提交 7115ef05 编写于 作者: J juncaipeng 提交者: GitHub

update readme, test=develop (#2130)

上级 a0b46ddd
......@@ -3,14 +3,14 @@
# Paddle Lite
<!--[![Build Status](https://travis-ci.org/PaddlePaddle/Paddle-Lite.svg?branch=develop&longCache=true&style=flat-square)](https://travis-ci.org/PaddlePaddle/Paddle-Lite)-->
[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](https://github.com/PaddlePaddle/Paddle-Lite/wiki)
[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](https://paddlepaddle.github.io/Paddle-Lite/)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
<!-- [![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle-Mobile.svg)](https://github.com/PaddlePaddle/Paddle-Mobile/releases) -->
Paddle Lite is an updated version of Paddle-Mobile, an open-open source deep learning framework designed to make it easy to perform inference on mobile, embeded, and IoT devices. It is compatible with PaddlePaddle and pre-trained models from other sources.
For tutorials, please see [PaddleLite Wiki](https://paddlepaddle.github.io/Paddle-Lite/).
For tutorials, please see [PaddleLite Document](https://paddlepaddle.github.io/Paddle-Lite/).
## Key Features
......@@ -30,7 +30,7 @@ It also supports INT8 quantizations with [PaddleSlim model compression tools](ht
On Huawei NPU and FPGA, the performance is also boosted.
The latest benchmark is located at [benchmark](https://github.com/PaddlePaddle/Paddle-Lite/wiki/benchmark)
The latest benchmark is located at [benchmark](https://paddlepaddle.github.io/Paddle-Lite/develop/benchmark/)
### High Compatibility
......
# Paddle Lite
<!--[![Build Status](https://travis-ci.org/PaddlePaddle/Paddle-Lite.svg?branch=develop&longCache=true&style=flat-square)](https://travis-ci.org/PaddlePaddle/Paddle-Lite)-->
[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](https://github.com/PaddlePaddle/Paddle-Lite/wiki)
[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](https://paddlepaddle.github.io/Paddle-Lite/)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
<!-- [![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle-Mobile.svg)](https://github.com/PaddlePaddle/Paddle-Mobile/releases) -->
Paddle Lite为Paddle-Mobile的升级版,定位支持包括手机移动端在内更多场景的轻量化高效预测,支持更广泛的硬件和平台,是一个高性能、轻量级的深度学习预测引擎。在保持和PaddlePaddle无缝对接外,也兼容支持其他训练框架产出的模型。
完整使用文档位于 [PaddleLite Wiki](https://paddlepaddle.github.io/Paddle-Lite/)
完整使用文档位于 [PaddleLite 文档](https://paddlepaddle.github.io/Paddle-Lite/)
## 特性
......@@ -21,7 +21,7 @@ Paddle Lite为Paddle-Mobile的升级版,定位支持包括手机移动端在
支持INT8量化计算,结合 [PaddleSlim 模型压缩工具](https://github.com/PaddlePaddle/models/tree/v1.5/PaddleSlim) 中 INT8量化训练功能,可以提供高精度高性能的预测能力。
在Huawei NPU, FPGA上也具有有很好的性能表现。
最新 Benchmark 位于 [benchmark](https://github.com/PaddlePaddle/Paddle-Lite/wiki/benchmark)
最新 Benchmark 位于 [benchmark](https://paddlepaddle.github.io/Paddle-Lite/develop/benchmark/)
### 通用性
硬件方面,Paddle Lite 的架构设计为多硬件兼容支持做了良好设计。除了支持ARM CPU、Mali GPU、Adreno GPU,还特别支持了华为 NPU,以及 FPGA 等边缘设备广泛使用的硬件。即将支持支持包括寒武纪、比特大陆等AI芯片,未来会增加对更多硬件的支持。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册