisionType
=
P
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
filter
=
try
ConvParam
.
inputFilter
(
paraInputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
input
=
try
ConvParam
.
input
(
inputs
:
opDesc
.
inputs
,
from
:
inScope
)
output
=
try
ConvParam
.
output
(
outputs
:
opDesc
.
outputs
,
from
:
inScope
)
stride
=
try
ConvParam
.
getAttr
(
key
:
"strides"
,
attrs
:
opDesc
.
attrs
)
paddings
=
try
ConvParam
.
getAttr
(
key
:
"paddings"
,
attrs
:
opDesc
.
attrs
)
dilations
=
try
ConvParam
.
getAttr
(
key
:
"dilations"
,
attrs
:
opDesc
.
attrs
)
groups
=
try
ConvParam
.
getAttr
(
key
:
"groups"
,
attrs
:
opDesc
.
attrs
)
}
catch
let
error
{
throw
error
}
let
input
:
Texture
<
P
>
let
filter
:
Tensor
<
ParamPrecisionType
>
var
output
:
Texture
<
P
>
let
stride
:
[
Int32
]
let
paddings
:
[
Int32
]
let
dilations
:
[
Int32
]
let
groups
:
Int
}
let
input
:
Texture
<
P
>
let
filter
:
Tensor
<
ParamPrecisionType
>
var
output
:
Texture
<
P
>
let
stride
:
[
Int32
]
let
paddings
:
[
Int32
]
let
dilations
:
[
Int32
]
let
groups
:
Int
}
class
ConvOp
<
P
:
PrecisionType
>
:
Operator
<
ConvKernel
<
P
>
,
ConvParam
<
P
>>
,
Runable
,
Creator
,
InferShaperable
{
required
init
(
device
:
MTLDevice
,
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
try
super
.
init
(
device
:
device
,
opDesc
:
opDesc
,
inScope
:
inScope
)
}
catch
let
error
{
throw
error
}
}
func
inferShape
()
{
let
inDims
=
para
.
input
.
dim
let
filterDim
=
para
.
filter
.
dim
let
strides
=
para
.
stride
let
paddings
=
para
.
paddings
let
dilations
=
para
.
dilations
var
outDim
=
[
inDims
[
0
]]
for
i
in
0
..<
strides
.
count
{
let
dilation
:
Int
=
Int
(
dilations
[
i
])
let
filterSize
:
Int
=
filterDim
[
i
+
1
]
let
inputSize
:
Int
=
inDims
[
i
+
1
]
let
padding
:
Int
=
Int
(
paddings
[
i
])
let
stride
:
Int
=
Int
(
strides
[
i
])
let
dKernel
=
dilation
*
(
filterSize
-
1
)
+
1
let
outputSize
=
(
inputSize
+
2
*
padding
-
dKernel
)
/
stride
+
1
outDim
.
append
(
outputSize
)
}
outDim
.
append
(
filterDim
[
0
])
para
.
output
.
dim
=
Dim
.
init
(
inDim
:
outDim
)
func
inputs
()
->
[
Variant
]
{
return
[
para
.
input
,
para
.
filter
]
}
required
init
(
device
:
MTLDevice
,
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
try
super
.
init
(
device
:
device
,
opDesc
:
opDesc
,
inScope
:
inScope
)
}
catch
let
error
{
throw
error
}
typealias
OpType
=
ConvOp
<
P
>
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
}
}
func
inferShape
()
{
let
inDims
=
para
.
input
.
dim
let
filterDim
=
para
.
filter
.
dim
let
strides
=
para
.
stride
let
paddings
=
para
.
paddings
let
dilations
=
para
.
dilations
func
delogOutput
()
{
print
(
"conv output : "
)
print
(
para
.
output
.
metalTexture
)
// let _: Float16? = para.output.metalTexture.logDesc()
var
outDim
=
[
inDims
[
0
]]
for
i
in
0
..<
strides
.
count
{
let
dilation
:
Int
=
Int
(
dilations
[
i
])
let
filterSize
:
Int
=
filterDim
[
i
+
1
]
let
inputSize
:
Int
=
inDims
[
i
+
1
]
let
padding
:
Int
=
Int
(
paddings
[
i
])
let
stride
:
Int
=
Int
(
strides
[
i
])
let
dKernel
=
dilation
*
(
filterSize
-
1
)
+
1
let
outputSize
=
(
inputSize
+
2
*
padding
-
dKernel
)
/
stride
+
1
outDim
.
append
(
outputSize
)
}
outDim
.
append
(
filterDim
[
0
])
para
.
output
.
dim
=
Dim
.
init
(
inDim
:
outDim
)
}
typealias
OpType
=
ConvOp
<
P
>
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
}
func
delogOutput
()
{
print
(
"conv output : "
)
print
(
para
.
output
.
metalTexture
)
// let _: Float16? = para.output.metalTexture.logDesc()
}
}
metal/paddle-mobile/paddle-mobile/Operators/ConvTransposeOp.swift
浏览文件 @
7315defa
...
...
@@ -28,6 +28,10 @@ class ConvTransposeParam<P: PrecisionType>: ConvParam<P> {
class
ConvTransposeOp
<
P
:
PrecisionType
>
:
Operator
<
ConvTransposeKernel
<
P
>
,
ConvTransposeParam
<
P
>>
,
Runable
,
Creator
,
InferShaperable
{
func
inputs
()
->
[
Variant
]
{
return
[
para
.
input
,
para
.
filter
]
}
func
inferShape
()
{
// para.output.dim = para.input.dim
}
...
...
metal/paddle-mobile/paddle-mobile/Operators/DepthwiseConvOp.swift
浏览文件 @
7315defa
...
...
@@ -15,49 +15,54 @@
import
Foundation
class
DepthConvOp
<
P
:
PrecisionType
>
:
Operator
<
ConvKernel
<
P
>
,
ConvParam
<
P
>>
,
Runable
,
Creator
,
InferShaperable
{
required
init
(
device
:
MTLDevice
,
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
try
super
.
init
(
device
:
device
,
opDesc
:
opDesc
,
inScope
:
inScope
)
}
catch
let
error
{
throw
error
}
func
inputs
()
->
[
Variant
]
{
return
[
para
.
input
,
para
.
filter
]
}
required
init
(
device
:
MTLDevice
,
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
try
super
.
init
(
device
:
device
,
opDesc
:
opDesc
,
inScope
:
inScope
)
}
catch
let
error
{
throw
error
}
}
func
inferShape
()
{
let
inDims
=
para
.
input
.
dim
let
filterDim
=
para
.
filter
.
dim
let
strides
=
para
.
stride
let
paddings
=
para
.
paddings
let
dilations
=
para
.
dilations
func
inferShape
()
{
let
inDims
=
para
.
input
.
dim
let
filterDim
=
para
.
filter
.
dim
let
strides
=
para
.
stride
let
paddings
=
para
.
paddings
let
dilations
=
para
.
dilations
var
outDim
=
[
inDims
[
0
]]
for
i
in
0
..<
strides
.
count
{
let
dilation
:
Int
=
Int
(
dilations
[
i
])
let
filterSize
:
Int
=
filterDim
[
i
+
1
]
let
inputSize
:
Int
=
inDims
[
i
+
1
]
let
padding
:
Int
=
Int
(
paddings
[
i
])
let
stride
:
Int
=
Int
(
strides
[
i
])
let
dKernel
=
dilation
*
(
filterSize
-
1
)
+
1
let
outputSize
=
(
inputSize
+
2
*
padding
-
dKernel
)
/
stride
+
1
outDim
.
append
(
outputSize
)
}
outDim
.
append
(
filterDim
[
0
])
para
.
output
.
dim
=
Dim
.
init
(
inDim
:
outDim
)
var
outDim
=
[
inDims
[
0
]]
for
i
in
0
..<
strides
.
count
{
let
dilation
:
Int
=
Int
(
dilations
[
i
])
let
filterSize
:
Int
=
filterDim
[
i
+
1
]
let
inputSize
:
Int
=
inDims
[
i
+
1
]
let
padding
:
Int
=
Int
(
paddings
[
i
])
let
stride
:
Int
=
Int
(
strides
[
i
])
let
dKernel
=
dilation
*
(
filterSize
-
1
)
+
1
let
outputSize
=
(
inputSize
+
2
*
padding
-
dKernel
)
/
stride
+
1
outDim
.
append
(
outputSize
)
}
typealias
OpType
=
DepthConvOp
<
P
>
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
}
func
delogOutput
()
{
print
(
"conv output : "
)
print
(
para
.
output
.
metalTexture
)
// let _: Float16? = para.output.metalTexture.logDesc()
outDim
.
append
(
filterDim
[
0
])
para
.
output
.
dim
=
Dim
.
init
(
inDim
:
outDim
)
}
typealias
OpType
=
DepthConvOp
<
P
>
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
}
func
delogOutput
()
{
print
(
"conv output : "
)
print
(
para
.
output
.
metalTexture
)
// let _: Float16? = para.output.metalTexture.logDesc()
}
}
metal/paddle-mobile/paddle-mobile/Operators/DwConvBNReluOp.swift
浏览文件 @
7315defa
...
...
@@ -15,75 +15,79 @@
import
Foundation
class
DwConvBNReluOp
<
P
:
PrecisionType
>
:
Operator
<
ConvBNReluKernel
<
P
>
,
ConvBNReluParam
<
P
>>
,
Runable
,
Creator
,
InferShaperable
,
Fusion
{
typealias
OpType
=
ConvBNReluOp
<
P
>
typealias
OpType
=
ConvBNReluOp
<
P
>
func
inputs
()
->
[
Variant
]
{
return
[
para
.
input
,
para
.
bias
,
para
.
mean
,
para
.
filter
,
para
.
variance
,
para
.
scale
]
}
func
inferShape
()
{
let
inDims
=
para
.
input
.
dim
let
filterDim
=
para
.
filter
.
dim
let
strides
=
para
.
stride
let
paddings
=
para
.
paddings
let
dilations
=
para
.
dilations
func
inferShape
()
{
let
inDims
=
para
.
input
.
dim
let
filterDim
=
para
.
filter
.
dim
let
strides
=
para
.
stride
let
paddings
=
para
.
paddings
let
dilations
=
para
.
dilations
var
outDim
=
[
inDims
[
0
]]
for
i
in
0
..<
strides
.
count
{
let
dilation
:
Int
=
Int
(
dilations
[
i
])
let
filterSize
:
Int
=
filterDim
[
i
+
1
]
let
inputSize
:
Int
=
inDims
[
i
+
1
]
let
padding
:
Int
=
Int
(
paddings
[
i
])
let
stride
:
Int
=
Int
(
strides
[
i
])
let
dKernel
=
dilation
*
(
filterSize
-
1
)
+
1
let
outputSize
=
(
inputSize
+
2
*
padding
-
dKernel
)
/
stride
+
1
outDim
.
append
(
outputSize
)
}
outDim
.
append
(
filterDim
[
0
])
para
.
output
.
dim
=
Dim
.
init
(
inDim
:
outDim
)
var
outDim
=
[
inDims
[
0
]]
for
i
in
0
..<
strides
.
count
{
let
dilation
:
Int
=
Int
(
dilations
[
i
])
let
filterSize
:
Int
=
filterDim
[
i
+
1
]
let
inputSize
:
Int
=
inDims
[
i
+
1
]
let
padding
:
Int
=
Int
(
paddings
[
i
])
let
stride
:
Int
=
Int
(
strides
[
i
])
let
dKernel
=
dilation
*
(
filterSize
-
1
)
+
1
let
outputSize
=
(
inputSize
+
2
*
padding
-
dKernel
)
/
stride
+
1
outDim
.
append
(
outputSize
)
}
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
outDim
.
append
(
filterDim
[
0
])
para
.
output
.
dim
=
Dim
.
init
(
inDim
:
outDim
)
}
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
}
static
func
fusionNode
()
->
Node
{
let
beginNode
=
Node
.
init
(
inType
:
gDepthConvType
)
_
=
beginNode
-->
Node
.
init
(
inType
:
gBatchNormType
)
-->
Node
.
init
(
inType
:
gReluType
)
return
beginNode
}
static
func
change
()
->
[
String
:
[(
from
:
String
,
to
:
String
)]]
{
return
[:]
}
static
func
fusionType
()
->
String
{
return
gDwConvBnReluType
}
func
delogOutput
()
{
static
func
fusionNode
()
->
Node
{
let
beginNode
=
Node
.
init
(
inType
:
gDepthConvType
)
_
=
beginNode
-->
Node
.
init
(
inType
:
gBatchNormType
)
-->
Node
.
init
(
inType
:
gReluType
)
return
beginNode
}
// let _: P? = para.input.metalTexture.logDesc(header: "conv add batchnorm relu input: ", stridable: false)
// para.filter.logDataPointer(header: "filter data pointer: ")
// print("filter: \(para.filter)")
static
func
change
()
->
[
String
:
[(
from
:
String
,
to
:
String
)]]
{
return
[:]
}
// print("biase: \(para.y)")
// print("padding: \(para.paddings)")
// print("stride: \(para.stride)")
static
func
fusionType
()
->
String
{
return
gDwConvBnReluType
}
// let _: P? = para.y.buffer?.logDesc(header: " biase: ", stridable: false)
// let _: P? = para.newBiase?.logDesc(header: "new biase: ", stridable: false)
// let _: P? = para.newScale?.logDesc(header: "new scale: ", stridable: false)
func
delogOutput
()
{
// let _: P? = para.input.metalTexture.logDesc(header: "conv add batchnorm relu input: ", stridable: false)
// para.filter.logDataPointer(header: "filter data pointer: ")
// print("filter: \(para.filter)")
// print("biase: \(para.y)")
// print("padding: \(para.paddings)")
// print("stride: \(para.stride)")
// let _: P? = para.y.buffer?.logDesc(header: " biase: ", stridable: false)
// let _: P? = para.newBiase?.logDesc(header: "new biase: ", stridable: false)
// let _: P? = para.newScale?.logDesc(header: "new scale: ", stridable: false)
let
output
=
para
.
output
.
metalTexture
.
floatArray
{
(
p
:
P
)
->
P
in
return
p
}
//
writeToLibrary
(
fileName
:
"output_112x112x32_2"
,
array
:
output
)
print
(
" write done"
)
// let _: P? = para.output.metalTexture.logDesc(header: "conv add batchnorm relu output: ", stridable: false)
}
// let output = para.output.metalTexture.floatArray { (p: P) -> P in
// return p
// }
//
// writeToLibrary(fileName: "batch_norm_19.tmp_2", array: output)
// print(" write done")
// let _: P? = para.output.metalTexture.logDesc(header: "conv add batchnorm relu output: ", stridable: false)
}
}
metal/paddle-mobile/paddle-mobile/Operators/ElementwiseAddOp.swift
浏览文件 @
7315defa
...
...
@@ -15,33 +15,37 @@
import
Foundation
class
ElementwiseAddParam
<
P
:
PrecisionType
>
:
OpParam
{
typealias
ParamPrecisionType
=
P
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
input
=
try
ElementwiseAddParam
.
inputX
(
inputs
:
opDesc
.
inputs
,
from
:
inScope
)
inputY
=
try
ElementwiseAddParam
.
inputY
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
output
=
try
ElementwiseAddParam
.
outputOut
(
outputs
:
opDesc
.
outputs
,
from
:
inScope
)
axis
=
try
ElementwiseAddParam
.
getAttr
(
key
:
"axis"
,
attrs
:
opDesc
.
attrs
)
}
catch
let
error
{
throw
error
}
typealias
ParamPrecisionType
=
P
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
input
=
try
ElementwiseAddParam
.
inputX
(
inputs
:
opDesc
.
inputs
,
from
:
inScope
)
inputY
=
try
ElementwiseAddParam
.
inputY
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
output
=
try
ElementwiseAddParam
.
outputOut
(
outputs
:
opDesc
.
outputs
,
from
:
inScope
)
axis
=
try
ElementwiseAddParam
.
getAttr
(
key
:
"axis"
,
attrs
:
opDesc
.
attrs
)
}
catch
let
error
{
throw
error
}
let
input
:
Texture
<
P
>
let
inputY
:
Tensor
<
P
>
var
output
:
Texture
<
P
>
let
axis
:
Int
}
let
input
:
Texture
<
P
>
let
inputY
:
Tensor
<
P
>
var
output
:
Texture
<
P
>
let
axis
:
Int
}
class
ElementwiseAddOp
<
P
:
PrecisionType
>
:
Operator
<
ElementwiseAddKernel
<
P
>
,
ElementwiseAddParam
<
P
>>
,
Runable
,
Creator
,
InferShaperable
{
func
inferShape
()
{
para
.
output
.
dim
=
para
.
input
.
dim
}
typealias
OpType
=
ElementwiseAddOp
<
P
>
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
}
func
inputs
()
->
[
Variant
]
{
return
[
para
.
input
,
para
.
inputY
]
}
func
inferShape
()
{
para
.
output
.
dim
=
para
.
input
.
dim
}
typealias
OpType
=
ElementwiseAddOp
<
P
>
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
}
}
...
...
metal/paddle-mobile/paddle-mobile/Operators/FeedOp.swift
浏览文件 @
7315defa
...
...
@@ -15,54 +15,58 @@
import
Foundation
class
FeedParam
<
P
:
PrecisionType
>
:
OpParam
{
var
output
:
Texture
<
P
>
var
input
:
InputTexture
{
return
scope
.
input
()
as!
InputTexture
var
output
:
Texture
<
P
>
var
input
:
InputTexture
{
return
scope
.
input
()
as!
InputTexture
}
let
scope
:
Scope
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
scope
=
inScope
do
{
output
=
try
FeedParam
.
outputOut
(
outputs
:
opDesc
.
outputs
,
from
:
inScope
)
}
catch
let
error
{
throw
error
}
let
scope
:
Scope
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
scope
=
inScope
do
{
output
=
try
FeedParam
.
outputOut
(
outputs
:
opDesc
.
outputs
,
from
:
inScope
)
}
catch
let
error
{
throw
error
}
}
typealias
ParamPrecisionType
=
P
}
typealias
ParamPrecisionType
=
P
}
class
FeedOp
<
P
:
PrecisionType
>
:
Operator
<
Texture2DTo2DArrayKernel
<
P
>
,
FeedParam
<
P
>>
,
Runable
,
Creator
,
InferShaperable
{
typealias
OpType
=
FeedOp
<
P
>
func
inferShape
()
{
// print("feed input: \(para.input.expectDim)")
print
(
"feed output:
\(
para
.
output
.
dim
)
"
)
// para.output.dim =
// para.output.dim = para.input.expectDim
typealias
OpType
=
FeedOp
<
P
>
func
inputs
()
->
[
Variant
]
{
return
[
para
.
input
]
}
func
inferShape
()
{
// print("feed input: \(para.input.expectDim)")
print
(
"feed output:
\(
para
.
output
.
dim
)
"
)
// para.output.dim =
// para.output.dim = para.input.expectDim
}
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
// let resizeKernel = ResizeKernel<P>.init(device: device)
// let resizeParam = ResizeParam.init(input: para.input.mtlTexture, output: para.output.metalTexture, expectDim: para.input.expectDim)
// do {
// try resizeKernel.compute(commandBuffer: buffer, param: resizeParam)
// } catch let error {
// throw error
// }
}
func
delogOutput
()
{
// para.input.mtlTexture.logDesc()
// let _: P? = para.input.mtlTexture.logDesc(header: "feed input: ", stridable: true)
// let _: P? = para.output.metalTexture.logDesc(header: "feed output: ", stridable: false)
}
// let resizeKernel = ResizeKernel<P>.init(device: device)
// let resizeParam = ResizeParam.init(input: para.input.mtlTexture, output: para.output.metalTexture, expectDim: para.input.expectDim)
// do {
// try resizeKernel.compute(commandBuffer: buffer, param: resizeParam)
// } catch let error {
// throw error
// }
}
func
delogOutput
()
{
// para.input.mtlTexture.logDesc()
// let _: P? = para.input.mtlTexture.logDesc(header: "feed input: ", stridable: true)
// let _: P? = para.output.metalTexture.logDesc(header: "feed output: ", stridable: false)
}
}
metal/paddle-mobile/paddle-mobile/Operators/FetchOp.swift
浏览文件 @
7315defa
...
...
@@ -15,40 +15,44 @@
import
Foundation
class
FetchParam
<
P
:
PrecisionType
>
:
OpParam
{
var
output
:
Texture
<
P
>
let
input
:
Texture
<
P
>
let
scope
:
Scope
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
scope
=
inScope
do
{
input
=
try
FetchParam
.
inputX
(
inputs
:
opDesc
.
inputs
,
from
:
inScope
)
output
=
input
}
catch
let
error
{
throw
error
}
var
output
:
Texture
<
P
>
let
input
:
Texture
<
P
>
let
scope
:
Scope
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
scope
=
inScope
do
{
input
=
try
FetchParam
.
inputX
(
inputs
:
opDesc
.
inputs
,
from
:
inScope
)
output
=
input
}
catch
let
error
{
throw
error
}
typealias
ParamPrecisionType
=
P
}
typealias
ParamPrecisionType
=
P
}
class
FetchKernel
<
P
:
PrecisionType
>
:
Kernel
,
Computable
{
func
compute
(
commandBuffer
:
MTLCommandBuffer
,
param
:
FetchParam
<
P
>
)
throws
{
}
required
init
(
device
:
MTLDevice
,
param
:
FetchParam
<
P
>
)
{
super
.
init
(
device
:
device
,
inFunctionName
:
"texture2d_to_2d_array"
)
}
func
compute
(
commandBuffer
:
MTLCommandBuffer
,
param
:
FetchParam
<
P
>
)
throws
{
}
required
init
(
device
:
MTLDevice
,
param
:
FetchParam
<
P
>
)
{
super
.
init
(
device
:
device
,
inFunctionName
:
"texture2d_to_2d_array"
)
}
}
class
FetchOp
<
P
:
PrecisionType
>
:
Operator
<
FetchKernel
<
P
>
,
FetchParam
<
P
>>
,
Runable
,
Creator
,
InferShaperable
{
func
inferShape
()
{
print
(
para
.
input
.
dim
)
}
typealias
OpType
=
FetchOp
<
P
>
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
scope
.
setOutput
(
output
:
para
.
output
)
}
func
inputs
()
->
[
Variant
]
{
return
[
para
.
input
]
}
func
inferShape
()
{
print
(
para
.
input
.
dim
)
}
typealias
OpType
=
FetchOp
<
P
>
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
scope
.
setOutput
(
output
:
para
.
output
)
}
}
metal/paddle-mobile/paddle-mobile/Operators/Kernels/ConvAddBatchNormReluKernel.swift
浏览文件 @
7315defa
...
...
@@ -50,7 +50,7 @@ class ConvAddBatchNormReluKernel<P: PrecisionType>: Kernel, Computable, Testable
required
init
(
device
:
MTLDevice
,
param
:
ConvAddBatchNormReluParam
<
P
>
)
{
param
.
output
.
initTexture
(
device
:
device
,
t
ranspose
:
[
0
,
2
,
3
,
1
])
param
.
output
.
initTexture
(
device
:
device
,
inT
ranspose
:
[
0
,
2
,
3
,
1
])
if
param
.
filter
.
width
==
1
&&
param
.
filter
.
height
==
1
{
super
.
init
(
device
:
device
,
inFunctionName
:
"conv_add_batch_norm_relu_1x1"
)
...
...
metal/paddle-mobile/paddle-mobile/Operators/Kernels/ConvAddKernel.swift
浏览文件 @
7315defa
...
...
@@ -25,7 +25,7 @@ class ConvAddKernel<P: PrecisionType>: Kernel, Computable {
super
.
init
(
device
:
device
,
inFunctionName
:
"conv_add_3x3"
)
}
param
.
output
.
initTexture
(
device
:
device
,
transpose
:
[
0
,
3
,
1
,
2
])
param
.
output
.
initTexture
(
device
:
device
,
inTranspose
:
[
0
,
3
,
2
,
1
])
let
offsetX
=
param
.
filter
.
width
/
2
-
Int
(
param
.
paddings
[
0
])
let
offsetY
=
param
.
filter
.
height
/
2
-
Int
(
param
.
paddings
[
1
])
...
...
metal/paddle-mobile/paddle-mobile/Operators/Kernels/ConvBNReluKernel.swift
浏览文件 @
7315defa
...
...
@@ -59,7 +59,7 @@ class ConvBNReluKernel<P: PrecisionType>: Kernel, Computable, Testable {
}
else
{
super
.
init
(
device
:
device
,
inFunctionName
:
"conv_batch_norm_relu_3x3"
)
}
param
.
output
.
initTexture
(
device
:
device
,
t
ranspose
:
[
0
,
2
,
3
,
1
])
param
.
output
.
initTexture
(
device
:
device
,
inT
ranspose
:
[
0
,
2
,
3
,
1
])
param
.
filter
.
initBuffer
(
device
:
device
,
precision
:
Tensor
.
BufferPrecision
.
Float32
)
param
.
variance
.
initBuffer
(
device
:
device
)
...
...
@@ -70,8 +70,13 @@ class ConvBNReluKernel<P: PrecisionType>: Kernel, Computable, Testable {
let
offsetX
=
param
.
filter
.
width
/
2
-
Int
(
param
.
paddings
[
0
])
let
offsetY
=
param
.
filter
.
height
/
2
-
Int
(
param
.
paddings
[
1
])
print
(
"offset x:
\(
offsetX
)
"
)
print
(
"offset y:
\(
offsetY
)
"
)
print
(
" param filter width:
\(
param
.
filter
.
width
)
"
)
print
(
" param filter height:
\(
param
.
filter
.
height
)
"
)
print
(
" param paddings:
\(
param
.
paddings
)
"
)
print
(
"ConvBNReluKernel offset x:
\(
offsetX
)
"
)
print
(
"ConvBNReluKernel offset y:
\(
offsetY
)
"
)
let
offsetZ
=
0.0
...
...
@@ -116,8 +121,8 @@ class ConvBNReluKernel<P: PrecisionType>: Kernel, Computable, Testable {
encoder
.
setTexture
(
param
.
output
.
metalTexture
,
index
:
1
)
encoder
.
setBytes
(
&
metalParam
,
length
:
MemoryLayout
<
MetalConvParam
>.
size
,
index
:
0
)
encoder
.
setBuffer
(
param
.
filter
.
buffer
,
offset
:
0
,
index
:
1
)
encoder
.
setBuffer
(
param
.
newScale
!
,
offset
:
0
,
index
:
3
)
encoder
.
setBuffer
(
param
.
newBiase
!
,
offset
:
0
,
index
:
4
)
encoder
.
setBuffer
(
param
.
newScale
!
,
offset
:
0
,
index
:
2
)
encoder
.
setBuffer
(
param
.
newBiase
!
,
offset
:
0
,
index
:
3
)
encoder
.
dispatch
(
computePipline
:
pipline
,
outTexture
:
param
.
output
.
metalTexture
)
encoder
.
endEncoding
()
}
...
...
@@ -132,9 +137,8 @@ class ConvBNReluKernel<P: PrecisionType>: Kernel, Computable, Testable {
var
inMetalParam
=
param
.
metalParam
encoder
.
setBytes
(
&
inMetalParam
,
length
:
MemoryLayout
<
MetalConvParam
>.
size
,
index
:
0
)
encoder
.
setBuffer
(
param
.
filterBuffer
,
offset
:
0
,
index
:
1
)
encoder
.
setBuffer
(
param
.
biaseBuffer
,
offset
:
0
,
index
:
2
)
encoder
.
setBuffer
(
param
.
newScaleBuffer
,
offset
:
0
,
index
:
3
)
encoder
.
setBuffer
(
param
.
newBiaseBuffer
,
offset
:
0
,
index
:
4
)
encoder
.
setBuffer
(
param
.
newScaleBuffer
,
offset
:
0
,
index
:
2
)
encoder
.
setBuffer
(
param
.
newBiaseBuffer
,
offset
:
0
,
index
:
3
)
encoder
.
dispatch
(
computePipline
:
pipline
,
outTexture
:
param
.
outputTexture
)
encoder
.
endEncoding
()
}
...
...
metal/paddle-mobile/paddle-mobile/Operators/Kernels/PriorBoxKernel.swift
浏览文件 @
7315defa
...
...
@@ -15,88 +15,99 @@
import
Foundation
struct
PriorBoxMetalParam
{
let
offset
:
Float32
let
stepWidth
:
Float32
let
stepHeight
:
Float32
let
minSize
:
Float32
let
maxSize
:
Float32
let
imageWidth
:
Float32
let
imageHeight
:
Float32
let
clip
:
Bool
let
numPriors
:
uint
let
aspecRatiosSize
:
uint
let
minSizeSize
:
uint
let
maxSizeSize
:
uint
let
offset
:
Float32
let
stepWidth
:
Float32
let
stepHeight
:
Float32
let
minSize
:
Float32
let
maxSize
:
Float32
let
imageWidth
:
Float32
let
imageHeight
:
Float32
let
clip
:
Bool
let
numPriors
:
uint
let
aspecRatiosSize
:
uint
let
minSizeSize
:
uint
let
maxSizeSize
:
uint
}
class
PriorBoxKernel
<
P
:
PrecisionType
>
:
Kernel
,
Computable
{
var
metalParam
:
PriorBoxMetalParam
!
required
init
(
device
:
MTLDevice
,
param
:
PriorBoxParam
<
P
>
)
{
super
.
init
(
device
:
device
,
inFunctionName
:
"prior_box"
)
param
.
output
.
initTexture
(
device
:
device
,
transpose
:
[
2
,
0
,
1
,
3
])
param
.
outputVariances
.
initTexture
(
device
:
device
,
transpose
:
[
2
,
0
,
1
,
3
])
let
imageWidth
=
Float32
(
param
.
inputImage
.
originDim
[
3
])
let
imageHeight
=
Float32
(
param
.
inputImage
.
originDim
[
2
])
let
featureWidth
=
param
.
inputImage
.
originDim
[
3
]
let
featureHeight
=
param
.
inputImage
.
originDim
[
2
]
if
param
.
stepW
==
0
||
param
.
stepH
==
0
{
param
.
stepW
=
Float32
(
imageWidth
)
/
Float32
(
featureWidth
)
param
.
stepH
=
Float32
(
imageHeight
)
/
Float32
(
featureHeight
)
var
metalParam
:
PriorBoxMetalParam
!
required
init
(
device
:
MTLDevice
,
param
:
PriorBoxParam
<
P
>
)
{
super
.
init
(
device
:
device
,
inFunctionName
:
"prior_box"
)
param
.
output
.
initTexture
(
device
:
device
,
inTranspose
:
[
2
,
0
,
1
,
3
])
param
.
outputVariances
.
initTexture
(
device
:
device
,
inTranspose
:
[
2
,
0
,
1
,
3
])
let
imageWidth
=
Float32
(
param
.
inputImage
.
originDim
[
3
])
let
imageHeight
=
Float32
(
param
.
inputImage
.
originDim
[
2
])
let
featureWidth
=
param
.
input
.
originDim
[
3
]
let
featureHeight
=
param
.
input
.
originDim
[
2
]
if
param
.
stepW
==
0
||
param
.
stepH
==
0
{
param
.
stepW
=
Float32
(
imageWidth
)
/
Float32
(
featureWidth
)
param
.
stepH
=
Float32
(
imageHeight
)
/
Float32
(
featureHeight
)
}
var
outputAspectRatior
:
[
Float32
]
=
[]
outputAspectRatior
.
append
(
1.0
)
let
epsilon
=
1e-6
for
ar
in
param
.
aspectRatios
{
var
alreadyExist
=
false
for
outputAr
in
outputAspectRatior
{
if
fabs
(
Double
(
ar
)
-
Double
(
outputAr
))
<
Double
(
epsilon
)
{
alreadyExist
=
true
break
}
}
var
outputAspectRatior
:
[
Float32
]
=
[]
outputAspectRatior
.
append
(
1.0
)
let
epsilon
=
1e-6
for
ar
in
param
.
aspectRatios
{
var
alreadyExist
=
false
for
outputAr
in
outputAspectRatior
{
if
fabs
(
Double
(
ar
)
-
Double
(
outputAr
))
<
Double
(
epsilon
)
{
alreadyExist
=
true
break
}
}
if
!
alreadyExist
{
outputAspectRatior
.
append
(
ar
)
}
if
param
.
flip
{
outputAspectRatior
.
append
(
1.0
/
ar
)
}
}
param
.
newAspectRatios
=
outputAspectRatior
let
aspectRatiosSize
=
uint
(
outputAspectRatior
.
count
)
let
maxSizeSize
:
uint
=
uint
(
param
.
maxSizes
.
count
)
let
minSizeSize
:
uint
=
uint
(
param
.
minSizes
.
count
)
let
numPriors
=
aspectRatiosSize
*
minSizeSize
+
maxSizeSize
let
minSize
=
param
.
minSizes
.
last
??
0.0
let
maxSize
=
param
.
maxSizes
.
last
??
0.0
metalParam
=
PriorBoxMetalParam
.
init
(
offset
:
param
.
offset
,
stepWidth
:
param
.
stepW
,
stepHeight
:
param
.
stepH
,
minSize
:
minSize
,
maxSize
:
maxSize
,
imageWidth
:
imageWidth
,
imageHeight
:
imageHeight
,
clip
:
param
.
clip
,
numPriors
:
numPriors
,
aspecRatiosSize
:
aspectRatiosSize
,
minSizeSize
:
minSizeSize
,
maxSizeSize
:
maxSizeSize
)
if
!
alreadyExist
{
outputAspectRatior
.
append
(
ar
)
}
if
param
.
flip
{
outputAspectRatior
.
append
(
1.0
/
ar
)
}
}
func
compute
(
commandBuffer
:
MTLCommandBuffer
,
param
:
PriorBoxParam
<
P
>
)
throws
{
guard
let
encoder
=
commandBuffer
.
makeComputeCommandEncoder
()
else
{
throw
PaddleMobileError
.
predictError
(
message
:
" encode is nil"
)
}
encoder
.
setTexture
(
param
.
input
.
metalTexture
,
index
:
0
)
encoder
.
setTexture
(
param
.
output
.
metalTexture
,
index
:
1
)
encoder
.
setTexture
(
param
.
outputVariances
.
metalTexture
,
index
:
2
)
encoder
.
setBytes
(
&
metalParam
,
length
:
MemoryLayout
<
PriorBoxMetalParam
>.
size
,
index
:
0
)
encoder
.
setBytes
(
param
.
aspectRatios
,
length
:
MemoryLayout
<
Float32
>.
size
*
param
.
aspectRatios
.
count
,
index
:
1
)
encoder
.
setBytes
(
param
.
variances
,
length
:
MemoryLayout
<
Float32
>.
size
*
param
.
variances
.
count
,
index
:
2
)
encoder
.
dispatch
(
computePipline
:
pipline
,
outTexture
:
param
.
output
.
metalTexture
)
encoder
.
endEncoding
()
param
.
newAspectRatios
=
outputAspectRatior
let
aspectRatiosSize
=
uint
(
outputAspectRatior
.
count
)
let
maxSizeSize
:
uint
=
uint
(
param
.
maxSizes
.
count
)
let
minSizeSize
:
uint
=
uint
(
param
.
minSizes
.
count
)
let
numPriors
=
aspectRatiosSize
*
minSizeSize
+
maxSizeSize
let
minSize
=
param
.
minSizes
.
last
??
0.0
let
maxSize
=
param
.
maxSizes
.
last
??
0.0
metalParam
=
PriorBoxMetalParam
.
init
(
offset
:
param
.
offset
,
stepWidth
:
param
.
stepW
,
stepHeight
:
param
.
stepH
,
minSize
:
minSize
,
maxSize
:
maxSize
,
imageWidth
:
imageWidth
,
imageHeight
:
imageHeight
,
clip
:
param
.
clip
,
numPriors
:
numPriors
,
aspecRatiosSize
:
aspectRatiosSize
,
minSizeSize
:
minSizeSize
,
maxSizeSize
:
maxSizeSize
)
}
func
compute
(
commandBuffer
:
MTLCommandBuffer
,
param
:
PriorBoxParam
<
P
>
)
throws
{
guard
let
encoder
=
commandBuffer
.
makeComputeCommandEncoder
()
else
{
throw
PaddleMobileError
.
predictError
(
message
:
" encode is nil"
)
}
print
(
"metalParam:
\(
metalParam
)
"
)
print
(
" newAspectRatios "
)
print
(
param
.
newAspectRatios
!
)
print
(
" clip:
\(
metalParam
.
clip
)
"
)
print
(
" metalParam.numPriors:
\(
metalParam
.
numPriors
)
"
)
print
(
" aspecRatiosSize:
\(
metalParam
.
aspecRatiosSize
)
"
)
encoder
.
setTexture
(
param
.
input
.
metalTexture
,
index
:
0
)
encoder
.
setTexture
(
param
.
output
.
metalTexture
,
index
:
1
)
encoder
.
setTexture
(
param
.
outputVariances
.
metalTexture
,
index
:
2
)
encoder
.
setBytes
(
&
metalParam
,
length
:
MemoryLayout
<
PriorBoxMetalParam
>.
size
,
index
:
0
)
encoder
.
setBytes
(
param
.
newAspectRatios
!
,
length
:
MemoryLayout
<
Float32
>.
size
*
param
.
newAspectRatios
!.
count
,
index
:
1
)
encoder
.
setBytes
(
param
.
variances
,
length
:
MemoryLayout
<
Float32
>.
size
*
param
.
variances
.
count
,
index
:
2
)
encoder
.
dispatch
(
computePipline
:
pipline
,
outTexture
:
param
.
output
.
metalTexture
)
encoder
.
endEncoding
()
}
}
metal/paddle-mobile/paddle-mobile/Operators/Kernels/Texture2DTo2DArrayKernel.swift
浏览文件 @
7315defa
...
...
@@ -32,7 +32,7 @@ class Texture2DTo2DArrayKernel<P: PrecisionType>: Kernel, Computable{
}
required
init
(
device
:
MTLDevice
,
param
:
FeedParam
<
P
>
)
{
param
.
output
.
initTexture
(
device
:
device
,
t
ranspose
:
[
0
,
2
,
3
,
1
])
param
.
output
.
initTexture
(
device
:
device
,
inT
ranspose
:
[
0
,
2
,
3
,
1
])
super
.
init
(
device
:
device
,
inFunctionName
:
"texture2d_to_2d_array"
)
}
}
metal/paddle-mobile/paddle-mobile/Operators/Kernels/TransposeKernel.swift
浏览文件 @
7315defa
...
...
@@ -15,80 +15,92 @@
import
Foundation
struct
TransposeMetalParam
{
var
iC
:
Int32
=
0
var
oC
:
Int32
=
0
var
i0
:
Int32
var
i1
:
Int32
var
i2
:
Int32
var
i3
:
Int32
init
(
_
i0
:
Int32
,
_
i1
:
Int32
,
_
i2
:
Int32
,
_
i3
:
Int32
)
{
self
.
i0
=
i0
self
.
i1
=
i1
self
.
i2
=
i2
self
.
i3
=
i3
}
init
(
_
axis
:
[
Int
])
{
self
.
init
(
Int32
(
axis
[
0
]),
Int32
(
axis
[
1
]),
Int32
(
axis
[
2
]),
Int32
(
axis
[
3
]))
}
var
iC
:
Int32
=
0
var
oC
:
Int32
=
0
var
i0
:
Int32
var
i1
:
Int32
var
i2
:
Int32
var
i3
:
Int32
init
(
_
i0
:
Int32
,
_
i1
:
Int32
,
_
i2
:
Int32
,
_
i3
:
Int32
)
{
self
.
i0
=
i0
self
.
i1
=
i1
self
.
i2
=
i2
self
.
i3
=
i3
}
init
(
_
axis
:
[
Int
])
{
self
.
init
(
Int32
(
axis
[
0
]),
Int32
(
axis
[
1
]),
Int32
(
axis
[
2
]),
Int32
(
axis
[
3
]))
}
}
struct
TransposeTestParam
:
TestParam
{
let
inputTexture
:
MTLTexture
let
outputTexture
:
MTLTexture
let
iC
:
Int
let
oC
:
Int
let
axis
:
[
Int
]
let
inputTexture
:
MTLTexture
let
outputTexture
:
MTLTexture
let
iC
:
Int
let
oC
:
Int
let
axis
:
[
Int
]
}
class
TransposeKernel
<
P
:
PrecisionType
>
:
Kernel
,
Computable
,
Testable
{
func
compute
(
commandBuffer
:
MTLCommandBuffer
,
param
:
TransposeParam
<
P
>
)
throws
{
guard
let
encoder
=
commandBuffer
.
makeComputeCommandEncoder
()
else
{
throw
PaddleMobileError
.
predictError
(
message
:
" encode is nil"
)
}
var
invT
:
[
Int
]
=
[
0
,
1
,
2
,
3
]
for
(
i
,
v
)
in
param
.
input
.
transpose
.
enumerated
()
{
invT
[
v
]
=
i
}
var
axis
:
[
Int
]
=
[
0
,
1
,
2
,
3
]
for
i
in
0
..<
param
.
axis
.
count
{
axis
[
4
-
param
.
axis
.
count
+
i
]
=
4
-
param
.
axis
.
count
+
Int
(
param
.
axis
[
i
])
}
let
realAxis
=
axis
.
map
{
invT
[
$0
]}
var
tmp
=
TransposeMetalParam
.
init
(
realAxis
)
tmp
.
iC
=
Int32
(
param
.
input
.
dim
[
param
.
input
.
transpose
[
3
]])
tmp
.
oC
=
Int32
(
param
.
output
.
dim
[
3
])
if
realAxis
==
[
0
,
1
,
2
,
3
]
{
print
(
"====> transpose! FAST :)"
)
}
else
{
print
(
"====> transpose! SLOW :("
)
}
encoder
.
setTexture
(
param
.
input
.
metalTexture
,
index
:
0
)
encoder
.
setTexture
(
param
.
output
.
metalTexture
,
index
:
1
)
encoder
.
setBytes
(
&
tmp
,
length
:
MemoryLayout
<
TransposeMetalParam
>.
size
,
index
:
0
)
encoder
.
dispatch
(
computePipline
:
pipline
,
outTexture
:
param
.
output
.
metalTexture
)
encoder
.
endEncoding
()
var
metalParam
:
TransposeMetalParam
!
func
compute
(
commandBuffer
:
MTLCommandBuffer
,
param
:
TransposeParam
<
P
>
)
throws
{
guard
let
encoder
=
commandBuffer
.
makeComputeCommandEncoder
()
else
{
throw
PaddleMobileError
.
predictError
(
message
:
" encode is nil"
)
}
encoder
.
setTexture
(
param
.
input
.
metalTexture
,
index
:
0
)
encoder
.
setTexture
(
param
.
output
.
metalTexture
,
index
:
1
)
encoder
.
setBytes
(
&
metalParam
,
length
:
MemoryLayout
<
TransposeMetalParam
>.
size
,
index
:
0
)
encoder
.
dispatch
(
computePipline
:
pipline
,
outTexture
:
param
.
output
.
metalTexture
)
encoder
.
endEncoding
()
}
required
init
(
device
:
MTLDevice
,
param
:
TransposeParam
<
P
>
)
{
param
.
output
.
initTexture
(
device
:
device
,
inTranspose
:
[
0
,
1
,
2
,
3
])
super
.
init
(
device
:
device
,
inFunctionName
:
"transpose"
)
required
init
(
device
:
MTLDevice
,
param
:
TransposeParam
<
P
>
)
{
param
.
output
.
initTexture
(
device
:
device
,
transpose
:
[
0
,
1
,
2
,
3
])
super
.
init
(
device
:
device
,
inFunctionName
:
"transpose"
)
var
invT
:
[
Int
]
=
[
0
,
1
,
2
,
3
]
for
(
i
,
v
)
in
param
.
input
.
transpose
.
enumerated
()
{
invT
[
v
]
=
i
}
required
init
(
device
:
MTLDevice
,
testParam
:
TransposeTestParam
)
{
super
.
init
(
device
:
device
,
inFunctionName
:
"transpose"
)
var
axis
:
[
Int
]
=
[
0
,
1
,
2
,
3
]
// var doNothing = false
// if param.axis.count == param.input.transpose.count {
// doNothing = param.axis == param.input.transpose.map { Int32($0) }
// }
for
i
in
0
..<
param
.
axis
.
count
{
axis
[
4
-
param
.
axis
.
count
+
i
]
=
4
-
param
.
axis
.
count
+
Int
(
param
.
axis
[
i
])
}
let
realAxis
=
axis
.
map
{
invT
[
$0
]}
var
tmp
=
TransposeMetalParam
.
init
(
realAxis
)
tmp
.
iC
=
Int32
(
param
.
input
.
dim
[
param
.
input
.
transpose
[
3
]])
tmp
.
oC
=
Int32
(
param
.
output
.
dim
[
3
])
if
realAxis
==
[
0
,
1
,
2
,
3
]
{
print
(
"====> transpose! FAST :)"
)
}
else
{
print
(
"====> transpose! SLOW :("
)
}
metalParam
=
tmp
}
required
init
(
device
:
MTLDevice
,
testParam
:
TransposeTestParam
)
{
super
.
init
(
device
:
device
,
inFunctionName
:
"transpose"
)
fatalError
()
}
public
func
test
(
commandBuffer
:
MTLCommandBuffer
,
param
:
TransposeTestParam
)
{
guard
let
encoder
=
commandBuffer
.
makeComputeCommandEncoder
()
else
{
fatalError
()
}
public
func
test
(
commandBuffer
:
MTLCommandBuffer
,
param
:
TransposeTestParam
)
{
guard
let
encoder
=
commandBuffer
.
makeComputeCommandEncoder
()
else
{
fatalError
()
}
encoder
.
setTexture
(
param
.
inputTexture
,
index
:
0
)
encoder
.
setTexture
(
param
.
outputTexture
,
index
:
1
)
var
tmp
=
TransposeMetalParam
.
init
(
param
.
axis
)
tmp
.
iC
=
Int32
(
param
.
iC
)
tmp
.
oC
=
Int32
(
param
.
oC
)
encoder
.
setBytes
(
&
tmp
,
length
:
MemoryLayout
<
TransposeMetalParam
>.
size
,
index
:
0
)
encoder
.
dispatch
(
computePipline
:
pipline
,
outTexture
:
param
.
outputTexture
)
encoder
.
endEncoding
()
}}
encoder
.
setTexture
(
param
.
inputTexture
,
index
:
0
)
encoder
.
setTexture
(
param
.
outputTexture
,
index
:
1
)
var
tmp
=
TransposeMetalParam
.
init
(
param
.
axis
)
tmp
.
iC
=
Int32
(
param
.
iC
)
tmp
.
oC
=
Int32
(
param
.
oC
)
encoder
.
setBytes
(
&
tmp
,
length
:
MemoryLayout
<
TransposeMetalParam
>.
size
,
index
:
0
)
encoder
.
dispatch
(
computePipline
:
pipline
,
outTexture
:
param
.
outputTexture
)
encoder
.
endEncoding
()
}}
metal/paddle-mobile/paddle-mobile/Operators/Kernels/metal/Common.metal
0 → 100644
浏览文件 @
7315defa
//
// common.metal
// paddle-mobile
//
// Created by liuRuiLong on 2018/8/26.
// Copyright © 2018年 orange. All rights reserved.
//
#include <metal_stdlib>
using namespace metal;
inline void xyzn2abcd(int C, int xyzn[4], int abcd[4]) {
abcd[2] = xyzn[0];
abcd[1] = xyzn[1];
uint t = xyzn[2] * 4 + xyzn[3];
abcd[0] = t / C;
abcd[3] = t % C;
}
inline void abcd2xyzn(int C, int abcd[4], int xyzn[4]) {
xyzn[0] = abcd[2];
xyzn[1] = abcd[1];
uint t = abcd[0] * C + abcd[3];
xyzn[2] = t / 4;
xyzn[3] = t % 4;
}
inline int32_t abcd2index(int32_t dim[4], int32_t abcd[4]) {
int32_t r = abcd[0];
r = r * dim[1] + abcd[1];
r = r * dim[2] + abcd[2];
r = r * dim[3] + abcd[3];
return r;
}
inline void index2abcd(int32_t dim[4], int32_t ind, int32_t abcd[4]) {
abcd[3] = ind % dim[3]; ind /= dim[3];
abcd[2] = ind % dim[2]; ind /= dim[2];
abcd[1] = ind % dim[1]; ind /= dim[1];
abcd[0] = ind;
}
inline void trans(int32_t trans[4], int32_t ipos[4], int32_t opos[4]) {
for (int i = 0; i < 4; i++) {
opos[i] = ipos[trans[i]];
}
}
inline void invtrans(int32_t trans[4], int32_t ipos[4], int32_t opos[4]) {
for (int i = 0; i < 4; i++) {
opos[trans[i]] = ipos[i];
}
}
metal/paddle-mobile/paddle-mobile/Operators/Kernels/metal/ConvKernel.metal
浏览文件 @
7315defa
...
...
@@ -704,9 +704,8 @@ kernel void conv_batch_norm_relu_1x1(texture2d_array<float, access::sample> inTe
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam ¶m [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
const device float4 *new_scale [[buffer(2)]],
const device float4 *new_biase [[buffer(3)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
...
...
@@ -749,9 +748,8 @@ kernel void conv_batch_norm_relu_3x3(texture2d_array<float, access::sample> inTe
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam ¶m [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
const device float4 *new_scale [[buffer(2)]],
const device float4 *new_biase [[buffer(3)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
...
...
@@ -803,8 +801,8 @@ kernel void depthwise_conv_batch_norm_relu_3x3(texture2d_array<float, access::sa
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam ¶m [[buffer(0)]],
const device float *weights [[buffer(1)]],
const device float4 *new_scale [[buffer(
3
)]],
const device float4 *new_biase [[buffer(
4
)]],
const device float4 *new_scale [[buffer(
2
)]],
const device float4 *new_biase [[buffer(
3
)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
...
...
metal/paddle-mobile/paddle-mobile/Operators/Kernels/metal/Kernels.metal
浏览文件 @
7315defa
此差异已折叠。
点击以展开。
metal/paddle-mobile/paddle-mobile/Operators/Kernels/metal/PriorBoxKernel.metal
浏览文件 @
7315defa
...
...
@@ -60,7 +60,7 @@ kernel void prior_box(texture2d_array<float, access::read> inTexture [[texture(0
float4 res;
if (param.clip) {
res =
min(
max(box, 0.0), 1.0);
res =
fmin(f
max(box, 0.0), 1.0);
} else {
res = box;
}
...
...
@@ -74,7 +74,7 @@ kernel void prior_box(texture2d_array<float, access::read> inTexture [[texture(0
max_box.y = (center_y - box_height) / param.imageHeight;
max_box.z = (center_x + box_width) / param.imageWidth;
max_box.w = (center_y + box_height) / param.imageHeight;
float4 res;
if (param.clip) {
res = min(max(max_box, 0.0), 1.0);
...
...
@@ -92,6 +92,7 @@ kernel void prior_box(texture2d_array<float, access::read> inTexture [[texture(0
variances_output.y = variance.y;
variances_output.z = variance.z;
variances_output.w = variance.w;
varianceTexture.write(variances_output, gid.xy, gid.z);
}
}
metal/paddle-mobile/paddle-mobile/Operators/Kernels/metal/ReshapeKernel.metal
0 → 100644
浏览文件 @
7315defa
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <metal_stdlib>
#include "Common.metal"
using namespace metal;
struct ReshapeParam {
int32_t idim[4];
int32_t itrans[4];
int32_t odim[4];
int32_t otrans[4];
};
kernel void reshape(texture2d_array<float, access::read> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant ReshapeParam &rp [[buffer(0)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) return;
int oxyzn[4] = {int(gid.x), int(gid.y), int(gid.z), 0}, oabcd[4], ixyzn[4];
ReshapeParam lrp = rp;
int oC = lrp.odim[lrp.otrans[3]];
int iC = lrp.idim[lrp.itrans[3]];
int count = lrp.odim[0] * lrp.odim[1] * lrp.odim[2] * lrp.odim[3];
float4 r;
for (int n = 0; n < 4; n++) {
oxyzn[3] = n;
//4 (gid.x gid.y, gid.z, 0~4)
xyzn2abcd(oC, oxyzn, oabcd);
int tabcd[4];
invtrans(lrp.otrans, oabcd, tabcd);
int index = abcd2index(lrp.odim, tabcd);
if (index < count) {
int c = index % 4;
int temp0 = index % (inTexture.get_array_size() * 4);
int slice = temp0 / 4;
int temp1 = index % (inTexture.get_array_size() * 4 * lrp.idim[2]);
int w = temp1 / (inTexture.get_array_size() * 4);
int h = index / (inTexture.get_array_size() * 4 * lrp.idim[2]);
// index2abcd(lrp.idim, index, tabcd);
// abcd2xyzn(iC, tabcd, ixyzn);
r[n] = inTexture.read(uint2(w, h), slice)[c];
} else {
r[n] = 0;
}
}
outTexture.write(r, gid.xy, gid.z);
}
//
//kernel void reshape_half(texture2d_array<half, access::read> inTexture [[texture(0)]],
// texture2d_array<half, access::write> outTexture [[texture(1)]],
// uint3 gid [[thread_position_in_grid]]) {
// if (gid.x >= outTexture.get_width() ||
// gid.y >= outTexture.get_height() ||
// gid.z >= outTexture.get_array_size()) return;
//
// half4 r = inTexture.read(uint2(0, 0), gid.x);
// outTexture.write(r, gid.xy, gid.z);
//}
metal/paddle-mobile/paddle-mobile/Operators/MulticlassNMSOp.swift
浏览文件 @
7315defa
...
...
@@ -31,7 +31,11 @@ class MulticlassNMSParam<P: PrecisionType>: OpParam {
}
class
MulticlassNMSOp
<
P
:
PrecisionType
>
:
Operator
<
MulticlassNMSKernel
<
P
>
,
MulticlassNMSParam
<
P
>>
,
Runable
,
Creator
,
InferShaperable
{
func
inputs
()
->
[
Variant
]
{
return
[
para
.
scores
,
para
.
bboxes
]
}
func
inferShape
()
{
// para.output.dim = para.input.dim
}
...
...
metal/paddle-mobile/paddle-mobile/Operators/PoolOp.swift
浏览文件 @
7315defa
...
...
@@ -15,54 +15,58 @@
import
Foundation
class
PoolParam
<
P
:
PrecisionType
>
:
OpParam
{
typealias
ParamPrecisionType
=
P
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
input
=
try
PoolParam
.
inputX
(
inputs
:
opDesc
.
inputs
,
from
:
inScope
)
output
=
try
PoolParam
.
outputOut
(
outputs
:
opDesc
.
outputs
,
from
:
inScope
)
poolType
=
try
PoolParam
.
getAttr
(
key
:
"pooling_type"
,
attrs
:
opDesc
.
attrs
)
ksize
=
try
PoolParam
.
getAttr
(
key
:
"ksize"
,
attrs
:
opDesc
.
attrs
)
stride
=
try
PoolParam
.
getAttr
(
key
:
"strides"
,
attrs
:
opDesc
.
attrs
)
padding
=
try
PoolParam
.
getAttr
(
key
:
"paddings"
,
attrs
:
opDesc
.
attrs
)
ceilMode
=
try
PoolParam
.
getAttr
(
key
:
"ceil_mode"
,
attrs
:
opDesc
.
attrs
)
globalPooling
=
try
PoolParam
.
getAttr
(
key
:
"global_pooling"
,
attrs
:
opDesc
.
attrs
)
}
catch
let
error
{
throw
error
}
// let buffer = input.metalTexture.buffer.contents().assumingMemoryBound(to: P.self)
typealias
ParamPrecisionType
=
P
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
input
=
try
PoolParam
.
inputX
(
inputs
:
opDesc
.
inputs
,
from
:
inScope
)
output
=
try
PoolParam
.
outputOut
(
outputs
:
opDesc
.
outputs
,
from
:
inScope
)
poolType
=
try
PoolParam
.
getAttr
(
key
:
"pooling_type"
,
attrs
:
opDesc
.
attrs
)
ksize
=
try
PoolParam
.
getAttr
(
key
:
"ksize"
,
attrs
:
opDesc
.
attrs
)
stride
=
try
PoolParam
.
getAttr
(
key
:
"strides"
,
attrs
:
opDesc
.
attrs
)
padding
=
try
PoolParam
.
getAttr
(
key
:
"paddings"
,
attrs
:
opDesc
.
attrs
)
ceilMode
=
try
PoolParam
.
getAttr
(
key
:
"ceil_mode"
,
attrs
:
opDesc
.
attrs
)
globalPooling
=
try
PoolParam
.
getAttr
(
key
:
"global_pooling"
,
attrs
:
opDesc
.
attrs
)
}
catch
let
error
{
throw
error
}
let
input
:
Texture
<
P
>
var
output
:
Texture
<
P
>
var
ksize
:
[
Int32
]
var
stride
:
[
Int32
]
var
padding
:
[
Int32
]
var
poolType
:
String
var
ceilMode
:
Bool
var
globalPooling
:
Bool
// let buffer = input.metalTexture.buffer.contents().assumingMemoryBound(to: P.self)
}
let
input
:
Texture
<
P
>
var
output
:
Texture
<
P
>
var
ksize
:
[
Int32
]
var
stride
:
[
Int32
]
var
padding
:
[
Int32
]
var
poolType
:
String
var
ceilMode
:
Bool
var
globalPooling
:
Bool
}
class
PoolOp
<
P
:
PrecisionType
>
:
Operator
<
PoolKernel
<
P
>
,
PoolParam
<
P
>>
,
Runable
,
Creator
,
InferShaperable
{
func
inferShape
()
{
// para.output.dim = para.input.dim
}
typealias
OpType
=
PoolOp
<
P
>
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
}
func
delogOutput
()
{
print
(
"pool2d delog"
)
let
_
:
P
?
=
para
.
input
.
metalTexture
.
logDesc
(
header
:
"pool2d input: "
,
stridable
:
true
)
print
(
para
.
ksize
)
print
(
para
.
stride
)
print
(
para
.
padding
)
print
(
para
.
poolType
)
let
_
:
P
?
=
para
.
output
.
metalTexture
.
logDesc
(
header
:
"pool2d output: "
,
stridable
:
true
)
func
inputs
()
->
[
Variant
]
{
return
[
para
.
input
]
}
func
inferShape
()
{
// para.output.dim = para.input.dim
}
typealias
OpType
=
PoolOp
<
P
>
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
}
func
delogOutput
()
{
print
(
"pool2d delog"
)
let
_
:
P
?
=
para
.
input
.
metalTexture
.
logDesc
(
header
:
"pool2d input: "
,
stridable
:
true
)
print
(
para
.
ksize
)
print
(
para
.
stride
)
print
(
para
.
padding
)
print
(
para
.
poolType
)
let
_
:
P
?
=
para
.
output
.
metalTexture
.
logDesc
(
header
:
"pool2d output: "
,
stridable
:
true
)
}
}
metal/paddle-mobile/paddle-mobile/Operators/PreluOp.swift
浏览文件 @
7315defa
...
...
@@ -35,6 +35,10 @@ class PreluParam<P: PrecisionType>: OpParam {
class
PreluOp
<
P
:
PrecisionType
>
:
Operator
<
PreluKernel
<
P
>
,
PreluParam
<
P
>>
,
Runable
,
Creator
,
InferShaperable
{
func
inputs
()
->
[
Variant
]
{
return
[
para
.
alpha
,
para
.
input
]
}
func
inferShape
()
{
// para.output.dim = para.input.dim
}
...
...
metal/paddle-mobile/paddle-mobile/Operators/PriorBoxOp.swift
浏览文件 @
7315defa
此差异已折叠。
点击以展开。
metal/paddle-mobile/paddle-mobile/Operators/ReluOp.swift
浏览文件 @
7315defa
...
...
@@ -15,33 +15,37 @@
import
Foundation
class
ReluParam
<
P
:
PrecisionType
>
:
OpParam
{
typealias
ParamPrecisionType
=
P
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
input
=
try
ReluParam
.
inputX
(
inputs
:
opDesc
.
inputs
,
from
:
inScope
)
output
=
try
ReluParam
.
outputOut
(
outputs
:
opDesc
.
outputs
,
from
:
inScope
)
}
catch
let
error
{
throw
error
}
typealias
ParamPrecisionType
=
P
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
input
=
try
ReluParam
.
inputX
(
inputs
:
opDesc
.
inputs
,
from
:
inScope
)
output
=
try
ReluParam
.
outputOut
(
outputs
:
opDesc
.
outputs
,
from
:
inScope
)
}
catch
let
error
{
throw
error
}
let
input
:
Texture
<
P
>
var
output
:
Texture
<
P
>
}
let
input
:
Texture
<
P
>
var
output
:
Texture
<
P
>
}
class
ReluOp
<
P
:
PrecisionType
>
:
Operator
<
ReluKernel
<
P
>
,
ReluParam
<
P
>>
,
Runable
,
Creator
,
InferShaperable
{
func
inferShape
()
{
para
.
output
.
dim
=
para
.
input
.
dim
}
typealias
OpType
=
ReluOp
<
P
>
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
func
inputs
()
->
[
Variant
]
{
return
[
para
.
input
]
}
func
inferShape
()
{
para
.
output
.
dim
=
para
.
input
.
dim
}
typealias
OpType
=
ReluOp
<
P
>
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
}
}
...
...
metal/paddle-mobile/paddle-mobile/Operators/ReshapeOp.swift
浏览文件 @
7315defa
此差异已折叠。
点击以展开。
metal/paddle-mobile/paddle-mobile/Operators/SoftmaxOp.swift
浏览文件 @
7315defa
此差异已折叠。
点击以展开。
metal/paddle-mobile/paddle-mobile/Operators/TransposeOp.swift
浏览文件 @
7315defa
此差异已折叠。
点击以展开。
metal/paddle-mobile/paddle-mobile/Program/TensorDesc.swift
浏览文件 @
7315defa
...
...
@@ -17,7 +17,7 @@ import Foundation
struct
TensorDesc
{
let
dims
:
[
Int
]
let
dataType
:
VarTypeType
let
dataLayout
:
DataLayout
=
DataLayout
.
N
HWC
()
let
dataLayout
:
DataLayout
=
DataLayout
.
N
CHW
()
var
NCHWDim
:
[
Int
]
{
get
{
if
dims
.
count
!=
4
{
...
...
@@ -53,7 +53,7 @@ struct TensorDesc {
}
init
(
protoTensorDesc
:
PaddleMobile_Framework_Proto_VarType
.
TensorDesc
)
{
dims
=
protoTensorDesc
.
dims
.
map
{
Int
(
$0
)
>
0
?
Int
(
$0
)
:
1
}
dims
=
protoTensorDesc
.
dims
.
map
{
Int
(
$0
)
>
0
?
Int
(
$0
)
:
abs
(
Int
(
$0
))
}
dataType
=
VarTypeType
.
init
(
rawValue
:
protoTensorDesc
.
dataType
.
rawValue
)
??
.
ErrorType
}
...
...
metal/paddle-mobile/paddle-mobile/framework/Tensor.swift
浏览文件 @
7315defa
...
...
@@ -174,7 +174,7 @@ class Tensor<P: PrecisionType>: Tensorial {
fatalError
(
" not support !"
)
}
//TODO: release
data
.
release
()
//
data.release()
}
var
width
:
Int
{
...
...
metal/paddle-mobile/paddle-mobile/framework/Texture.swift
浏览文件 @
7315defa
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录