Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
7034b8ae
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
337
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7034b8ae
编写于
9月 11, 2018
作者:
xiebaiyuan
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'upstream/develop' into develop
上级
068d5aae
9a0edc6f
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
348 addition
and
482 deletion
+348
-482
src/fpga/api.cpp
src/fpga/api.cpp
+74
-0
src/fpga/api.h
src/fpga/api.h
+7
-1
src/fpga/image.cpp
src/fpga/image.cpp
+34
-1
src/operators/kernel/fpga/conv_add_bn_kernel.cpp
src/operators/kernel/fpga/conv_add_bn_kernel.cpp
+7
-73
src/operators/kernel/fpga/conv_add_bn_relu_kernel.cpp
src/operators/kernel/fpga/conv_add_bn_relu_kernel.cpp
+5
-39
src/operators/kernel/fpga/conv_add_relu_kernel.cpp
src/operators/kernel/fpga/conv_add_relu_kernel.cpp
+5
-38
src/operators/kernel/fpga/conv_bn_kernel.cpp
src/operators/kernel/fpga/conv_bn_kernel.cpp
+5
-38
src/operators/kernel/fpga/conv_bn_relu_kernel.cpp
src/operators/kernel/fpga/conv_bn_relu_kernel.cpp
+5
-25
src/operators/kernel/fpga/fc_relu_kernel.cpp
src/operators/kernel/fpga/fc_relu_kernel.cpp
+4
-38
src/operators/kernel/fpga/fusion_fc_kernel.cpp
src/operators/kernel/fpga/fusion_fc_kernel.cpp
+4
-38
src/operators/math/depthwise_conv_3x3.cpp
src/operators/math/depthwise_conv_3x3.cpp
+198
-191
未找到文件。
src/fpga/api.cpp
浏览文件 @
7034b8ae
...
@@ -249,5 +249,79 @@ void format_concat_output(framework::Tensor *out, int height, int width,
...
@@ -249,5 +249,79 @@ void format_concat_output(framework::Tensor *out, int height, int width,
out
->
reset_data_ptr
(
data_ptr
);
out
->
reset_data_ptr
(
data_ptr
);
}
}
void
fill_conv_arg
(
struct
WrapperConvArgs
*
arg
,
framework
::
Tensor
*
input
,
framework
::
Tensor
*
out
,
framework
::
Tensor
*
filter
,
bool
relu_enabled
,
int
group_num
,
int
stride_h
,
int
stride_w
,
int
padding_h
,
int
padding_w
,
float
*
bs_ptr
)
{
auto
input_ptr
=
input
->
data
<
float
>
();
auto
filter_ptr
=
filter
->
data
<
float
>
();
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
arg
->
group_num
=
(
uint32_t
)
group_num
;
arg
->
split_num
=
(
uint32_t
)
fpga
::
get_plit_num
(
filter
);
arg
->
filter_num
=
(
uint32_t
)
filter
->
dims
()[
0
];
arg
->
output
.
address
=
out_ptr
;
arg
->
output
.
scale_address
=
out
->
scale
;
arg
->
conv_args
=
(
fpga
::
ConvArgs
*
)
fpga
::
fpga_malloc
(
arg
->
split_num
*
sizeof
(
fpga
::
ConvArgs
));
arg
->
concat_arg
.
image_num
=
arg
->
split_num
;
arg
->
concat_arg
.
image_out
=
out_ptr
;
arg
->
concat_arg
.
scale_out
=
out
->
scale
;
arg
->
concat_arg
.
height
=
(
uint32_t
)
filter
->
dims
()[
2
];
arg
->
concat_arg
.
width
=
(
uint32_t
)
filter
->
dims
()[
3
];
int
n
=
arg
->
split_num
;
arg
->
concat_arg
.
images_in
=
(
half
**
)
fpga
::
fpga_malloc
(
n
*
sizeof
(
int
*
));
arg
->
concat_arg
.
scales_in
=
(
float
**
)
fpga
::
fpga_malloc
(
n
*
sizeof
(
float
*
));
arg
->
concat_arg
.
channel_num
=
(
uint32_t
*
)
fpga
::
fpga_malloc
(
n
*
sizeof
(
uint32_t
));
arg
->
concat_arg
.
image_out
=
out_ptr
;
const
int
channel
=
(
int
)
out
->
dims
()[
1
];
int
element_num_per_div
=
fpga
::
get_element_num_per_div
(
filter
,
group_num
);
int
element_num
=
fpga
::
get_aligned_filter_element_num
(
filter
->
dims
()[
1
]
*
filter
->
dims
()[
2
]
*
filter
->
dims
()[
3
]);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
arg
->
conv_args
[
i
].
relu_enabled
=
relu_enabled
;
arg
->
conv_args
[
i
].
group_num
=
(
uint32_t
)
group_num
;
arg
->
conv_args
[
i
].
kernel
.
stride_h
=
(
uint32_t
)
stride_h
;
arg
->
conv_args
[
i
].
kernel
.
stride_w
=
(
uint32_t
)
stride_w
;
arg
->
conv_args
[
i
].
kernel
.
height
=
(
uint32_t
)
filter
->
dims
()[
2
];
arg
->
conv_args
[
i
].
kernel
.
width
=
(
uint32_t
)
filter
->
dims
()[
3
];
arg
->
conv_args
[
i
].
image
.
address
=
input_ptr
;
arg
->
conv_args
[
i
].
image
.
channels
=
(
uint32_t
)
input
->
dims
()[
1
];
arg
->
conv_args
[
i
].
image
.
height
=
(
uint32_t
)
input
->
dims
()[
2
];
arg
->
conv_args
[
i
].
image
.
width
=
(
uint32_t
)
input
->
dims
()[
3
];
arg
->
conv_args
[
i
].
image
.
scale_address
=
input
->
scale
;
arg
->
conv_args
[
i
].
image
.
pad_height
=
(
uint32_t
)
padding_h
;
arg
->
conv_args
[
i
].
image
.
pad_width
=
(
uint32_t
)
padding_w
;
arg
->
conv_args
[
i
].
filter_address
=
&
((
int8_t
*
)
filter_ptr
)[
i
*
element_num
];
arg
->
conv_args
[
i
].
sb_address
=
&
((
int8_t
*
)
bs_ptr
)[
i
*
element_num
];
arg
->
conv_args
[
i
].
filter_num
=
(
uint32_t
)(
i
==
n
-
1
?
fpga
::
get_aligned_filter_num
(
channel
-
(
n
-
1
)
*
element_num_per_div
)
:
element_num_per_div
);
if
(
n
>
1
)
{
arg
->
conv_args
[
i
].
output
.
scale_address
=
(
float
*
)
fpga
::
fpga_malloc
(
2
*
sizeof
(
float
));
arg
->
conv_args
[
i
].
output
.
address
=
fpga
::
fpga_malloc
(
input
->
dims
()[
2
]
*
input
->
dims
()[
3
]
*
arg
->
conv_args
[
i
].
filter_num
*
sizeof
(
half
));
}
else
{
arg
->
conv_args
[
i
].
output
.
scale_address
=
out
->
scale
;
arg
->
conv_args
[
i
].
output
.
address
=
out_ptr
;
}
arg
->
concat_arg
.
images_in
[
i
]
=
(
half
*
)
arg
->
conv_args
[
i
].
output
.
address
;
arg
->
concat_arg
.
scales_in
[
i
]
=
(
float
*
)
arg
->
conv_args
[
i
].
sb_address
;
arg
->
concat_arg
.
channel_num
[
i
]
=
arg
->
conv_args
[
i
].
filter_num
;
}
}
}
// namespace fpga
}
// namespace fpga
}
// namespace paddle_mobile
}
// namespace paddle_mobile
src/fpga/api.h
浏览文件 @
7034b8ae
...
@@ -191,14 +191,15 @@ int ComputeFpgaEWAdd(const struct EWAddArgs& args);
...
@@ -191,14 +191,15 @@ int ComputeFpgaEWAdd(const struct EWAddArgs& args);
int
ComputeFPGAConcat
(
const
struct
ConcatArgs
&
args
);
int
ComputeFPGAConcat
(
const
struct
ConcatArgs
&
args
);
static
inline
int
align_to_x
(
int
num
,
int
x
)
{
return
(
num
+
x
-
1
)
/
x
*
x
;
}
static
inline
int
align_to_x
(
int
num
,
int
x
)
{
return
(
num
+
x
-
1
)
/
x
*
x
;
}
void
format_image
(
framework
::
Tensor
*
image_tensor
);
void
format_image
(
framework
::
Tensor
*
image_tensor
);
void
format_ofm
(
framework
::
Tensor
*
ofm_tensor
);
// only allocate memory
void
format_ofm
(
framework
::
Tensor
*
ofm_tensor
);
// only allocate memory
float
filter_find_max
(
framework
::
Tensor
*
filter_tensor
);
float
filter_find_max
(
framework
::
Tensor
*
filter_tensor
);
int
get_element_num_per_div
(
framework
::
Tensor
*
filter_tensor
,
int
group_num
);
int
get_element_num_per_div
(
framework
::
Tensor
*
filter_tensor
,
int
group_num
);
int
get_plit_num
(
framework
::
Tensor
*
filter_tensor
);
int
get_plit_num
(
framework
::
Tensor
*
filter_tensor
);
int
get_aligned_filter_element_num
(
int
chw
);
int
get_aligned_filter_element_num
(
int
chw
);
int
get_aligned_filter_num
(
int
num
);
int
get_aligned_filter_num
(
int
num
);
void
format_filter
(
framework
::
Tensor
*
filter_tensor
,
float
max_value
,
void
format_filter
(
framework
::
Tensor
*
filter_tensor
,
float
max_value
,
int
group_num
);
int
group_num
);
void
format_bias_scale_array
(
float
**
bias_scale_array
,
void
format_bias_scale_array
(
float
**
bias_scale_array
,
...
@@ -206,5 +207,10 @@ void format_bias_scale_array(float** bias_scale_array,
...
@@ -206,5 +207,10 @@ void format_bias_scale_array(float** bias_scale_array,
void
format_concat_output
(
framework
::
Tensor
*
out
,
int
height
,
int
width
,
void
format_concat_output
(
framework
::
Tensor
*
out
,
int
height
,
int
width
,
int
image_num
,
uint32_t
*
channel_num
);
int
image_num
,
uint32_t
*
channel_num
);
void
fill_conv_arg
(
struct
WrapperConvArgs
*
arg
,
framework
::
Tensor
*
input
,
framework
::
Tensor
*
out
,
framework
::
Tensor
*
filter
,
bool
relu_enabled
,
int
group_num
,
int
stride_h
,
int
stride_w
,
int
padding_h
,
int
padding_w
,
float
*
bs_ptr
);
}
// namespace fpga
}
// namespace fpga
}
// namespace paddle_mobile
}
// namespace paddle_mobile
src/fpga/image.cpp
浏览文件 @
7034b8ae
...
@@ -64,7 +64,40 @@ void format_image(float **data_in, int channel, int height, int width) {
...
@@ -64,7 +64,40 @@ void format_image(float **data_in, int channel, int height, int width) {
void
concat_images
(
int16_t
**
images_in
,
float
**
scales_in
,
void
*
image_out
,
void
concat_images
(
int16_t
**
images_in
,
float
**
scales_in
,
void
*
image_out
,
float
*
scale_out
,
int
image_num
,
uint32_t
*
channel_num
,
float
*
scale_out
,
int
image_num
,
uint32_t
*
channel_num
,
int
height
,
int
width
)
{}
int
height
,
int
width
)
{
int
i
=
0
;
int
j
=
0
;
int
k
=
0
;
int
each_out_line_channel
=
0
;
int
align_each_out_area_cw
=
0
;
int
align_each_in_area_cw
=
0
;
int
align_each_out_area_cw_differ
=
0
;
int
tmp_channel
=
0
;
*
scale_out
=
0
;
for
(
i
=
0
;
i
<
image_num
;
i
++
)
{
each_out_line_channel
+=
channel_num
[
i
];
*
scale_out
=
std
::
max
(
*
scale_out
,
scales_in
[
i
][
0
]);
}
align_each_out_area_cw
=
align_to_x
(
each_out_line_channel
*
width
,
IMAGE_ALIGNMENT
);
align_each_out_area_cw_differ
=
align_each_out_area_cw
-
each_out_line_channel
*
width
;
for
(
k
=
0
;
k
<
height
;
k
++
)
{
for
(
j
=
0
;
j
<
width
;
j
++
)
{
for
(
i
=
0
;
i
<
image_num
;
i
++
)
{
align_each_in_area_cw
=
align_to_x
(
channel_num
[
i
]
*
width
,
IMAGE_ALIGNMENT
);
memcpy
((
int16_t
*
)
image_out
+
tmp_channel
+
k
*
align_each_out_area_cw_differ
,
images_in
[
i
]
+
j
*
channel_num
[
i
]
+
k
*
align_each_in_area_cw
,
channel_num
[
i
]
*
sizeof
(
int16_t
));
tmp_channel
+=
channel_num
[
i
];
}
}
}
}
}
// namespace image
}
// namespace image
}
// namespace fpga
}
// namespace fpga
...
...
src/operators/kernel/fpga/conv_add_bn_kernel.cpp
浏览文件 @
7034b8ae
...
@@ -60,84 +60,18 @@ bool ConvAddBNKernel<FPGA, float>::Init(FusionConvAddBNParam<FPGA> *param) {
...
@@ -60,84 +60,18 @@ bool ConvAddBNKernel<FPGA, float>::Init(FusionConvAddBNParam<FPGA> *param) {
float
max_value
=
fpga
::
filter_find_max
(
filter
);
float
max_value
=
fpga
::
filter_find_max
(
filter
);
fpga
::
format_filter
(
filter
,
max_value
,
param
->
Groups
());
fpga
::
format_filter
(
filter
,
max_value
,
param
->
Groups
());
auto
filter_ptr
=
filter
->
data
<
float
>
();
int
element_num_per_div
=
int
element_num_per_div
=
fpga
::
get_element_num_per_div
(
filter
,
param
->
Groups
());
fpga
::
get_element_num_per_div
(
filter
,
param
->
Groups
());
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
channel
);
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
channel
);
fpga
::
format_ofm
(
out
);
fpga
::
format_ofm
(
out
);
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
fpga
::
WrapperConvArgs
conv_arg
;
fpga
::
WrapperConvArgs
convArgs
;
fpga
::
fill_conv_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
convArgs
.
group_num
=
(
uint32_t
)
param
->
Groups
();
param
->
Groups
(),
param
->
Strides
()[
0
],
param
->
Strides
()[
1
],
convArgs
.
split_num
=
(
uint32_t
)
fpga
::
get_plit_num
(
filter
);
param
->
Paddings
()[
0
],
param
->
Paddings
()[
1
],
bs_ptr
);
convArgs
.
filter_num
=
(
uint32_t
)
filter
->
dims
()[
0
];
param
->
SetFpgaArgs
(
conv_arg
);
convArgs
.
output
.
address
=
out_ptr
;
convArgs
.
output
.
scale_address
=
out
->
scale
;
convArgs
.
conv_args
=
(
fpga
::
ConvArgs
*
)
fpga
::
fpga_malloc
(
convArgs
.
split_num
*
sizeof
(
fpga
::
ConvArgs
));
convArgs
.
concat_arg
.
image_num
=
convArgs
.
split_num
;
convArgs
.
concat_arg
.
image_out
=
out_ptr
;
convArgs
.
concat_arg
.
scale_out
=
out
->
scale
;
convArgs
.
concat_arg
.
height
=
(
uint32_t
)
filter
->
dims
()[
2
];
convArgs
.
concat_arg
.
width
=
(
uint32_t
)
filter
->
dims
()[
3
];
int
n
=
convArgs
.
split_num
;
convArgs
.
concat_arg
.
images_in
=
(
half
**
)
fpga
::
fpga_malloc
(
n
*
sizeof
(
int
*
));
convArgs
.
concat_arg
.
scales_in
=
(
float
**
)
fpga
::
fpga_malloc
(
n
*
sizeof
(
float
*
));
convArgs
.
concat_arg
.
channel_num
=
(
uint32_t
*
)
fpga
::
fpga_malloc
(
n
*
sizeof
(
uint32_t
));
convArgs
.
concat_arg
.
image_out
=
out_ptr
;
param
->
SetFpgaArgs
(
convArgs
);
int
element_num
=
fpga
::
get_aligned_filter_element_num
(
filter
->
dims
()[
1
]
*
filter
->
dims
()[
2
]
*
filter
->
dims
()[
3
]);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
convArgs
.
conv_args
[
i
].
relu_enabled
=
relu_enabled
;
convArgs
.
conv_args
[
i
].
group_num
=
(
uint32_t
)
param
->
Groups
();
convArgs
.
conv_args
[
i
].
kernel
.
stride_h
=
(
uint32_t
)
param
->
Strides
()[
0
];
convArgs
.
conv_args
[
i
].
kernel
.
stride_w
=
(
uint32_t
)
param
->
Strides
()[
1
];
convArgs
.
conv_args
[
i
].
kernel
.
height
=
(
uint32_t
)
filter
->
dims
()[
2
];
convArgs
.
conv_args
[
i
].
kernel
.
width
=
(
uint32_t
)
filter
->
dims
()[
3
];
convArgs
.
conv_args
[
i
].
image
.
address
=
input_ptr
;
convArgs
.
conv_args
[
i
].
image
.
channels
=
(
uint32_t
)
input
->
dims
()[
1
];
convArgs
.
conv_args
[
i
].
image
.
height
=
(
uint32_t
)
input
->
dims
()[
2
];
convArgs
.
conv_args
[
i
].
image
.
width
=
(
uint32_t
)
input
->
dims
()[
3
];
convArgs
.
conv_args
[
i
].
image
.
scale_address
=
input
->
scale
;
convArgs
.
conv_args
[
i
].
image
.
pad_height
=
(
uint32_t
)
param
->
Paddings
()[
0
];
convArgs
.
conv_args
[
i
].
image
.
pad_width
=
(
uint32_t
)
param
->
Paddings
()[
1
];
convArgs
.
conv_args
[
i
].
filter_address
=
&
((
int8_t
*
)
filter_ptr
)[
i
*
element_num
];
convArgs
.
conv_args
[
i
].
sb_address
=
&
((
int8_t
*
)
bs_ptr
)[
i
*
element_num
];
convArgs
.
conv_args
[
i
].
filter_num
=
(
uint32_t
)(
i
==
n
-
1
?
fpga
::
get_aligned_filter_num
(
channel
-
(
n
-
1
)
*
element_num_per_div
)
:
element_num_per_div
);
if
(
n
>
1
)
{
convArgs
.
conv_args
[
i
].
output
.
scale_address
=
(
float
*
)
fpga
::
fpga_malloc
(
2
*
sizeof
(
float
));
convArgs
.
conv_args
[
i
].
output
.
address
=
fpga
::
fpga_malloc
(
input
->
dims
()[
2
]
*
input
->
dims
()[
3
]
*
convArgs
.
conv_args
[
i
].
filter_num
*
sizeof
(
half
));
}
else
{
convArgs
.
conv_args
[
i
].
output
.
scale_address
=
out
->
scale
;
convArgs
.
conv_args
[
i
].
output
.
address
=
out_ptr
;
}
convArgs
.
concat_arg
.
images_in
[
i
]
=
(
half
*
)
convArgs
.
conv_args
[
i
].
output
.
address
;
convArgs
.
concat_arg
.
scales_in
[
i
]
=
(
float
*
)
convArgs
.
conv_args
[
i
].
sb_address
;
convArgs
.
concat_arg
.
channel_num
[
i
]
=
convArgs
.
conv_args
[
i
].
filter_num
;
}
return
true
;
return
true
;
}
}
...
...
src/operators/kernel/fpga/conv_add_bn_relu_kernel.cpp
浏览文件 @
7034b8ae
...
@@ -67,45 +67,11 @@ bool ConvAddBNReluKernel<FPGA, float>::Init(
...
@@ -67,45 +67,11 @@ bool ConvAddBNReluKernel<FPGA, float>::Init(
fpga
::
format_ofm
(
out
);
fpga
::
format_ofm
(
out
);
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
fpga
::
WrapperConvArgs
convArgs
;
fpga
::
WrapperConvArgs
conv_arg
;
convArgs
.
group_num
=
(
uint32_t
)
param
->
Groups
();
fpga
::
fill_conv_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
convArgs
.
split_num
=
(
uint32_t
)
fpga
::
get_plit_num
(
filter
);
param
->
Groups
(),
param
->
Strides
()[
0
],
param
->
Strides
()[
1
],
convArgs
.
filter_num
=
(
uint32_t
)
filter
->
dims
()[
0
];
param
->
Paddings
()[
0
],
param
->
Paddings
()[
1
],
bs_ptr
);
convArgs
.
output
.
address
=
out_ptr
;
param
->
SetFpgaArgs
(
conv_arg
);
convArgs
.
output
.
scale_address
=
out
->
scale
;
convArgs
.
conv_args
=
(
fpga
::
ConvArgs
*
)
fpga
::
fpga_malloc
(
convArgs
.
split_num
*
sizeof
(
fpga
::
ConvArgs
));
param
->
SetFpgaArgs
(
convArgs
);
int
element_num
=
fpga
::
get_aligned_filter_element_num
(
filter
->
dims
()[
1
]
*
filter
->
dims
()[
2
]
*
filter
->
dims
()[
3
]);
int
n
=
convArgs
.
split_num
;
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
convArgs
.
conv_args
[
i
].
relu_enabled
=
relu_enabled
;
convArgs
.
conv_args
[
i
].
group_num
=
(
uint32_t
)
param
->
Groups
();
convArgs
.
conv_args
[
i
].
kernel
.
stride_h
=
(
uint32_t
)
param
->
Strides
()[
0
];
convArgs
.
conv_args
[
i
].
kernel
.
stride_w
=
(
uint32_t
)
param
->
Strides
()[
1
];
convArgs
.
conv_args
[
i
].
kernel
.
height
=
(
uint32_t
)
filter
->
dims
()[
2
];
convArgs
.
conv_args
[
i
].
kernel
.
width
=
(
uint32_t
)
filter
->
dims
()[
3
];
convArgs
.
conv_args
[
i
].
image
.
address
=
input_ptr
;
convArgs
.
conv_args
[
i
].
image
.
channels
=
(
uint32_t
)
input
->
dims
()[
1
];
convArgs
.
conv_args
[
i
].
image
.
height
=
(
uint32_t
)
input
->
dims
()[
2
];
convArgs
.
conv_args
[
i
].
image
.
width
=
(
uint32_t
)
input
->
dims
()[
3
];
convArgs
.
conv_args
[
i
].
image
.
pad_height
=
(
uint32_t
)
param
->
Paddings
()[
0
];
convArgs
.
conv_args
[
i
].
image
.
pad_width
=
(
uint32_t
)
param
->
Paddings
()[
1
];
convArgs
.
conv_args
[
i
].
filter_address
=
&
((
int8_t
*
)
filter_ptr
)[
i
*
element_num
];
convArgs
.
conv_args
[
i
].
sb_address
=
&
((
int8_t
*
)
bs_ptr
)[
i
*
element_num
];
convArgs
.
conv_args
[
i
].
filter_num
=
(
uint32_t
)(
i
==
n
-
1
?
fpga
::
get_aligned_filter_num
(
channel
-
(
n
-
1
)
*
element_num_per_div
)
:
element_num_per_div
);
convArgs
.
conv_args
[
i
].
output
.
scale_address
=
(
float
*
)
fpga
::
fpga_malloc
(
2
*
sizeof
(
float
));
convArgs
.
conv_args
[
i
].
image
.
scale_address
=
input
->
scale
;
}
return
true
;
return
true
;
return
true
;
}
}
...
...
src/operators/kernel/fpga/conv_add_relu_kernel.cpp
浏览文件 @
7034b8ae
...
@@ -49,44 +49,11 @@ bool ConvAddReluKernel<FPGA, float>::Init(FusionConvAddReluParam<FPGA> *param) {
...
@@ -49,44 +49,11 @@ bool ConvAddReluKernel<FPGA, float>::Init(FusionConvAddReluParam<FPGA> *param) {
fpga
::
format_ofm
(
out
);
fpga
::
format_ofm
(
out
);
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
fpga
::
WrapperConvArgs
convArgs
;
fpga
::
WrapperConvArgs
conv_arg
;
convArgs
.
group_num
=
(
uint32_t
)
param
->
Groups
();
fpga
::
fill_conv_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
convArgs
.
split_num
=
(
uint32_t
)
fpga
::
get_plit_num
(
filter
);
param
->
Groups
(),
param
->
Strides
()[
0
],
param
->
Strides
()[
1
],
convArgs
.
filter_num
=
(
uint32_t
)
filter
->
dims
()[
0
];
param
->
Paddings
()[
0
],
param
->
Paddings
()[
1
],
bs_ptr
);
convArgs
.
output
.
address
=
out_ptr
;
param
->
SetFpgaArgs
(
conv_arg
);
convArgs
.
output
.
scale_address
=
out
->
scale
;
convArgs
.
conv_args
=
(
fpga
::
ConvArgs
*
)
fpga
::
fpga_malloc
(
convArgs
.
split_num
*
sizeof
(
fpga
::
ConvArgs
));
param
->
SetFpgaArgs
(
convArgs
);
int
element_num
=
fpga
::
get_aligned_filter_element_num
(
filter
->
dims
()[
1
]
*
filter
->
dims
()[
2
]
*
filter
->
dims
()[
3
]);
int
n
=
convArgs
.
split_num
;
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
convArgs
.
conv_args
[
i
].
relu_enabled
=
relu_enabled
;
convArgs
.
conv_args
[
i
].
group_num
=
(
uint32_t
)
param
->
Groups
();
convArgs
.
conv_args
[
i
].
kernel
.
stride_h
=
(
uint32_t
)
param
->
Strides
()[
0
];
convArgs
.
conv_args
[
i
].
kernel
.
stride_w
=
(
uint32_t
)
param
->
Strides
()[
1
];
convArgs
.
conv_args
[
i
].
kernel
.
height
=
(
uint32_t
)
filter
->
dims
()[
2
];
convArgs
.
conv_args
[
i
].
kernel
.
width
=
(
uint32_t
)
filter
->
dims
()[
3
];
convArgs
.
conv_args
[
i
].
image
.
address
=
input_ptr
;
convArgs
.
conv_args
[
i
].
image
.
channels
=
(
uint32_t
)
input
->
dims
()[
1
];
convArgs
.
conv_args
[
i
].
image
.
height
=
(
uint32_t
)
input
->
dims
()[
2
];
convArgs
.
conv_args
[
i
].
image
.
width
=
(
uint32_t
)
input
->
dims
()[
3
];
convArgs
.
conv_args
[
i
].
image
.
pad_height
=
(
uint32_t
)
param
->
Paddings
()[
0
];
convArgs
.
conv_args
[
i
].
image
.
pad_width
=
(
uint32_t
)
param
->
Paddings
()[
1
];
convArgs
.
conv_args
[
i
].
filter_address
=
&
((
int8_t
*
)
filter_ptr
)[
i
*
element_num
];
convArgs
.
conv_args
[
i
].
sb_address
=
&
((
int8_t
*
)
bs_ptr
)[
i
*
element_num
];
convArgs
.
conv_args
[
i
].
filter_num
=
(
uint32_t
)(
i
==
n
-
1
?
fpga
::
get_aligned_filter_num
(
channel
-
(
n
-
1
)
*
element_num_per_div
)
:
element_num_per_div
);
convArgs
.
conv_args
[
i
].
output
.
scale_address
=
(
float
*
)
fpga
::
fpga_malloc
(
2
*
sizeof
(
float
));
convArgs
.
conv_args
[
i
].
image
.
scale_address
=
input
->
scale
;
}
return
true
;
return
true
;
}
}
...
...
src/operators/kernel/fpga/conv_bn_kernel.cpp
浏览文件 @
7034b8ae
...
@@ -64,44 +64,11 @@ bool ConvBNKernel<FPGA, float>::Init(FusionConvBNParam<FPGA> *param) {
...
@@ -64,44 +64,11 @@ bool ConvBNKernel<FPGA, float>::Init(FusionConvBNParam<FPGA> *param) {
fpga
::
format_ofm
(
out
);
fpga
::
format_ofm
(
out
);
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
fpga
::
WrapperConvArgs
convArgs
;
fpga
::
WrapperConvArgs
conv_arg
;
convArgs
.
group_num
=
(
uint32_t
)
param
->
Groups
();
fpga
::
fill_conv_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
convArgs
.
split_num
=
(
uint32_t
)
fpga
::
get_plit_num
(
filter
);
param
->
Groups
(),
param
->
Strides
()[
0
],
param
->
Strides
()[
1
],
convArgs
.
filter_num
=
(
uint32_t
)
filter
->
dims
()[
0
];
param
->
Paddings
()[
0
],
param
->
Paddings
()[
1
],
bs_ptr
);
convArgs
.
output
.
address
=
out_ptr
;
param
->
SetFpgaArgs
(
conv_arg
);
convArgs
.
output
.
scale_address
=
out
->
scale
;
convArgs
.
conv_args
=
(
fpga
::
ConvArgs
*
)
fpga
::
fpga_malloc
(
convArgs
.
split_num
*
sizeof
(
fpga
::
ConvArgs
));
param
->
SetFpgaArgs
(
convArgs
);
int
element_num
=
fpga
::
get_aligned_filter_element_num
(
filter
->
dims
()[
1
]
*
filter
->
dims
()[
2
]
*
filter
->
dims
()[
3
]);
int
n
=
convArgs
.
split_num
;
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
convArgs
.
conv_args
[
i
].
relu_enabled
=
relu_enabled
;
convArgs
.
conv_args
[
i
].
group_num
=
(
uint32_t
)
param
->
Groups
();
convArgs
.
conv_args
[
i
].
kernel
.
stride_h
=
(
uint32_t
)
param
->
Strides
()[
0
];
convArgs
.
conv_args
[
i
].
kernel
.
stride_w
=
(
uint32_t
)
param
->
Strides
()[
1
];
convArgs
.
conv_args
[
i
].
kernel
.
height
=
(
uint32_t
)
filter
->
dims
()[
2
];
convArgs
.
conv_args
[
i
].
kernel
.
width
=
(
uint32_t
)
filter
->
dims
()[
3
];
convArgs
.
conv_args
[
i
].
image
.
address
=
input_ptr
;
convArgs
.
conv_args
[
i
].
image
.
channels
=
(
uint32_t
)
input
->
dims
()[
1
];
convArgs
.
conv_args
[
i
].
image
.
height
=
(
uint32_t
)
input
->
dims
()[
2
];
convArgs
.
conv_args
[
i
].
image
.
width
=
(
uint32_t
)
input
->
dims
()[
3
];
convArgs
.
conv_args
[
i
].
image
.
pad_height
=
(
uint32_t
)
param
->
Paddings
()[
0
];
convArgs
.
conv_args
[
i
].
image
.
pad_width
=
(
uint32_t
)
param
->
Paddings
()[
1
];
convArgs
.
conv_args
[
i
].
filter_address
=
&
((
int8_t
*
)
filter_ptr
)[
i
*
element_num
];
convArgs
.
conv_args
[
i
].
sb_address
=
&
((
int8_t
*
)
bs_ptr
)[
i
*
element_num
];
convArgs
.
conv_args
[
i
].
filter_num
=
(
uint32_t
)(
i
==
n
-
1
?
fpga
::
get_aligned_filter_num
(
channel
-
(
n
-
1
)
*
element_num_per_div
)
:
element_num_per_div
);
convArgs
.
conv_args
[
i
].
output
.
scale_address
=
(
float
*
)
fpga
::
fpga_malloc
(
2
*
sizeof
(
float
));
convArgs
.
conv_args
[
i
].
image
.
scale_address
=
input
->
scale
;
}
return
true
;
return
true
;
}
}
...
...
src/operators/kernel/fpga/conv_bn_relu_kernel.cpp
浏览文件 @
7034b8ae
...
@@ -74,31 +74,11 @@ bool ConvBNReluKernel<FPGA, float>::Init(FusionConvBNReluParam<FPGA> *param) {
...
@@ -74,31 +74,11 @@ bool ConvBNReluKernel<FPGA, float>::Init(FusionConvBNReluParam<FPGA> *param) {
int
element_num
=
fpga
::
get_aligned_filter_element_num
(
int
element_num
=
fpga
::
get_aligned_filter_element_num
(
filter
->
dims
()[
1
]
*
filter
->
dims
()[
2
]
*
filter
->
dims
()[
3
]);
filter
->
dims
()[
1
]
*
filter
->
dims
()[
2
]
*
filter
->
dims
()[
3
]);
int
n
=
convArgs
.
split_num
;
fpga
::
WrapperConvArgs
conv_arg
;
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
fpga
::
fill_conv_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
convArgs
.
conv_args
[
i
].
relu_enabled
=
relu_enabled
;
param
->
Groups
(),
param
->
Strides
()[
0
],
param
->
Strides
()[
1
],
convArgs
.
conv_args
[
i
].
group_num
=
(
uint32_t
)
param
->
Groups
();
param
->
Paddings
()[
0
],
param
->
Paddings
()[
1
],
bs_ptr
);
convArgs
.
conv_args
[
i
].
kernel
.
stride_h
=
(
uint32_t
)
param
->
Strides
()[
0
];
param
->
SetFpgaArgs
(
conv_arg
);
convArgs
.
conv_args
[
i
].
kernel
.
stride_w
=
(
uint32_t
)
param
->
Strides
()[
1
];
convArgs
.
conv_args
[
i
].
kernel
.
height
=
(
uint32_t
)
filter
->
dims
()[
2
];
convArgs
.
conv_args
[
i
].
kernel
.
width
=
(
uint32_t
)
filter
->
dims
()[
3
];
convArgs
.
conv_args
[
i
].
image
.
address
=
input_ptr
;
convArgs
.
conv_args
[
i
].
image
.
channels
=
(
uint32_t
)
input
->
dims
()[
1
];
convArgs
.
conv_args
[
i
].
image
.
height
=
(
uint32_t
)
input
->
dims
()[
2
];
convArgs
.
conv_args
[
i
].
image
.
width
=
(
uint32_t
)
input
->
dims
()[
3
];
convArgs
.
conv_args
[
i
].
image
.
pad_height
=
(
uint32_t
)
param
->
Paddings
()[
0
];
convArgs
.
conv_args
[
i
].
image
.
pad_width
=
(
uint32_t
)
param
->
Paddings
()[
1
];
convArgs
.
conv_args
[
i
].
filter_address
=
&
((
int8_t
*
)
filter_ptr
)[
i
*
element_num
];
convArgs
.
conv_args
[
i
].
sb_address
=
&
((
int8_t
*
)
bs_ptr
)[
i
*
element_num
];
convArgs
.
conv_args
[
i
].
filter_num
=
(
uint32_t
)(
i
==
n
-
1
?
fpga
::
get_aligned_filter_num
(
channel
-
(
n
-
1
)
*
element_num_per_div
)
:
element_num_per_div
);
convArgs
.
conv_args
[
i
].
output
.
scale_address
=
(
float
*
)
fpga
::
fpga_malloc
(
2
*
sizeof
(
float
));
convArgs
.
conv_args
[
i
].
image
.
scale_address
=
input
->
scale
;
}
return
true
;
return
true
;
}
}
...
...
src/operators/kernel/fpga/fc_relu_kernel.cpp
浏览文件 @
7034b8ae
...
@@ -54,44 +54,10 @@ bool FusionFcReluKernel<FPGA, float>::Init(FusionFcReluParam<FPGA> *param) {
...
@@ -54,44 +54,10 @@ bool FusionFcReluKernel<FPGA, float>::Init(FusionFcReluParam<FPGA> *param) {
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
fpga
::
WrapperConvArgs
convArgs
;
fpga
::
WrapperConvArgs
conv_arg
;
convArgs
.
group_num
=
1
;
fpga
::
fill_conv_arg
(
&
conv_arg
,
input_x
,
out
,
filter
,
relu_enabled
,
1
,
1
,
1
,
0
,
convArgs
.
split_num
=
(
uint32_t
)
fpga
::
get_plit_num
(
filter
);
0
,
bs_ptr
);
convArgs
.
filter_num
=
(
uint32_t
)
filter
->
dims
()[
0
];
param
->
SetFpgaArgs
(
conv_arg
);
convArgs
.
output
.
address
=
out_ptr
;
convArgs
.
output
.
scale_address
=
out
->
scale
;
convArgs
.
conv_args
=
(
fpga
::
ConvArgs
*
)
fpga
::
fpga_malloc
(
convArgs
.
split_num
*
sizeof
(
fpga
::
ConvArgs
));
param
->
SetFpgaArgs
(
convArgs
);
int
element_num
=
fpga
::
get_aligned_filter_element_num
(
filter
->
dims
()[
1
]
*
filter
->
dims
()[
2
]
*
filter
->
dims
()[
3
]);
int
n
=
convArgs
.
split_num
;
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
convArgs
.
conv_args
[
i
].
relu_enabled
=
relu_enabled
;
convArgs
.
conv_args
[
i
].
group_num
=
1
;
convArgs
.
conv_args
[
i
].
kernel
.
stride_h
=
1
;
convArgs
.
conv_args
[
i
].
kernel
.
stride_w
=
1
;
convArgs
.
conv_args
[
i
].
kernel
.
height
=
(
uint32_t
)
filter
->
dims
()[
2
];
convArgs
.
conv_args
[
i
].
kernel
.
width
=
(
uint32_t
)
filter
->
dims
()[
3
];
convArgs
.
conv_args
[
i
].
image
.
address
=
input_x_ptr
;
convArgs
.
conv_args
[
i
].
image
.
channels
=
(
uint32_t
)
input_x
->
dims
()[
1
];
convArgs
.
conv_args
[
i
].
image
.
height
=
(
uint32_t
)
input_x
->
dims
()[
2
];
convArgs
.
conv_args
[
i
].
image
.
width
=
(
uint32_t
)
input_x
->
dims
()[
3
];
convArgs
.
conv_args
[
i
].
image
.
pad_height
=
0
;
convArgs
.
conv_args
[
i
].
image
.
pad_width
=
0
;
convArgs
.
conv_args
[
i
].
filter_address
=
&
((
int8_t
*
)
filter_ptr
)[
i
*
element_num
];
convArgs
.
conv_args
[
i
].
sb_address
=
&
((
int8_t
*
)
bs_ptr
)[
i
*
element_num
];
convArgs
.
conv_args
[
i
].
filter_num
=
(
uint32_t
)(
i
==
n
-
1
?
fpga
::
get_aligned_filter_num
(
channel
-
(
n
-
1
)
*
element_num_per_div
)
:
element_num_per_div
);
convArgs
.
conv_args
[
i
].
output
.
scale_address
=
(
float
*
)
fpga
::
fpga_malloc
(
2
*
sizeof
(
float
));
convArgs
.
conv_args
[
i
].
image
.
scale_address
=
input_x
->
scale
;
}
return
true
;
return
true
;
}
}
template
<
>
template
<
>
...
...
src/operators/kernel/fpga/fusion_fc_kernel.cpp
浏览文件 @
7034b8ae
...
@@ -55,44 +55,10 @@ bool FusionFcKernel<FPGA, float>::Init(FusionFcParam<FPGA> *param) {
...
@@ -55,44 +55,10 @@ bool FusionFcKernel<FPGA, float>::Init(FusionFcParam<FPGA> *param) {
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
fpga
::
WrapperConvArgs
convArgs
;
fpga
::
WrapperConvArgs
conv_arg
;
convArgs
.
group_num
=
1
;
fpga
::
fill_conv_arg
(
&
conv_arg
,
input_x
,
out
,
filter
,
relu_enabled
,
1
,
1
,
1
,
0
,
convArgs
.
split_num
=
(
uint32_t
)
fpga
::
get_plit_num
(
filter
);
0
,
bs_ptr
);
convArgs
.
filter_num
=
(
uint32_t
)
filter
->
dims
()[
0
];
param
->
SetFpgaArgs
(
conv_arg
);
convArgs
.
output
.
address
=
out_ptr
;
convArgs
.
output
.
scale_address
=
out
->
scale
;
convArgs
.
conv_args
=
(
fpga
::
ConvArgs
*
)
fpga
::
fpga_malloc
(
convArgs
.
split_num
*
sizeof
(
fpga
::
ConvArgs
));
param
->
SetFpgaArgs
(
convArgs
);
int
element_num
=
fpga
::
get_aligned_filter_element_num
(
filter
->
dims
()[
1
]
*
filter
->
dims
()[
2
]
*
filter
->
dims
()[
3
]);
int
n
=
convArgs
.
split_num
;
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
convArgs
.
conv_args
[
i
].
relu_enabled
=
relu_enabled
;
convArgs
.
conv_args
[
i
].
group_num
=
1
;
convArgs
.
conv_args
[
i
].
kernel
.
stride_h
=
1
;
convArgs
.
conv_args
[
i
].
kernel
.
stride_w
=
1
;
convArgs
.
conv_args
[
i
].
kernel
.
height
=
(
uint32_t
)
filter
->
dims
()[
2
];
convArgs
.
conv_args
[
i
].
kernel
.
width
=
(
uint32_t
)
filter
->
dims
()[
3
];
convArgs
.
conv_args
[
i
].
image
.
address
=
input_x_ptr
;
convArgs
.
conv_args
[
i
].
image
.
channels
=
(
uint32_t
)
input_x
->
dims
()[
1
];
convArgs
.
conv_args
[
i
].
image
.
height
=
(
uint32_t
)
input_x
->
dims
()[
2
];
convArgs
.
conv_args
[
i
].
image
.
width
=
(
uint32_t
)
input_x
->
dims
()[
3
];
convArgs
.
conv_args
[
i
].
image
.
pad_height
=
0
;
convArgs
.
conv_args
[
i
].
image
.
pad_width
=
0
;
convArgs
.
conv_args
[
i
].
filter_address
=
&
((
int8_t
*
)
filter_ptr
)[
i
*
element_num
];
convArgs
.
conv_args
[
i
].
sb_address
=
&
((
int8_t
*
)
bs_ptr
)[
i
*
element_num
];
convArgs
.
conv_args
[
i
].
filter_num
=
(
uint32_t
)(
i
==
n
-
1
?
fpga
::
get_aligned_filter_num
(
channel
-
(
n
-
1
)
*
element_num_per_div
)
:
element_num_per_div
);
convArgs
.
conv_args
[
i
].
output
.
scale_address
=
(
float
*
)
fpga
::
fpga_malloc
(
2
*
sizeof
(
float
));
convArgs
.
conv_args
[
i
].
image
.
scale_address
=
input_x
->
scale
;
}
return
true
;
return
true
;
}
}
...
...
src/operators/math/depthwise_conv_3x3.cpp
浏览文件 @
7034b8ae
...
@@ -1465,180 +1465,187 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
...
@@ -1465,180 +1465,187 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
Tensor
*
output
,
const
Tensor
*
new_scale
,
Tensor
*
output
,
const
Tensor
*
new_scale
,
const
Tensor
*
new_bias
,
bool
if_relu
)
{
const
Tensor
*
new_bias
,
bool
if_relu
)
{
#if __ARM_NEON
#if __ARM_NEON
#ifdef _OPENMP
//#ifdef _OPENMP
const
float
*
newscale_data
=
new_scale
->
data
<
float
>
();
// const float *newscale_data = new_scale->data<float>();
const
float
*
newbias_data
=
new_bias
->
data
<
float
>
();
// const float *newbias_data = new_bias->data<float>();
//
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
// const int batch_size = static_cast<int>(input->dims()[0]);
const
int
input_channel
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
// const int input_channel = static_cast<int>(input->dims()[1]);
//
const
int
input_height
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
// const int input_height = static_cast<int>(input->dims()[2]);
const
int
input_width
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
// const int input_width = static_cast<int>(input->dims()[3]);
const
int
output_height
=
static_cast
<
int
>
(
output
->
dims
()[
2
]);
// const int output_height = static_cast<int>(output->dims()[2]);
const
int
output_width
=
static_cast
<
int
>
(
output
->
dims
()[
3
]);
// const int output_width = static_cast<int>(output->dims()[3]);
const
int
inhxw
=
input_height
*
input_width
;
// const int inhxw = input_height * input_width;
const
int
outhxw
=
output_height
*
output_width
;
// const int outhxw = output_height * output_width;
//
float32x4_t
zero
=
vdupq_n_f32
(
0.0
);
// float32x4_t zero = vdupq_n_f32(0.0);
for
(
int
b
=
0
;
b
<
batch_size
;
b
++
)
{
// for (int b = 0; b < batch_size; b++) {
#pragma omp parallel for
// #pragma omp parallel for
for
(
int
c
=
0
;
c
<
input_channel
;
c
++
)
{
// for (int c = 0; c < input_channel; c++) {
const
float
*
filter_data
=
filter
->
data
<
float
>
()
+
c
*
9
;
// const float *filter_data = filter->data<float>() + c * 9;
const
float
*
input_data
=
input
->
data
<
float
>
()
+
c
*
inhxw
;
// const float *input_data = input->data<float>() + c * inhxw;
float
*
output_data
=
output
->
data
<
float
>
()
+
c
*
outhxw
;
// float *output_data = output->data<float>() + c * outhxw;
float32x4_t
vnewbias
=
vdupq_n_f32
(
newbias_data
[
c
]);
// float32x4_t vnewbias = vdupq_n_f32(newbias_data[c]);
float32x4_t
vnewscale
=
vdupq_n_f32
(
newscale_data
[
c
]);
// float32x4_t vnewscale = vdupq_n_f32(newscale_data[c]);
//
float
w00
=
filter_data
[
0
];
// float w00 = filter_data[0];
float
w01
=
filter_data
[
1
];
// float w01 = filter_data[1];
float
w02
=
filter_data
[
2
];
// float w02 = filter_data[2];
float
w10
=
filter_data
[
3
];
// float w10 = filter_data[3];
float
w11
=
filter_data
[
4
];
// float w11 = filter_data[4];
float
w12
=
filter_data
[
5
];
// float w12 = filter_data[5];
float
w20
=
filter_data
[
6
];
// float w20 = filter_data[6];
float
w21
=
filter_data
[
7
];
// float w21 = filter_data[7];
float
w22
=
filter_data
[
8
];
// float w22 = filter_data[8];
//
int
m
;
// int m;
for
(
m
=
1
;
m
<
output_width
-
2
;
m
=
m
+
3
)
{
// for (m = 1; m < output_width - 2; m = m + 3) {
float
*
output_ptr
=
output_data
+
m
;
// float *output_ptr = output_data + m;
float32x4x2_t
input_buff_mid
{},
input_buff_bottom
{};
// float32x4x2_t input_buff_mid{}, input_buff_bottom{};
float32x4_t
in0
,
in1
,
in2
,
in3
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
out0
;
// float32x4_t in0, in1, in2, in3, tmp0, tmp1, tmp2, tmp3, out0;
input_buff_mid
=
vld2q_f32
(
input_data
+
(
2
*
m
-
1
));
// input_buff_mid = vld2q_f32(input_data + (2 * m - 1));
input_buff_bottom
=
vld2q_f32
(
input_data
+
input_width
+
(
2
*
m
-
1
));
// input_buff_bottom = vld2q_f32(input_data + input_width + (2 * m -
// 1));
in0
=
input_buff_mid
.
val
[
0
];
//
tmp0
=
input_buff_mid
.
val
[
1
];
// in0 = input_buff_mid.val[0];
tmp1
=
vextq_f32
(
in0
,
zero
,
1
);
// tmp0 = input_buff_mid.val[1];
// tmp1 = vextq_f32(in0, zero, 1);
in2
=
input_buff_bottom
.
val
[
0
];
//
tmp2
=
input_buff_bottom
.
val
[
1
];
// in2 = input_buff_bottom.val[0];
tmp3
=
vextq_f32
(
in2
,
zero
,
1
);
// tmp2 = input_buff_bottom.val[1];
// tmp3 = vextq_f32(in2, zero, 1);
out0
=
vmulq_n_f32
(
in0
,
w10
);
//
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w11
);
// out0 = vmulq_n_f32(in0, w10);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w12
);
// out0 = vmlaq_n_f32(out0, tmp0, w11);
out0
=
vmlaq_n_f32
(
out0
,
in2
,
w20
);
// out0 = vmlaq_n_f32(out0, tmp1, w12);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w21
);
// out0 = vmlaq_n_f32(out0, in2, w20);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w22
);
// out0 = vmlaq_n_f32(out0, tmp2, w21);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
// out0 = vmlaq_n_f32(out0, tmp3, w22);
if
(
if_relu
)
{
// out0 = vmlaq_f32(vnewbias, vnewscale, out0);
out0
=
vmaxq_f32
(
out0
,
zero
);
// if (if_relu) {
}
// out0 = vmaxq_f32(out0, zero);
vst1q_lane_f32
(
output_ptr
,
out0
,
0
);
// }
vst1q_lane_f32
(
output_ptr
+
1
,
out0
,
1
);
// vst1q_lane_f32(output_ptr, out0, 0);
vst1q_lane_f32
(
output_ptr
+
2
,
out0
,
2
);
// vst1q_lane_f32(output_ptr + 1, out0, 1);
}
// vst1q_lane_f32(output_ptr + 2, out0, 2);
for
(
m
=
1
;
m
<
output_width
-
2
;
m
+=
3
)
{
// }
}
// for (m = 1; m < output_width - 2; m += 3) {
for
(
int
j
=
m
;
j
<
output_width
;
j
++
)
{
// }
output_data
[
j
]
=
input_data
[
2
*
j
-
1
]
*
w10
+
input_data
[
2
*
j
]
*
w11
+
// for (int j = m; j < output_width; j++) {
input_data
[
2
*
j
+
1
]
*
w12
+
// output_data[j] = input_data[2 * j - 1] * w10 + input_data[2 * j] *
input_data
[
2
*
j
-
1
+
input_width
]
*
w20
+
// w11 +
input_data
[
2
*
j
+
input_width
]
*
w21
+
// input_data[2 * j + 1] * w12 +
input_data
[
2
*
j
+
1
+
input_width
]
*
w22
;
// input_data[2 * j - 1 + input_width] * w20 +
output_data
[
j
]
=
newscale_data
[
c
]
*
output_data
[
j
]
+
newbias_data
[
c
];
// input_data[2 * j + input_width] * w21 +
if
(
if_relu
)
{
// input_data[2 * j + 1 + input_width] * w22;
output_data
[
j
]
=
output_data
[
j
]
<
0
?
0
:
output_data
[
j
];
// output_data[j] = newscale_data[c] * output_data[j] +
}
// newbias_data[c]; if (if_relu) {
}
// output_data[j] = output_data[j] < 0 ? 0 : output_data[j];
// }
for
(
int
i
=
1
;
i
<
output_height
;
i
+=
1
)
{
// }
for
(
int
m
=
1
;
m
<
output_width
-
2
;
m
+=
3
)
{
//
float
*
output_ptr
=
output_data
+
i
*
output_width
+
m
;
// for (int i = 1; i < output_height; i += 1) {
float32x4x2_t
input_buff_top
{},
input_buff_mid
{},
input_buff_bottom
{};
// for (int m = 1; m < output_width - 2; m += 3) {
float32x4_t
in0
,
in1
,
in2
,
in3
,
in4
,
in5
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
// float *output_ptr = output_data + i * output_width + m;
tmp4
,
tmp5
,
out0
;
// float32x4x2_t input_buff_top{}, input_buff_mid{},
input_buff_top
=
// input_buff_bottom{}; float32x4_t in0, in1, in2, in3, in4, in5,
vld2q_f32
(
input_data
+
(
2
*
i
-
1
)
*
input_width
+
(
2
*
m
-
1
));
// tmp0, tmp1, tmp2, tmp3,
input_buff_mid
=
// tmp4, tmp5, out0;
vld2q_f32
(
input_data
+
(
2
*
i
)
*
input_width
+
(
2
*
m
-
1
));
// input_buff_top =
input_buff_bottom
=
// vld2q_f32(input_data + (2 * i - 1) * input_width + (2 * m -
vld2q_f32
(
input_data
+
(
2
*
i
+
1
)
*
input_width
+
(
2
*
m
-
1
));
// 1));
// input_buff_mid =
in0
=
input_buff_top
.
val
[
0
];
// vld2q_f32(input_data + (2 * i) * input_width + (2 * m - 1));
tmp0
=
input_buff_top
.
val
[
1
];
// input_buff_bottom =
tmp1
=
vextq_f32
(
in0
,
zero
,
1
);
// vld2q_f32(input_data + (2 * i + 1) * input_width + (2 * m -
// 1));
in2
=
input_buff_mid
.
val
[
0
];
//
tmp2
=
input_buff_mid
.
val
[
1
];
// in0 = input_buff_top.val[0];
tmp3
=
vextq_f32
(
in2
,
zero
,
1
);
// tmp0 = input_buff_top.val[1];
// tmp1 = vextq_f32(in0, zero, 1);
in4
=
input_buff_bottom
.
val
[
0
];
//
tmp4
=
input_buff_bottom
.
val
[
1
];
// in2 = input_buff_mid.val[0];
tmp5
=
vextq_f32
(
in4
,
zero
,
1
);
// tmp2 = input_buff_mid.val[1];
// tmp3 = vextq_f32(in2, zero, 1);
out0
=
vmulq_n_f32
(
in0
,
w00
);
//
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w01
);
// in4 = input_buff_bottom.val[0];
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w02
);
// tmp4 = input_buff_bottom.val[1];
out0
=
vmlaq_n_f32
(
out0
,
in2
,
w10
);
// tmp5 = vextq_f32(in4, zero, 1);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
//
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
// out0 = vmulq_n_f32(in0, w00);
out0
=
vmlaq_n_f32
(
out0
,
in4
,
w20
);
// out0 = vmlaq_n_f32(out0, tmp0, w01);
out0
=
vmlaq_n_f32
(
out0
,
tmp4
,
w21
);
// out0 = vmlaq_n_f32(out0, tmp1, w02);
out0
=
vmlaq_n_f32
(
out0
,
tmp5
,
w22
);
// out0 = vmlaq_n_f32(out0, in2, w10);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
// out0 = vmlaq_n_f32(out0, tmp2, w11);
if
(
if_relu
)
{
// out0 = vmlaq_n_f32(out0, tmp3, w12);
out0
=
vmaxq_f32
(
out0
,
zero
);
// out0 = vmlaq_n_f32(out0, in4, w20);
}
// out0 = vmlaq_n_f32(out0, tmp4, w21);
vst1q_lane_f32
(
output_ptr
,
out0
,
0
);
// out0 = vmlaq_n_f32(out0, tmp5, w22);
vst1q_lane_f32
(
output_ptr
+
1
,
out0
,
1
);
// out0 = vmlaq_f32(vnewbias, vnewscale, out0);
vst1q_lane_f32
(
output_ptr
+
2
,
out0
,
2
);
// if (if_relu) {
}
// out0 = vmaxq_f32(out0, zero);
int
m
;
// }
for
(
m
=
1
;
m
<
output_width
-
2
;
m
+=
3
)
{
// vst1q_lane_f32(output_ptr, out0, 0);
}
// vst1q_lane_f32(output_ptr + 1, out0, 1);
for
(
int
j
=
m
;
j
<
output_width
;
j
++
)
{
// vst1q_lane_f32(output_ptr + 2, out0, 2);
output_data
[
i
*
output_width
+
j
]
=
// }
input_data
[(
2
*
i
-
1
)
*
input_width
+
2
*
j
-
1
]
*
w00
+
// int m;
input_data
[(
2
*
i
-
1
)
*
input_width
+
2
*
j
]
*
w01
+
// for (m = 1; m < output_width - 2; m += 3) {
input_data
[(
2
*
i
-
1
)
*
input_width
+
2
*
j
+
1
]
*
w02
+
// }
input_data
[(
2
*
i
)
*
input_width
+
2
*
j
-
1
]
*
w10
+
// for (int j = m; j < output_width; j++) {
input_data
[(
2
*
i
)
*
input_width
+
2
*
j
]
*
w11
+
// output_data[i * output_width + j] =
input_data
[(
2
*
i
)
*
input_width
+
2
*
j
+
1
]
*
w12
+
// input_data[(2 * i - 1) * input_width + 2 * j - 1] * w00 +
input_data
[(
2
*
i
+
1
)
*
input_width
+
2
*
j
-
1
]
*
w20
+
// input_data[(2 * i - 1) * input_width + 2 * j] * w01 +
input_data
[(
2
*
i
+
1
)
*
input_width
+
2
*
j
]
*
w21
+
// input_data[(2 * i - 1) * input_width + 2 * j + 1] * w02 +
input_data
[(
2
*
i
+
1
)
*
input_width
+
2
*
j
+
1
]
*
w22
;
// input_data[(2 * i) * input_width + 2 * j - 1] * w10 +
output_data
[
i
*
output_width
+
j
]
=
// input_data[(2 * i) * input_width + 2 * j] * w11 +
newscale_data
[
c
]
*
output_data
[
i
*
output_width
+
j
]
+
// input_data[(2 * i) * input_width + 2 * j + 1] * w12 +
newbias_data
[
c
];
// input_data[(2 * i + 1) * input_width + 2 * j - 1] * w20 +
if
(
if_relu
)
{
// input_data[(2 * i + 1) * input_width + 2 * j] * w21 +
output_data
[
i
*
output_width
+
j
]
=
// input_data[(2 * i + 1) * input_width + 2 * j + 1] * w22;
output_data
[
i
*
output_width
+
j
]
<
0
// output_data[i * output_width + j] =
?
0
// newscale_data[c] * output_data[i * output_width + j] +
:
output_data
[
i
*
output_width
+
j
];
// newbias_data[c];
}
// if (if_relu) {
}
// output_data[i * output_width + j] =
}
// output_data[i * output_width + j] < 0
output_data
[
0
]
=
input_data
[
0
]
*
w11
+
input_data
[
1
]
*
w12
+
// ? 0
input_data
[
input_height
]
*
w21
+
// : output_data[i * output_width + j];
input_data
[
input_height
+
1
]
*
w22
;
// }
// }
output_data
[
0
]
=
newscale_data
[
c
]
*
output_data
[
0
]
+
newbias_data
[
c
];
// }
if
(
if_relu
)
{
// output_data[0] = input_data[0] * w11 + input_data[1] * w12 +
output_data
[
0
]
=
output_data
[
0
]
<
0
?
0
:
output_data
[
0
];
// input_data[input_height] * w21 +
}
// input_data[input_height + 1] * w22;
for
(
int
i
=
1
;
i
<
output_height
;
i
++
)
{
//
output_data
[
i
*
output_width
]
=
// output_data[0] = newscale_data[c] * output_data[0] + newbias_data[c];
input_data
[(
2
*
i
-
1
)
*
input_width
]
*
w01
+
// if (if_relu) {
input_data
[(
2
*
i
-
1
)
*
input_width
+
1
]
*
w02
+
// output_data[0] = output_data[0] < 0 ? 0 : output_data[0];
input_data
[(
2
*
i
)
*
input_width
]
*
w11
+
// }
input_data
[(
2
*
i
)
*
input_width
+
1
]
*
w12
+
// for (int i = 1; i < output_height; i++) {
input_data
[(
2
*
i
+
1
)
*
input_width
]
*
w21
+
// output_data[i * output_width] =
input_data
[(
2
*
i
+
1
)
*
input_width
+
1
]
*
w22
;
// input_data[(2 * i - 1) * input_width] * w01 +
// input_data[(2 * i - 1) * input_width + 1] * w02 +
output_data
[
i
*
output_width
]
=
// input_data[(2 * i) * input_width] * w11 +
newscale_data
[
c
]
*
output_data
[
i
*
output_width
]
+
newbias_data
[
c
];
// input_data[(2 * i) * input_width + 1] * w12 +
if
(
if_relu
)
{
// input_data[(2 * i + 1) * input_width] * w21 +
output_data
[
i
*
output_width
]
=
output_data
[
i
*
output_width
]
<
0
// input_data[(2 * i + 1) * input_width + 1] * w22;
?
0
//
:
output_data
[
i
*
output_width
];
// output_data[i * output_width] =
}
// newscale_data[c] * output_data[i * output_width] +
}
// newbias_data[c];
}
// if (if_relu) {
}
// output_data[i * output_width] = output_data[i * output_width] < 0
// ? 0
#else
// : output_data[i *
// output_width];
// }
// }
// }
// }
//
//#else
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
...
@@ -1646,9 +1653,6 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
...
@@ -1646,9 +1653,6 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
const
float
*
newscale_data
=
new_scale
->
data
<
float
>
();
const
float
*
newscale_data
=
new_scale
->
data
<
float
>
();
const
float
*
newbias_data
=
new_bias
->
data
<
float
>
();
const
float
*
newbias_data
=
new_bias
->
data
<
float
>
();
float32x4_t
vnewbias
=
vdupq_n_f32
(
0.0
);
float32x4_t
vnewscale
=
vdupq_n_f32
(
1.0
);
const
int
in_h
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
in_h
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
in_w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
in_w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
out_h
=
static_cast
<
int
>
(
output
->
dims
()[
2
]);
const
int
out_h
=
static_cast
<
int
>
(
output
->
dims
()[
2
]);
...
@@ -1660,22 +1664,22 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
...
@@ -1660,22 +1664,22 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
const
int
if_pad
=
in_l
-
1
==
(
out_l
-
1
)
*
2
?
1
:
0
;
const
int
if_pad
=
in_l
-
1
==
(
out_l
-
1
)
*
2
?
1
:
0
;
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
c
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
int
c
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
float
*
input_row_ptr
;
float
*
output_row_ptr
;
const
int
w_times
=
(
out_w
-
2
)
/
3
;
const
int
w_times
=
(
out_w
-
2
)
/
3
;
float32x4x2_t
input_buff_mid
{},
input_buff_bottom
[
w_times
+
1
];
float32x4_t
elewise_res0
,
elewise_res1
,
elewise_res2
,
res3
;
int
out2in_mid
;
float32x4_t
zero
=
vdupq_n_f32
(
0.0
);
float32x4_t
zero
=
vdupq_n_f32
(
0.0
);
for
(
int
b
=
batch_size
;
b
>
0
;
--
b
)
{
for
(
int
b
=
batch_size
;
b
>
0
;
--
b
)
{
const
float
*
filter_data_tmp
=
filter_data
;
#pragma omp parallel for
for
(
int
j
=
0
;
j
<
c
;
++
j
)
{
for
(
int
j
=
0
;
j
<
c
;
j
++
)
{
const
float
*
input_row_ptr
;
float
*
output_row_ptr
;
float32x4x2_t
input_buff_mid
{},
input_buff_bottom
[
w_times
+
1
];
float32x4_t
elewise_res0
,
elewise_res1
,
elewise_res2
,
res3
;
int
out2in_mid
;
float32x4_t
vnewbias
=
vdupq_n_f32
(
0.0
);
float32x4_t
vnewscale
=
vdupq_n_f32
(
1.0
);
auto
output_data_tmp
=
output_data
+
j
*
out_h
*
out_w
;
auto
output_data_tmp
=
output_data
+
j
*
out_h
*
out_w
;
auto
input_data_tmp
=
input_data
+
j
*
in_h
*
in_w
;
auto
input_data_tmp
=
input_data
+
j
*
in_h
*
in_w
;
auto
input_const
=
input_data_tmp
;
auto
input_const
=
input_data_tmp
;
const
float
*
filter_data_tmp
=
filter_data
+
9
*
j
;
vnewbias
=
vdupq_n_f32
(
newbias_data
[
j
]);
vnewbias
=
vdupq_n_f32
(
newbias_data
[
j
]);
vnewscale
=
vdupq_n_f32
(
newscale_data
[
j
]);
vnewscale
=
vdupq_n_f32
(
newscale_data
[
j
]);
...
@@ -1726,7 +1730,9 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
...
@@ -1726,7 +1730,9 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
if
(
if_relu
)
{
if
(
if_relu
)
{
res3
=
vmaxq_f32
(
res3
,
zero
);
res3
=
vmaxq_f32
(
res3
,
zero
);
}
}
vst1q_f32
(
output_row_ptr
,
res3
);
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
vst1q_lane_f32
(
output_row_ptr
+
1
,
res3
,
1
);
vst1q_lane_f32
(
output_row_ptr
+
2
,
res3
,
2
);
input_row_ptr
+=
6
;
input_row_ptr
+=
6
;
output_row_ptr
+=
3
;
output_row_ptr
+=
3
;
...
@@ -1765,7 +1771,9 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
...
@@ -1765,7 +1771,9 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
res3
=
vmaxq_f32
(
res3
,
zero
);
res3
=
vmaxq_f32
(
res3
,
zero
);
}
}
if
((
w4
!=
w_times
))
{
if
((
w4
!=
w_times
))
{
vst1q_f32
(
output_row_ptr
,
res3
);
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
vst1q_lane_f32
(
output_row_ptr
+
1
,
res3
,
1
);
vst1q_lane_f32
(
output_row_ptr
+
2
,
res3
,
2
);
}
else
{
}
else
{
if
(
out_l
-
2
-
w_times
*
3
==
1
)
{
if
(
out_l
-
2
-
w_times
*
3
==
1
)
{
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
...
@@ -1865,12 +1873,11 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
...
@@ -1865,12 +1873,11 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
:
output_data_tmp
[
i
*
out_l
+
out_l
-
1
];
:
output_data_tmp
[
i
*
out_l
+
out_l
-
1
];
}
}
}
}
filter_data_tmp
+=
9
;
}
}
input_data
+=
inhxw
*
c
;
input_data
+=
inhxw
*
c
;
output_data
+=
outhxw
*
c
;
output_data
+=
outhxw
*
c
;
}
}
#endif
//
#endif
#endif
#endif
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录