未验证 提交 6e6d5dde 编写于 作者: H Houjiang Chen 提交者: GitHub

Merge branch 'develop' into ocr_attention

......@@ -37,6 +37,7 @@ const char *G_OP_TYPE_FUSION_CONV_ADD = "fusion_conv_add";
const char *G_OP_TYPE_LRN = "lrn";
const char *G_OP_TYPE_MUL = "mul";
const char *G_OP_TYPE_MULTICLASS_NMS = "multiclass_nms";
const char *G_OP_TYPE_NORM = "norm";
const char *G_OP_TYPE_POLYGON_BOX_TRANSFORM = "polygon_box_transform";
const char *G_OP_TYPE_POOL2D = "pool2d";
const char *G_OP_TYPE_PRIOR_BOX = "prior_box";
......@@ -169,5 +170,6 @@ std::unordered_map<
{G_OP_TYPE_FUSION_DECONV_ADD_RELU, {{"Input"}, {"Out"}}},
{G_OP_TYPE_SEQUENCE_EXPAND, {{"X", "Y"}, {"Out"}}},
{G_OP_TYPE_SEQUENCE_POOL, {{"X"}, {"Out"}}},
{G_OP_TYPE_SEQUENCE_SOFTMAX, {{"X"}, {"Out"}}}};
{G_OP_TYPE_SEQUENCE_SOFTMAX, {{"X"}, {"Out"}}},
{G_OP_TYPE_NORM, {{"X"}, {"Out", "Norm"}}}};
} // namespace paddle_mobile
......@@ -332,8 +332,8 @@ void expand_conv_arg(ConvArgs *arg) {
auto image_win_cnt = block_len;
auto image_win_cnt_last = block_last;
auto res_row_data_align4_pad = res_amount_per_row_pad / 8;
auto prog_full_cnt = 2048 / (filter_amount_all / 16 * 2) - 1;
if (prog_full_cnt == 1023) {
auto prog_full_cnt = 1024 / (filter_amount_all / 16 * 2) - 1;
if (prog_full_cnt == 511) {
prog_full_cnt--;
}
auto post_prog_full_cnt =
......
......@@ -22,26 +22,97 @@ namespace paddle_mobile {
namespace fpga {
int16_t fp32_2_fp16(float fp32_num) {
unsigned long tmp = *(unsigned long *)(&fp32_num); // NOLINT
auto t = (int16_t)(((tmp & 0x007fffff) >> 13) | ((tmp & 0x80000000) >> 16) |
(((tmp & 0x7f800000) >> 13) - (112 << 10)));
if (tmp & 0x1000) {
t++; // roundoff
int32_t tmp = *(reinterpret_cast<int32_t *>(&fp32_num));
int16_t se_fp32 = (tmp >> 23) & 0x1ff;
int32_t m_fp32 = tmp & 0x007fffff;
int16_t se_fp16 = 0;
int16_t m_fp16 = 0;
if (se_fp32 < 103) {
se_fp16 = 0x0000;
m_fp16 = m_fp32 >> 24;
} else if (se_fp32 < 113) {
se_fp16 = (0x0400 >> (113 - se_fp32));
m_fp16 = m_fp32 >> (126 - se_fp32);
} else if (se_fp32 <= 142) {
se_fp16 = (se_fp32 - 112) << 10;
m_fp16 = m_fp32 >> 13;
} else if (se_fp32 < 255) {
se_fp16 = 0x7C00;
m_fp16 = m_fp32 >> 24;
} else if (se_fp32 == 255) {
se_fp16 = 0x7C00;
m_fp16 = m_fp32 >> 13;
} else if (se_fp32 < 359) {
se_fp16 = 0x8000;
m_fp16 = m_fp32 >> 24;
} else if (se_fp32 < 369) {
se_fp16 = (0x0400 >> (369 - se_fp32)) | 0x8000;
m_fp16 = m_fp32 >> (382 - se_fp32);
} else if (se_fp32 <= 398) {
se_fp16 = ((se_fp32 - 368) << 10) | 0x8000;
m_fp16 = m_fp32 >> 13;
} else if (se_fp32 < 511) {
se_fp16 = 0x7C00;
m_fp16 = m_fp32 >> 24;
} else {
se_fp16 = 0x7C00;
m_fp16 = m_fp32 >> 13;
}
int16_t result = se_fp16 + m_fp16;
return result;
}
int32_t convertmantissa(int32_t i) {
int32_t m = i << 13;
int32_t e = 0;
while (!(m & 0x00800000)) {
e -= 0x00800000;
m <<= 1;
}
return t;
m &= ~0x00800000;
e += 0x38800000;
return m | e;
}
float fp16_2_fp32(int16_t fp16_num) {
if (0 == fp16_num) {
return 0;
int16_t se_fp16 = fp16_num >> 10;
int16_t m_fp16 = fp16_num & 0x3ff;
int32_t e_fp32 = 0;
int16_t offset = 0;
int32_t m_fp32 = 0;
if (se_fp16 == 0) {
e_fp32 = 0;
offset = 0;
} else if (se_fp16 < 31) {
e_fp32 = se_fp16 << 23;
offset = 1024;
} else if (se_fp16 == 31) {
e_fp32 = 0x47800000;
offset = 1024;
} else if (se_fp16 == 32) {
e_fp32 = 0x80000000;
offset = 0;
} else if (se_fp16 < 63) {
e_fp32 = 0x80000000 + (se_fp16 - 32) << 23;
offset = 1024;
} else { // se_fp16 == 63
e_fp32 = 0xC7800000;
offset = 1024;
}
int frac = (fp16_num & 0x3ff);
int exp = ((fp16_num & 0x7c00) >> 10) + 112;
int s = fp16_num & 0x8000;
int tmp = 0;
float fp32_num;
tmp = s << 16 | exp << 23 | frac << 13;
fp32_num = *(float *)&tmp; // NOLINT
int16_t a = offset + m_fp16;
if (a == 0) {
m_fp32 = 0;
} else if (a < 1024) {
int32_t tmp = a;
m_fp32 = convertmantissa(tmp);
} else {
int32_t tmp = a - 1024;
m_fp32 = 0x38000000 + (tmp << 13);
}
int32_t tmp = e_fp32 + m_fp32;
float fp32_num = *(reinterpret_cast<float *>(&tmp));
return fp32_num;
}
......@@ -126,6 +197,5 @@ uint64_t vaddr_to_paddr(void *address) {
return 0;
#endif
}
} // namespace fpga
} // namespace paddle_mobile
......@@ -256,6 +256,6 @@ int fpga_invalidate(void* address, size_t size);
uint64_t vaddr_to_paddr(void* address);
void expand_conv_arg(ConvArgs* arg);
void expand_EW_arg(EWAddArgs* arg);
inline int32_t convertmantissa(int32_t i);
} // namespace fpga
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef NORM_OP
#include "operators/kernel/norm_kernel.h"
#include "operators/kernel/central-arm-func/norm_arm_func.h"
namespace paddle_mobile {
namespace operators {
template <>
bool NormKernel<CPU, float>::Init(NormParam<CPU> *param) {
return true;
}
template <>
void NormKernel<CPU, float>::Compute(const NormParam<CPU> &param) {
NormCompute<float>(param);
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef NORM_OP
#pragma once
#include <cmath>
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
inline void GetDims(const framework::DDim &dim, int axis, int *pre, int *n,
int *post) {
*pre = 1;
*post = 1;
*n = dim[axis];
for (int i = 0; i < axis; ++i) {
(*pre) *= dim[i];
}
for (int i = axis + 1; i < dim.size(); ++i) {
(*post) *= dim[i];
}
}
template <typename P>
void NormCompute(const NormParam<CPU> &param) {
const float epsilon = param.Epsilon();
int axis = param.Axis();
const framework::Tensor *input = param.InputX();
framework::Tensor *norm = param.OutputNorm();
framework::Tensor *out = param.Out();
auto x_dims = input->dims();
if (axis < 0) {
axis += x_dims.size();
}
int pre, n, post;
GetDims(x_dims, axis, &pre, &n, &post);
const float *input_ptr = input->data<float>();
float *norm_ptr = norm->mutable_data<float>();
float *out_ptr = out->mutable_data<float>();
for (int p = 0; p < pre; ++p) {
const float *in_tmp = input_ptr + p * n * post;
float *norm_tmp = norm_ptr + p * post;
// in_ch = 0; norm = epsilon + x * x
for (int i = 0; i < post; ++i) {
*norm_tmp = epsilon;
*norm_tmp += (*in_tmp) * (*in_tmp);
norm_tmp++;
in_tmp++;
}
// in_ch >= 1; norm += x * x
for (int c = 1; c < n; ++c) {
norm_tmp = norm_ptr + p * post;
for (int i = 0; i < post; ++i) {
*norm_tmp += (*in_tmp) * (*in_tmp);
norm_tmp++;
in_tmp++;
}
}
// norm = sqart(norm)
norm_tmp = norm_ptr + p * post;
for (int i = 0; i < post; ++i) {
*norm_tmp = sqrtf(*norm_tmp);
norm_tmp++;
}
// out = input / norm
in_tmp = input_ptr + p * n * post;
float *out_tmp = out_ptr + p * n * post;
for (int c = 0; c < n; ++c) {
norm_tmp = norm_ptr + p * post;
for (int j = 0; j < post; ++j) {
*out_tmp = *in_tmp / *norm_tmp;
in_tmp++;
norm_tmp++;
out_tmp++;
}
}
}
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef NORM_OP
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
template <typename DeviceType, typename T>
class NormKernel
: public framework::OpKernelBase<DeviceType, NormParam<DeviceType>> {
public:
void Compute(const NormParam<DeviceType> &param);
bool Init(NormParam<DeviceType> *param);
};
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef NORM_OP
#include "operators/norm_op.h"
#include "framework/op_proto_maker.h"
#include "framework/op_registry.h"
namespace paddle_mobile {
namespace operators {
template <typename Dtype, typename T>
void NormOp<Dtype, T>::InferShape() const {
auto x_dims = this->param_.InputX()->dims();
this->param_.Out()->Resize(x_dims);
int axis = this->param_.Axis();
if (axis < 0) {
axis += x_dims.size();
}
x_dims[axis] = 1;
this->param_.OutputNorm()->Resize(x_dims);
}
} // namespace operators
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(norm, ops::NormOp);
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
#endif
#ifdef PADDLE_MOBILE_FPGA
#endif
#ifdef PADDLE_MOBILE_CL
#endif
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef NORM_OP
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/norm_kernel.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
using std::string;
template <typename DeviceType, typename T>
class NormOp
: public framework::OperatorWithKernel<DeviceType, NormParam<DeviceType>,
NormKernel<DeviceType, T>> {
public:
NormOp(const string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs, const framework::AttributeMap &attrs,
std::shared_ptr<framework::Scope> scope)
: framework::OperatorWithKernel<DeviceType, NormParam<DeviceType>,
NormKernel<DeviceType, T>>(
type, inputs, outputs, attrs, scope) {}
void InferShape() const override;
protected:
};
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -280,6 +280,11 @@ class OpParam {
return GetVarValue<T>("OutputBox", outputs, scope);
}
template <typename T>
static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
return GetVarValue<T>("Norm", outputs, scope);
}
template <typename T>
static T *OutputVariancesFrom(const VariableNameMap &outputs,
const Scope &scope) {
......@@ -733,6 +738,41 @@ class LrnParam : public OpParam {
};
#endif
#ifdef NORM_OP
template <typename Dtype>
class NormParam : OpParam {
typedef typename DtypeTensorTrait<Dtype>::gtype GType;
typedef typename DtypeTensorTrait<Dtype>::rtype RType;
public:
NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
const AttributeMap &attrs, const Scope &scope) {
input_x_ = InputXFrom<GType>(inputs, scope);
out_ = OutFrom<GType>(outputs, scope);
output_norm_ = OutputNormFrom<GType>(outputs, scope);
epsilon_ = GetAttr<float>("epsilon", attrs);
axis_ = GetAttr<int>("axis", attrs);
}
const RType *InputX() const { return input_x_; }
RType *Out() const { return out_; }
RType *OutputNorm() const { return output_norm_; }
const float &Epsilon() const { return epsilon_; }
const int &Axis() const { return axis_; }
private:
RType *input_x_;
RType *out_;
RType *output_norm_;
float epsilon_;
int axis_;
};
#endif
#ifdef BATCHNORM_OP
template <typename Dtype>
class BatchNormParam : OpParam {
......
......@@ -146,6 +146,7 @@ if (NOT DEFINED CMAKE_IOS_DEVELOPER_ROOT)
endif (NOT DEFINED CMAKE_IOS_DEVELOPER_ROOT)
set (CMAKE_IOS_DEVELOPER_ROOT ${CMAKE_IOS_DEVELOPER_ROOT} CACHE PATH "Location of iOS Platform")
set(CMAKE_IOS_SDK_ROOT "/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS.sdk")
# Find and use the most recent iOS sdk unless specified manually with CMAKE_IOS_SDK_ROOT
if (NOT DEFINED CMAKE_IOS_SDK_ROOT)
file (GLOB _CMAKE_IOS_SDKS "${CMAKE_IOS_DEVELOPER_ROOT}/SDKs/*")
......
......@@ -215,6 +215,7 @@ endif()
if(NOT FOUND_MATCH)
message("--default--")
set(NORM_OP ON)
set(BATCHNORM_OP ON)
set(CONV_TRANSPOSE_OP ON)
set(BOXCODER_OP ON)
......@@ -302,6 +303,9 @@ endif()
# option(TRANSPOSE2_OP "" ON)
# endif ()
if (NORM_OP)
add_definitions(-DNORM_OP)
endif()
if (BATCHNORM_OP)
add_definitions(-DBATCHNORM_OP)
endif()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册