提交 6d7461bb 编写于 作者: E eclipsycn 提交者: GitHub

Merge pull request #281 from Eclipsess/develop

fix #280 add relu op and test
......@@ -144,26 +144,25 @@ const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
std::make_shared<framework::Scope>();
program.scope = scope;
// originProgramDesc->Block(0);
// for (const auto &block : originProgramDesc->Blocks()) {
// for (int i = 0; i < block->Vars().size(); ++i) {
// std::shared_ptr<framework::VarDesc> var_desc = block->Vars()[i];
//// auto var = scope->Var(var_desc->Name());
// if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) {
// if (var_desc->Persistable() &&
// var_desc->GetType() != framework::proto::VarType::FEED_MINIBATCH
// && var_desc->GetType() != framework::proto::VarType::FETCH_LIST)
// {
// // auto tensor = var->GetMutable<framework::LoDTensor>();
// // to load
// // LoadVar(tensor, dirname + "/" + var_desc->Name());
// }
// } else {
// // TODO(codeWorm): some.
// }
// }
// }
originProgramDesc->Block(0);
for (const auto &block : originProgramDesc->Blocks()) {
for (int i = 0; i < block->Vars().size(); ++i) {
std::shared_ptr<framework::VarDesc> var_desc = block->Vars()[i];
auto var = scope->Var(var_desc->Name());
if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) {
if (var_desc->Persistable() &&
var_desc->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
var_desc->GetType() != framework::proto::VarType::FETCH_LIST) {
auto tensor = var->GetMutable<framework::LoDTensor>();
// to load
LoadVar(tensor, dirname + "/" + var_desc->Name());
}
} else {
// TODO(codeWorm): some.
}
}
}
#ifdef PADDLE_MOBILE_DEBUG
for (const auto &block : program_desc_proto.blocks()) {
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "operators/kernel/relu_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
void ReluKernel<CPU, float>::Compute(const ReluParam &param) const {
const auto *input_x = param.InputX();
auto *input_x_ptr = input_x->data<float>();
auto *out = param.Out();
auto *out_ptr = out->mutable_data<float>();
for (int i = 0; i < input_x->numel(); i++) {
out_ptr[i] = input_x_ptr[i] > 0 ? input_x_ptr[i] : 0;
}
}
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "framework/operator.h"
#include "operators/op_param.h"
#pragma once;
namespace paddle_mobile {
namespace operators {
template <typename DeviceType, typename T>
class ReluKernel : public framework::OpKernelBase<DeviceType, ReluParam> {
public:
void Compute(const ReluParam& param) const;
};
} // namespace operators
} // namespace paddle_mobile
......@@ -669,5 +669,23 @@ class ReshapeParam : public OpParam {
vector<int> shape_;
bool inplace_;
};
class ReluParam : public OpParam {
public:
ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
const AttributeMap &attrs, const Scope &scope) {
input_x_ = InputXFrom<Tensor>(inputs, scope);
out_ = OutFrom<Tensor>(outputs, scope);
}
const Tensor *InputX() const { return input_x_; }
Tensor *Out() const { return out_; }
private:
Tensor *input_x_;
Tensor *out_;
};
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/relu_op.h"
namespace paddle_mobile {
namespace operators {
template <typename Dtype, typename T>
void ReluOp<Dtype, T>::InferShape() const {
auto input_dims = param_.InputX()->dims();
param_.Out()->Resize(input_dims);
}
template class ReluOp<CPU, float>;
} // namespace operators
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
USE_OP(relu);
REGISTER_OPERATOR(relu, ops::ReluOp);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/relu_kernel.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
using paddle_mobile::framework::Tensor;
template <typename DeviceType, typename T>
class ReluOp : public framework::OperatorWithKernel<DeviceType> {
public:
ReluOp(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs, const framework::AttributeMap attrs,
std::shared_ptr<framework::Scope> scope)
: framework::OperatorWithKernel<DeviceType>(type, inputs, outputs, attrs,
scope),
param_(inputs, outputs, attrs, *scope) {}
void Run() const {
operators::ReluKernel<DeviceType, T> kernel;
kernel.Compute(param_);
}
using framework::OperatorWithKernel<DeviceType>::OperatorWithKernel;
void InferShape() const override;
protected:
ReluParam param_;
};
} // namespace operators
} // namespace paddle_mobile
......@@ -45,6 +45,9 @@ target_link_libraries(test-multiclassnms-op paddle-mobile)
# gen test
ADD_EXECUTABLE(test-reshape-op operators/test_reshape_op.cpp test_helper.h test_include.h)
target_link_libraries(test-reshape-op paddle-mobile)
# gen test
ADD_EXECUTABLE(test-relu-op operators/test_relu_op.cpp test_helper.h test_include.h)
target_link_libraries(test-relu-op paddle-mobile)
# gen test log
ADD_EXECUTABLE(test-log common/test_log.cpp)
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "../test_include.h"
#include "operators/relu_op.h"
namespace paddle_mobile {
namespace framework {
template <typename Dtype>
class TestReluOp {
public:
explicit TestReluOp(const Program<Dtype> p) : program_(p) {
if (use_optimize_) {
to_predict_program_ = program_.optimizeProgram;
} else {
to_predict_program_ = program_.originProgram;
}
const std::vector<std::shared_ptr<BlockDesc>> blocks =
to_predict_program_->Blocks();
// DLOG << " **block size " << blocks.size();
for (auto block_desc : blocks) {
std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
// DLOG << " ops " << ops.size();
for (auto op : ops) {
if (op->Type() == "relu" &&
op->Input("X")[0] == "batch_norm_34.tmp_2") {
DLOG << "in";
std::shared_ptr<operators::ReluOp<Dtype, float>> test_op =
std::make_shared<operators::ReluOp<Dtype, float>>(
op->Type(), op->GetInputs(), op->GetOutputs(),
op->GetAttrMap(), program_.scope);
ops_of_block_[*block_desc.get()].push_back(test_op);
}
}
}
}
std::shared_ptr<Tensor> predict(const Tensor &t1) {
// feed
auto scope = program_.scope;
Variable *x1_feed_value = scope->Var("batch_norm_34.tmp_2");
auto tensor_x1 = x1_feed_value->GetMutable<Tensor>();
tensor_x1->ShareDataWith(t1);
Variable *output = scope->Var("batch_norm_34.tmp_3");
auto *output_tensor = output->GetMutable<Tensor>();
output_tensor->mutable_data<float>({1, 2, 3, 4});
// DLOG << typeid(output_tensor).name();
// DLOG << "output_tensor dims: " << output_tensor->dims();
std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
out_tensor.reset(output_tensor);
predict(t1, 0);
return out_tensor;
// return outvars_tensor;
}
private:
const framework::Program<Dtype> program_;
std::shared_ptr<ProgramDesc> to_predict_program_;
std::map<framework::BlockDesc,
std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
ops_of_block_;
bool use_optimize_ = false;
void predict(const Tensor &t1, int block_id) {
std::shared_ptr<BlockDesc> to_predict_block =
to_predict_program_->Block(block_id);
for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
auto op = ops_of_block_[*to_predict_block.get()][j];
DLOG << "op -> run()";
op->Run();
}
}
};
template class TestReluOp<CPU>;
} // namespace framework
} // namespace paddle_mobile
int main() {
DLOG << "----------**********----------";
DLOG << "begin to run Relu Test";
paddle_mobile::Loader<paddle_mobile::CPU> loader;
auto program = loader.Load(std::string("../../test/models/mobilenet+ssd"));
/// input x (1,3,300,300)
paddle_mobile::framework::Tensor inputx1;
SetupTensor<float>(&inputx1, {1, 2, 3, 4}, static_cast<float>(-1),
static_cast<float>(1));
auto *inputx1_ptr = inputx1.data<float>();
paddle_mobile::framework::TestReluOp<paddle_mobile::CPU> testReluOp(program);
auto output = testReluOp.predict(inputx1);
auto *output_ptr = output->data<float>();
for (int i = 0; i < output->numel(); i++) {
DLOG << output_ptr[i];
}
return 0;
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册