Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
6b14134f
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6b14134f
编写于
12月 03, 2018
作者:
Z
zhangyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add deconv op for V1 for FPGA track
上级
467bbfe7
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
864 addition
and
52 deletion
+864
-52
src/fpga/V1/api.cpp
src/fpga/V1/api.cpp
+23
-5
src/fpga/V1/filter.cpp
src/fpga/V1/filter.cpp
+24
-19
src/fpga/V1/pe.cpp
src/fpga/V1/pe.cpp
+775
-12
src/fpga/common/driver.cpp
src/fpga/common/driver.cpp
+16
-2
src/fpga/common/driver.h
src/fpga/common/driver.h
+7
-2
src/fpga/common/fpga_common.h
src/fpga/common/fpga_common.h
+19
-12
未找到文件。
src/fpga/V1/api.cpp
浏览文件 @
6b14134f
...
...
@@ -196,19 +196,35 @@ void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
arg
->
conv_arg
[
i
].
image
.
pad_height
=
(
uint32_t
)
padding_h
;
arg
->
conv_arg
[
i
].
image
.
pad_width
=
(
uint32_t
)
padding_w
;
arg
->
conv_arg
[
i
].
filter_scale_address
=
filter
->
scale
;
arg
->
conv_arg
[
i
].
filter_address
=
&
(
(
int8_t
*
)
filter_ptr
)[
i
*
element_num
*
filter_num_per_div
];
// NOLINT
arg
->
conv_arg
[
i
].
sb_address
=
&
bs_ptr
[
i
*
filter_num_per_div
*
2
];
// arg->conv_arg[i].filter_address = &(
// (int8_t *)filter_ptr)[i * element_num * filter_num_per_div]; //
// NOLINT
// arg->conv_arg[i].sb_address = &bs_ptr[i * filter_num_per_div * 2];
arg
->
conv_arg
[
i
].
filter_num
=
(
uint32_t
)(
i
==
n
-
1
?
channel
-
(
n
-
1
)
*
filter_num_per_div
// NOLINT
:
filter_num_per_div
);
size_t
filter_size
=
element_num
*
arg
->
conv_arg
[
i
].
filter_num
*
sizeof
(
int8_t
);
auto
filter_head
=
&
((
int8_t
*
)
filter_ptr
)[
i
*
element_num
*
filter_num_per_div
];
arg
->
conv_arg
[
i
].
filter_address
=
fpga_malloc
(
filter_size
);
memcpy
(
arg
->
conv_arg
[
i
].
filter_address
,
filter_head
,
filter_size
);
fpga_flush
(
arg
->
conv_arg
[
i
].
filter_address
,
filter_size
);
size_t
bs_size
=
2
*
arg
->
conv_arg
[
i
].
filter_num
*
sizeof
(
float
);
auto
bs_head
=
&
bs_ptr
[
i
*
filter_num_per_div
*
2
];
arg
->
conv_arg
[
i
].
sb_address
=
fpga_malloc
(
bs_size
);
memcpy
(
arg
->
conv_arg
[
i
].
sb_address
,
bs_head
,
bs_size
);
fpga_flush
(
arg
->
conv_arg
[
i
].
sb_address
,
bs_size
);
if
(
n
>
1
)
{
arg
->
conv_arg
[
i
].
output
.
scale_address
=
(
float
*
)
fpga_malloc
(
2
*
sizeof
(
float
));
// NOLINT
arg
->
conv_arg
[
i
].
output
.
address
=
fpga_malloc
(
inp
ut
->
dims
()[
2
]
*
align_to_x
(
inp
ut
->
dims
()[
3
]
*
arg
->
conv_arg
[
i
].
filter_num
,
fpga_malloc
(
o
ut
->
dims
()[
2
]
*
align_to_x
(
o
ut
->
dims
()[
3
]
*
arg
->
conv_arg
[
i
].
filter_num
,
IMAGE_ALIGNMENT
)
*
sizeof
(
half
));
}
else
{
...
...
@@ -221,6 +237,8 @@ void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
arg
->
concat_arg
.
scales_in
[
i
]
=
arg
->
conv_arg
[
i
].
output
.
scale_address
;
arg
->
concat_arg
.
channel_num
[
i
]
=
arg
->
conv_arg
[
i
].
filter_num
;
}
filter
->
reset_data_ptr
(
nullptr
);
fpga_free
(
bs_ptr
);
}
}
// namespace fpga
...
...
src/fpga/V1/filter.cpp
浏览文件 @
6b14134f
...
...
@@ -137,24 +137,23 @@ void align_num(char **data_in, int num_per_div_before_alignment, int num,
int
align_chw
=
align_to_x
(
chw
,
FILTER_ELEMENT_ALIGNMENT
);
int
num_per_div_after_alignment
=
align_to_x
(
num_per_div_before_alignment
,
FILTER_NUM_ALIGNMENT
);
if
(
num_per_div_after_alignment
!=
num_per_div_before_alignment
)
{
char
*
tmp
=
*
data_in
;
int
div_num
=
(
num
+
num_per_div_before_alignment
-
1
)
/
num_per_div_before_alignment
;
int
num_element
=
div_num
*
num_per_div_after_alignment
*
align_chw
;
char
*
data_tmp
=
(
char
*
)
fpga_malloc
(
num_element
*
sizeof
(
char
));
// NOLINT
memset
(
data_tmp
,
0
,
num_element
*
sizeof
(
char
));
char
*
tmp
=
*
data_in
;
int
div_num
=
(
num
+
num_per_div_before_alignment
-
1
)
/
num_per_div_before_alignment
;
int
num_element
=
div_num
*
num_per_div_after_alignment
*
align_chw
;
char
*
data_tmp
=
(
char
*
)
fpga_malloc
(
num_element
*
sizeof
(
char
));
// NOLINT
for
(
i
=
0
;
i
<
div_num
;
i
++
)
{
memcpy
(
data_tmp
+
num_per_div_after_alignment
*
align_chw
*
i
,
*
data_in
+
num_per_div_before_alignment
*
align_chw
*
i
,
num_per_div_before_alignment
*
align_chw
);
}
memset
(
data_tmp
,
0
,
num_element
*
sizeof
(
char
));
*
data_in
=
data_tmp
;
fpga_free
(
tmp
);
for
(
i
=
0
;
i
<
div_num
;
i
++
)
{
memcpy
(
data_tmp
+
num_per_div_after_alignment
*
align_chw
*
i
,
*
data_in
+
num_per_div_before_alignment
*
align_chw
*
i
,
num_per_div_before_alignment
*
align_chw
);
}
*
data_in
=
data_tmp
;
fpga_free
(
tmp
);
}
void
reorder
(
char
**
data_in
,
int
num_after_alignment
,
int
chw
)
{
...
...
@@ -223,7 +222,10 @@ void format_filter(float **data_in, int num, int channel, int height, int width,
char
**
quantize_data
=
(
char
**
)
data_in
;
// NOLINT
convert_to_hwc
(
quantize_data
,
num
,
channel
,
height
,
width
);
align_element
(
quantize_data
,
num
,
chw
);
align_num
(
quantize_data
,
num_per_div_before_alignment
,
num
,
chw
);
if
(
num_after_alignment
!=
num
)
{
align_num
(
quantize_data
,
num_per_div_before_alignment
,
num
,
chw
);
}
reorder
(
quantize_data
,
num_after_alignment
,
chw
);
interleave
(
quantize_data
,
num_after_alignment
,
chw
);
fpga_flush
(
*
quantize_data
,
align_to_x
(
chw
,
FILTER_ELEMENT_ALIGNMENT
)
*
...
...
@@ -254,15 +256,18 @@ void format_fc_filter(float **data_in, int num, int channel, int height,
align_to_x
(
num_per_div_before_alignment
,
FILTER_NUM_ALIGNMENT
);
int
div_num
=
(
num
+
num_per_div_before_alignment
-
1
)
/
num_per_div_before_alignment
;
int
num_after_alignment
=
num_per_div_after_alignment
*
div_num
;
int
residual
=
num
%
num_per_div_before_alignment
;
int
num_after_alignment
=
num_per_div_after_alignment
*
((
residual
==
0
)
?
div_num
:
(
div_num
-
1
))
+
align_to_x
(
residual
,
FILTER_NUM_ALIGNMENT
);
quantize
(
data_in
,
data_size
,
max
);
char
**
quantize_data
=
(
char
**
)
data_in
;
// NOLINT
convert_fc_filter
(
quantize_data
,
num
,
chw
);
align_element
(
quantize_data
,
num
,
chw
);
align_num
(
quantize_data
,
num_per_div_before_alignment
,
num
,
chw
);
if
(
num_after_alignment
!=
num
)
{
align_num
(
quantize_data
,
num_per_div_before_alignment
,
num
,
chw
);
}
reorder
(
quantize_data
,
num_after_alignment
,
chw
);
interleave
(
quantize_data
,
num_after_alignment
,
chw
);
fpga_flush
(
*
quantize_data
,
align_to_x
(
chw
,
FILTER_ELEMENT_ALIGNMENT
)
*
...
...
src/fpga/V1/pe.cpp
浏览文件 @
6b14134f
...
...
@@ -13,16 +13,172 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "fpga/common/pe.h"
#include <unistd.h>
#include <iomanip>
#include <iostream>
#include "common/types.h"
#include "fpga/V1/filter.h"
#include "fpga/V1/image.h"
#include "fpga/common/config.h"
#include "fpga/common/driver.h"
using
namespace
std
;
using
namespace
paddle_mobile
::
fpga
::
driver
;
// NOLINT
namespace
paddle_mobile
{
namespace
fpga
{
#define IMAGE_ALIGN 16
#define FILTER_ALIGN 16
#define FILTER_NUM_ALIGN 32
#define USE_RELU 1
#define USE_BIAS 2
// bypass cmd
#define CMD_FP16_TO_FP16 0
#define CMD_FP16_TO_FP32 1
#define CMD_FP32_TO_FP16 2
#define CMD_FP32_TO_FP32 3
// bypass macro
#define SIZE_FP16 2
#define SIZE_FP32 4
#define PE_IRQ_TIMEOUT 1000000
/* Interrupt bit-set offset*/
#define INTERRUPT_RSVD 0x0001
#define INTERRUPT_BYPASS 0x0002
#define INTERRUPT_CONV 0x0004
#define INTERRUPT_POOLING 0x0008
#define INTERRUPT_EW 0x0010
//#define INTERRUPT_RESIZE 0x0020
/* Register offset */
#define REG_INTERRUPT 0x000
#define REG_VERSION 0x008
#define REG_TEMPERATURE 0x010
#define REG_FPGA_RESET 0x018
#define REG_TEST_REGISTER 0x048
#define REG_HARDWARE_STATUS 0x050
#define REG_TIMER_COUNTER 0x070
#define REG_SCALE_PARAMETER 0x080
#define REG_FLASH_CMD 0x200
#define REG_FLASH_DATA 0x208
#define REG_FLASH_CONFIG 0x210
#define REG_FLASH_STATUS 0x218
#define REG_SN 0x220
//#define REG_READ_SCALE
//#define REG_WRITE_SCALE
/*bypass*/
#define REG_CONVERT_CMD 0x400
#define REG_CONVERT_SRC_ADDR 0x408
#define REG_CONVERT_DST_ADDR 0x410
#define REG_CONVERT_LENGTH 0x418
/*resize*/
#define REG_RESIZE_CMD 0x600
#define REG_RESIZE_CHANNEL_NUMBER 0x608
#define REG_RESIZE_INPUT_IMAGE_PIXEL 0x610
#define REG_RESIZE_OUTPUT_IMAGE_PIXEL 0x618
#define REG_RESIZE_INPUT_BASE_ADDR 0x620
#define REG_RESIZE_WEIGHT_BASE_ADDR 0x628
#define REG_RESIZE_SRC_POS_BASE_ADDR 0x630
#define REG_RESIZE_OUTPUT_BASE_ADDR 0x638
/*pooling*/
#define REG_POOLING_CMD 0x800
#define REG_POOLING_IMAGE_BASE_ADDR 0x808
#define REG_POOLING_RESULT_BASE_ADDR 0x810
#define REG_POOLING_IMAGE_PIXEL 0x818
#define REG_POOLING_WINDOW_SIZE 0x820
#define REG_POOLING_RESULT_PIXEL 0x828
#define REG_POOLING_PAD_PIXEL 0x830
#define REG_POOLING_STEP_PIXEL 0x838
#define REG_POOLING_CHANNEL_NUMBER 0x840
#define REG_POOLING_IMAGE_AMOUNT_PER_ROW 0x848
#define REG_POOLING_IMAGE_ONE_PAD_PER_ROW 0x850
#define REG_POOLING_IMAGE_TWO_PAD_PER_ROW 0x858
#define REG_POOLING_IMAGE_ROW_MUL_WINDOW_HEIGHT 0x860
#define REG_POOLING_IMAGE_ROW_MUL_PAD_HEIGHT 0x868
#define REG_POOLING_IMAGE_ROW_MUL_STEP_HEIGHT 0x870
#define REG_POOLING_RESULT_AMOUNT_ALIGN_32 0x878
#define REG_POOLING_RESULT_AMOUNT_ALIGN_64 0x880
#define REG_POOLING_IMAGE_CALCU_HEIGHT 0x888
#define REG_POOLING_IMAGE_PADLEFT_SKIPWINDOW 0x898
#define REG_POOLING_MODE_RECIPROCAL 0x890
/*conv*/
#define REG_CONV_CMD 0xC00
#define REG_CONV_IMAGE_BASE_ADDR 0xC08
#define REG_CONV_FILTER_BASE_ADDR 0xC10
#define REG_CONV_SB_BASE_ADDR 0xC18
#define REG_CONV_RESULT_BASE_ADDR 0xC20
#define REG_CONV_IMAGE_PIXEL 0xC28
#define REG_CONV_FILTER_PIXEL 0xC30
#define REG_CONV_RESULT_PIXEL 0xC38
#define REG_CONV_PAD_PIXEL 0xC40
#define REG_CONV_STEP_PIXEL 0xC48
#define REG_CONV_GROUP_NUMBER 0xC50
#define REG_CONV_FILTER_NUMBER 0xC58
#define REG_CONV_CHANNEL_NUMBER 0xC60
#define REG_CONV_FILTER_PER_GROUP 0xC68
#define REG_CONV_CHANNEL_PER_GROUP 0xC70
#define REG_CONV_IMAGE_AMOUNT_PER_ROW 0xC78
#define REG_CONV_IMAGE_ONE_PAD_PER_ROW 0xC80
#define REG_CONV_IMAGE_TWO_PAD_PER_ROW 0xC88
#define REG_CONV_FILTER_AMOUNT_ALL 0xC90
#define REG_CONV_RESULT_AMOUNT_PER_ROW 0xC98
#define REG_CONV_RESULT_LAST_VALID 0xCA0
#define REG_CONV_BLOCK_AMOUNT_PER_ROW 0xCA8
#define REG_CONV_FILTER_PAD_WIDTH_MUL_CH 0xCB0
#define REG_CONV_IMAGE_AMOUNT_PER_ROW_MUL_WIN_F 0xCB8
#define REG_CONV_IMAGE_AMOUNT_PER_ROW_MUL_WIN 0xCC0
#define REG_CONV_IMAGE_BLOCK_NUM 0xCC8
#define REG_CONV_IMAGE_BLOCK_LEN 0xCD0
#define REG_CONV_IMAGE_BLOCK_LEN_LAST 0xCD8
#define REG_CONV_IMAGE_WIN_CNT 0xCE0
#define REG_CONV_IMAGE_WIN_CNT_LAST 0xCE8
#define REG_CONV_RES_ROW_DATA_ALIGN4_PAD 0xCF8
#define REG_CONV_PROG_FULL_CNT 0xD08
#define REG_CONV_POST_PROG_FULL_CNT 0xD10
#define REG_CONV_FPGA_BIAS_SCALE_LEN 0xD20
#define REG_CONV_IMAGE_SCALE 0xD28
#define REG_CONV_FILTER_SCALE 0xD30
/*ew*/
#define REG_EW_CMD 0x0F00
#define REG_EW_IMAGE0_BASE_ADDR 0x0F08
#define REG_EW_IMAGE1_BASE_ADDR 0x0F10
#define REG_EW_RESULT_BASE_ADDR 0x0F18
#define REG_EW_DATA_LEN 0x0F20
#define REG_EW_COEFFICIENT 0x0F28
#define REG_EW_IMAGE_PIXEL 0x0F30
#define REG_EW_IMAGE_AMOUNT_PER_ROW 0x0F38
int
ComputeFpgaConv
(
const
struct
SplitConvArgs
&
args
)
{
ComputeBasicConv
(
args
.
conv_arg
[
0
]);
// ComputeBasicConv(args.conv_arg[0]);
#ifdef FPGA_PRINT_MODE
DLOG
<<
"=============ComputeFPGAConv==========="
;
DLOG
<<
" filter_num:"
<<
args
.
filter_num
<<
" group_num:"
<<
args
.
group_num
<<
" split_num:"
<<
args
.
split_num
;
#endif
int
split_num
=
args
.
split_num
;
for
(
int
i
=
0
;
i
<
split_num
;
i
++
)
{
ComputeBasicConv
(
args
.
conv_arg
[
i
]);
}
if
(
split_num
>
1
)
{
ComputeFPGAConcat
(
args
.
concat_arg
);
}
}
int
ComputeBasicConv
(
const
struct
ConvArgs
&
args
)
{
...
...
@@ -47,9 +203,237 @@ int ComputeBasicConv(const struct ConvArgs &args) {
DLOG
<<
" out_address:"
<<
args
.
output
.
address
<<
" out_scale_address:"
<<
args
.
output
.
scale_address
;
#endif
cout
<<
" relu_enabled:"
<<
args
.
relu_enabled
<<
" sb_address:"
<<
args
.
sb_address
<<
" filter_address:"
<<
args
.
filter_address
<<
" filter_num:"
<<
args
.
filter_num
<<
" group_num:"
<<
args
.
group_num
;
cout
<<
" image_address:"
<<
args
.
image
.
address
<<
" image_scale_address:"
<<
args
.
image
.
scale_address
<<
" image_channels:"
<<
args
.
image
.
channels
<<
" image_height:"
<<
args
.
image
.
height
<<
" image_width:"
<<
args
.
image
.
width
<<
" pad_height:"
<<
args
.
image
.
pad_height
<<
" pad_width:"
<<
args
.
image
.
pad_width
;
cout
<<
" kernel_height:"
<<
args
.
kernel
.
height
<<
" kernel_width:"
<<
args
.
kernel
.
width
<<
" stride_h:"
<<
args
.
kernel
.
stride_h
<<
" stride_w:"
<<
args
.
kernel
.
stride_w
;
cout
<<
" out_address:"
<<
args
.
output
.
address
<<
" out_scale_address:"
<<
args
.
output
.
scale_address
;
#ifndef PADDLE_MOBILE_ZU5
return
0
;
#ifdef PADDLE_MOBILE_ZU5
DLOG
<<
"Conv"
;
// return 0;
uint64_t
timer_cnt
;
uint64_t
output_scale
;
uint64_t
image_scale
;
uint64_t
filter_scale
;
uint64_t
image_address_phy
=
0
;
uint64_t
sb_address_phy
=
0
;
uint64_t
filter_address_phy
=
0
;
uint64_t
output_address_phy
=
0
;
int
ret
=
0
;
fpga_copy
(
&
image_scale
,
args
.
image
.
scale_address
,
2
*
sizeof
(
float
));
fpga_copy
(
&
filter_scale
,
args
.
filter_scale_address
,
2
*
sizeof
(
float
));
cout
<<
"image_scale :"
<<
hex
<<
(
image_scale
)
<<
endl
;
cout
<<
"filter_scale :"
<<
hex
<<
(
filter_scale
)
<<
endl
;
uint64_t
filterlen
=
(
uint64_t
)
args
.
kernel
.
width
*
(
uint64_t
)
args
.
kernel
.
height
*
(
uint64_t
)
args
.
image
.
channels
;
filterlen
=
align_to_x
(
filterlen
,
FILTER_ALIGN
);
filterlen
*=
align_to_x
((
uint64_t
)
args
.
filter_num
,
FILTER_NUM_ALIGN
);
uint64_t
fpga_bias_scale_len
=
align_to_x
(
args
.
filter_num
/
args
.
group_num
,
8
)
*
args
.
group_num
;
uint64_t
output_height
=
(
args
.
image
.
height
+
args
.
image
.
pad_height
*
2
-
args
.
kernel
.
height
)
/
args
.
kernel
.
stride_h
+
1
;
uint64_t
output_width
=
(
args
.
image
.
width
+
args
.
image
.
pad_width
*
2
-
args
.
kernel
.
width
)
/
args
.
kernel
.
stride_w
+
1
;
uint64_t
output_size
=
output_height
*
output_width
*
(
uint64_t
)
args
.
filter_num
;
uint64_t
filter_per_group
=
(
uint64_t
)(
args
.
filter_num
/
args
.
group_num
);
uint64_t
channel_per_group
=
(
uint64_t
)(
args
.
image
.
channels
/
args
.
group_num
);
uint64_t
image_row_count
=
((
uint64_t
)
args
.
image
.
width
)
*
((
uint64_t
)
args
.
image
.
channels
);
// without align
uint64_t
image_amount_per_row
=
align_to_x
(
image_row_count
,
IMAGE_ALIGN
);
uint64_t
image_one_pad_per_row
=
align_to_x
(
image_row_count
,
IMAGE_ALIGN
)
+
((
uint64_t
)
args
.
image
.
pad_width
)
*
((
uint64_t
)
args
.
image
.
channels
);
uint64_t
filter_amount_all
=
align_to_x
(((
uint64_t
)
args
.
kernel
.
height
)
*
((
uint64_t
)
args
.
kernel
.
width
)
*
channel_per_group
,
FILTER_ALIGN
);
uint64_t
output_amount_per_row
=
align_to_x
(
output_width
*
((
uint64_t
)
args
.
filter_num
),
IMAGE_ALIGN
);
// find the opt partition strategy
uint64_t
res_win
;
uint64_t
res_fit
=
0
;
for
(
res_win
=
1
;
res_win
<=
output_width
;
res_win
=
res_win
+
1
)
{
if
((
align_to_x
(
(
args
.
image
.
channels
*
(
args
.
kernel
.
width
+
(
res_win
-
1
)
*
args
.
kernel
.
stride_w
)),
IMAGE_ALIGN
)
/
16
+
1
)
*
args
.
kernel
.
height
>
2048
)
{
break
;
}
}
if
(
res_win
!=
output_width
)
{
res_win
-=
1
;
}
if
(((
res_win
%
2
)
!=
0
)
&&
(
res_win
!=
1
))
{
res_win
=
res_win
-
1
;
}
res_fit
=
res_win
;
uint64_t
block_num
=
(
output_width
+
res_fit
-
1
)
/
res_fit
;
uint64_t
block_len
=
res_fit
;
uint64_t
block_last
=
output_width
-
res_fit
*
(
block_num
-
1
);
uint64_t
res_amount_per_row
=
output_width
*
args
.
filter_num
;
uint64_t
res_amount_per_row_pad
=
output_amount_per_row
-
res_amount_per_row
;
uint64_t
image_block_amount_per_row
=
args
.
kernel
.
stride_w
*
(
res_fit
)
*
args
.
image
.
channels
;
uint64_t
filter_pad_width_mul_channel
=
args
.
image
.
pad_width
*
args
.
image
.
channels
;
uint64_t
image_amount_per_row_multi_win_first
=
image_amount_per_row
*
(
4
*
args
.
kernel
.
stride_h
-
args
.
image
.
pad_height
);
uint64_t
image_amount_per_row_multi_win
=
image_amount_per_row
*
(
4
*
args
.
kernel
.
stride_h
);
uint64_t
image_block_num
=
block_num
;
uint64_t
image_block_len
=
align_to_x
((
args
.
image
.
channels
*
(
args
.
kernel
.
width
+
(
block_len
-
1
)
*
args
.
kernel
.
stride_w
)),
IMAGE_ALIGN
)
/
16
+
1
;
uint64_t
image_block_len_last
=
align_to_x
(
(
args
.
image
.
channels
*
(
args
.
kernel
.
width
+
(
block_last
-
1
)
*
args
.
kernel
.
stride_w
)),
IMAGE_ALIGN
)
/
16
+
1
;
uint64_t
image_win_cnt
=
block_len
;
uint64_t
image_win_cnt_last
=
block_last
;
uint64_t
res_row_data_align4_pad
=
res_amount_per_row_pad
/
8
;
uint64_t
prog_full_cnt
=
2048
/
(
filter_amount_all
/
16
*
2
)
-
1
;
if
(
prog_full_cnt
==
1023
)
{
prog_full_cnt
--
;
}
uint64_t
post_prog_full_cnt
=
(
512
/
(
align_to_x
(
args
.
filter_num
,
4
)
/
4
*
2
)
>
2
)
?
(
512
/
(
align_to_x
(
args
.
filter_num
,
4
)
/
4
*
2
)
-
2
)
:
0
;
image_address_phy
=
vaddr_to_paddr
(
args
.
image
.
address
);
sb_address_phy
=
vaddr_to_paddr
(
args
.
sb_address
);
filter_address_phy
=
vaddr_to_paddr
(
args
.
filter_address
);
output_address_phy
=
vaddr_to_paddr
(
args
.
output
.
address
);
/*SDK刷Cache保证数据一致性*/
uint64_t
cmd
=
0UL
|
(
args
.
relu_enabled
?
USE_RELU
:
0
)
|
USE_BIAS
;
pthread_mutex_lock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
if
(
ERROR
==
g_fpgainfo
.
pe_data
->
pes
[
PE_IDX_CONV
]
->
status
)
{
ret
=
-
EIO
;
DLOG
<<
"Conv Status Error!"
;
pthread_mutex_unlock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
return
ret
;
}
/*restart scale*/
reg_writeq
(
output_scale
,
REG_SCALE_PARAMETER
);
reg_writeq
(
image_address_phy
,
REG_CONV_IMAGE_BASE_ADDR
);
reg_writeq
(
filter_address_phy
,
REG_CONV_FILTER_BASE_ADDR
);
reg_writeq
(
sb_address_phy
,
REG_CONV_SB_BASE_ADDR
);
reg_writeq
(
output_address_phy
,
REG_CONV_RESULT_BASE_ADDR
);
reg_writeq
(
((
uint64_t
)
args
.
image
.
height
)
|
(((
uint64_t
)
args
.
image
.
width
)
<<
32
),
REG_CONV_IMAGE_PIXEL
);
reg_writeq
(
((
uint64_t
)
args
.
kernel
.
height
)
|
(((
uint64_t
)
args
.
kernel
.
width
)
<<
32
),
REG_CONV_FILTER_PIXEL
);
reg_writeq
(
output_height
|
(
output_width
<<
32
),
REG_CONV_RESULT_PIXEL
);
reg_writeq
(((
uint64_t
)
args
.
image
.
pad_height
)
|
(((
uint64_t
)
args
.
image
.
pad_width
)
<<
32
),
REG_CONV_PAD_PIXEL
);
reg_writeq
(((
uint64_t
)
args
.
kernel
.
stride_h
)
|
(((
uint64_t
)
args
.
kernel
.
stride_w
)
<<
32
),
REG_CONV_STEP_PIXEL
);
reg_writeq
((
uint64_t
)
args
.
group_num
,
REG_CONV_GROUP_NUMBER
);
reg_writeq
((
uint64_t
)
args
.
filter_num
,
REG_CONV_FILTER_NUMBER
);
reg_writeq
((
uint64_t
)
args
.
image
.
channels
,
REG_CONV_CHANNEL_NUMBER
);
reg_writeq
(
filter_per_group
,
REG_CONV_FILTER_PER_GROUP
);
reg_writeq
(
channel_per_group
,
REG_CONV_CHANNEL_PER_GROUP
);
reg_writeq
(
image_amount_per_row
,
REG_CONV_IMAGE_AMOUNT_PER_ROW
);
reg_writeq
(
image_one_pad_per_row
,
REG_CONV_IMAGE_ONE_PAD_PER_ROW
);
reg_writeq
(
filter_amount_all
,
REG_CONV_FILTER_AMOUNT_ALL
);
reg_writeq
(
output_amount_per_row
,
REG_CONV_RESULT_AMOUNT_PER_ROW
);
reg_writeq
(
image_block_amount_per_row
,
0xca8
);
reg_writeq
(
filter_pad_width_mul_channel
,
0xcb0
);
reg_writeq
(
image_amount_per_row_multi_win_first
,
0xcb8
);
reg_writeq
(
image_amount_per_row_multi_win
,
0xcc0
);
reg_writeq
(
image_block_num
,
0xcc8
);
reg_writeq
(
image_block_len
,
0xcd0
);
reg_writeq
(
image_block_len_last
,
0xcd8
);
reg_writeq
(
image_win_cnt
,
0xce0
);
reg_writeq
(
image_win_cnt_last
,
0xce8
);
reg_writeq
(
res_row_data_align4_pad
,
0xcf8
);
reg_writeq
(
prog_full_cnt
,
0xd08
);
reg_writeq
(
post_prog_full_cnt
,
0xd10
);
reg_writeq
(
fpga_bias_scale_len
/
4
,
0xd20
);
/*write scale*/
reg_writeq
(
image_scale
,
REG_CONV_IMAGE_SCALE
);
reg_writeq
(
filter_scale
,
REG_CONV_FILTER_SCALE
);
reg_writeq
(
cmd
,
REG_CONV_CMD
);
DLOG
<<
"before reg poll"
;
if
(
0
!=
fpga_regpoll
(
REG_INTERRUPT
,
INTERRUPT_CONV
,
PE_IRQ_TIMEOUT
))
{
g_fpgainfo
.
pe_data
->
pes
[
PE_IDX_CONV
]
->
status
=
ERROR
;
ret
=
-
EIO
;
DLOG
<<
"Conv Wait Irq Timeout!"
;
}
DLOG
<<
"after reg poll"
;
usleep
(
40
);
/*SDK 无效 Cache保证数据一致性*/
output_scale
=
reg_readq
(
REG_SCALE_PARAMETER
);
output_scale
=
(
output_scale
<<
32
)
|
(
output_scale
>>
32
);
fpga_copy
(
args
.
output
.
scale_address
,
&
output_scale
,
sizeof
(
float
)
*
2
);
cout
<<
"output_scale :"
<<
hex
<<
(
output_scale
)
<<
endl
;
//*(args.output.scale_address) = output_scale;
pthread_mutex_unlock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
return
ret
;
#endif
return
0
;
...
...
@@ -74,8 +458,135 @@ int ComputeFpgaPool(const struct PoolingArgs &args) {
DLOG
<<
" out_address:"
<<
args
.
output
.
address
<<
" out_scale_address:"
<<
args
.
output
.
scale_address
;
#endif
#ifndef PADDLE_MOBILE_ZU5
return
0
;
#ifdef PADDLE_MOBILE_ZU5
DLOG
<<
"Polling"
;
// return 0;
uint64_t
output_scale
=
0
;
uint64_t
timer_cnt
=
0
;
int
ret
=
0
;
uint64_t
cmd
=
0
;
uint64_t
image_physical_address
=
0
;
uint64_t
output_physical_address
=
0
;
image_physical_address
=
vaddr_to_paddr
(
args
.
image
.
address
);
output_physical_address
=
vaddr_to_paddr
(
args
.
output
.
address
);
uint32_t
output_height
=
(
uint32_t
)(
(
args
.
image
.
height
+
args
.
image
.
pad_height
*
2
-
args
.
kernel
.
height
)
/
args
.
kernel
.
stride_h
+
1
);
uint32_t
output_width
=
(
uint32_t
)(
(
args
.
image
.
width
+
args
.
image
.
pad_width
*
2
-
args
.
kernel
.
width
)
/
args
.
kernel
.
stride_w
+
1
);
uint64_t
image_amount_per_row
=
align_to_x
(
(
uint64_t
)
args
.
image
.
width
*
(
uint64_t
)
args
.
image
.
channels
,
IMAGE_ALIGN
);
uint64_t
image_one_pad_per_row
=
align_to_x
((
uint64_t
)
args
.
image
.
width
*
(
uint64_t
)
args
.
image
.
channels
,
FILTER_ALIGN
)
+
(
uint64_t
)
args
.
image
.
pad_width
*
(
uint64_t
)
args
.
image
.
channels
;
uint64_t
image_two_pad_per_row
=
align_to_x
(
((
uint64_t
)
args
.
image
.
width
+
(
uint64_t
)
args
.
image
.
pad_width
*
2
)
*
(
uint64_t
)
args
.
image
.
channels
,
IMAGE_ALIGN
);
uint64_t
image_row_mul_pooling_hight
=
image_amount_per_row
*
(
uint64_t
)
args
.
kernel
.
height
;
uint64_t
image_row_mul_pad_hight
=
image_amount_per_row
*
(
uint64_t
)
args
.
image
.
pad_height
;
uint64_t
image_row_mul_step_hight
=
image_amount_per_row
*
(
uint64_t
)
args
.
kernel
.
stride_h
;
uint64_t
result_amount_align_32
=
align_to_x
(
(
uint64_t
)
output_width
*
(
uint64_t
)
args
.
image
.
channels
,
FILTER_ALIGN
);
uint64_t
result_amount_align_64
=
align_to_x
(
(
uint64_t
)
output_width
*
(
uint64_t
)
args
.
image
.
channels
,
IMAGE_ALIGN
);
uint64_t
image_calcu_height
=
(
uint64_t
)
args
.
kernel
.
height
+
((
uint64_t
)
output_height
-
1
)
*
(
uint64_t
)
args
.
kernel
.
stride_h
;
uint64_t
image_pad_left
=
args
.
image
.
channels
*
args
.
image
.
pad_width
;
uint64_t
image_skip_window
=
args
.
image
.
channels
*
args
.
kernel
.
stride_w
;
uint64_t
image_padleft_skipwindow
=
(
image_skip_window
<<
32
)
|
image_pad_left
;
uint64_t
mode_reciprocal
=
(
uint64_t
)
0
|
((
uint64_t
)
args
.
mode
)
<<
16
|
(((
uint64_t
)
args
.
kernel_reciprocal
));
pthread_mutex_lock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
if
(
ERROR
==
g_fpgainfo
.
pe_data
->
pes
[
PE_IDX_POOLING
]
->
status
)
{
ret
=
-
EIO
;
DLOG
<<
"Conv Status Error!"
;
pthread_mutex_unlock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
return
ret
;
}
/*restart scale*/
reg_writeq
(
output_scale
,
REG_SCALE_PARAMETER
);
reg_writeq
(
image_physical_address
,
REG_POOLING_IMAGE_BASE_ADDR
);
reg_writeq
(
output_physical_address
,
REG_POOLING_RESULT_BASE_ADDR
);
reg_writeq
(
((
uint64_t
)
args
.
image
.
height
)
|
(((
uint64_t
)
args
.
image
.
width
)
<<
32
),
REG_POOLING_IMAGE_PIXEL
);
reg_writeq
(
((
uint64_t
)
args
.
kernel
.
height
)
|
(((
uint64_t
)
args
.
kernel
.
width
)
<<
32
),
REG_POOLING_WINDOW_SIZE
);
reg_writeq
(((
uint64_t
)
output_height
)
|
(((
uint64_t
)
output_width
)
<<
32
),
REG_POOLING_RESULT_PIXEL
);
reg_writeq
(((
uint64_t
)
args
.
image
.
pad_height
)
|
(((
uint64_t
)
args
.
image
.
pad_width
)
<<
32
),
REG_POOLING_PAD_PIXEL
);
reg_writeq
(((
uint64_t
)
args
.
kernel
.
stride_h
)
|
(((
uint64_t
)
args
.
kernel
.
stride_w
)
<<
32
),
REG_POOLING_STEP_PIXEL
);
reg_writeq
((
uint64_t
)
args
.
image
.
channels
,
REG_POOLING_CHANNEL_NUMBER
);
reg_writeq
(
image_amount_per_row
,
REG_POOLING_IMAGE_AMOUNT_PER_ROW
);
reg_writeq
(
image_one_pad_per_row
,
REG_POOLING_IMAGE_ONE_PAD_PER_ROW
);
reg_writeq
(
image_two_pad_per_row
,
REG_POOLING_IMAGE_TWO_PAD_PER_ROW
);
reg_writeq
(
image_row_mul_pooling_hight
,
REG_POOLING_IMAGE_ROW_MUL_WINDOW_HEIGHT
);
reg_writeq
(
image_row_mul_pad_hight
,
REG_POOLING_IMAGE_ROW_MUL_PAD_HEIGHT
);
reg_writeq
(
image_row_mul_step_hight
,
REG_POOLING_IMAGE_ROW_MUL_STEP_HEIGHT
);
reg_writeq
(
result_amount_align_32
,
REG_POOLING_RESULT_AMOUNT_ALIGN_32
);
reg_writeq
(
result_amount_align_64
,
REG_POOLING_RESULT_AMOUNT_ALIGN_64
);
reg_writeq
(
image_calcu_height
,
REG_POOLING_IMAGE_CALCU_HEIGHT
);
reg_writeq
(
image_padleft_skipwindow
,
REG_POOLING_IMAGE_PADLEFT_SKIPWINDOW
);
reg_writeq
(
mode_reciprocal
,
REG_POOLING_MODE_RECIPROCAL
);
/*SDK刷Cache保证数据一致性*/
reg_writeq
(
cmd
,
REG_POOLING_CMD
);
DLOG
<<
"before reg poll"
;
if
(
0
!=
fpga_regpoll
(
REG_INTERRUPT
,
INTERRUPT_POOLING
,
PE_IRQ_TIMEOUT
))
{
g_fpgainfo
.
pe_data
->
pes
[
PE_IDX_POOLING
]
->
status
=
ERROR
;
ret
=
-
EIO
;
DLOG
<<
"Pooling Wait Irq Timeout!"
;
}
DLOG
<<
"after reg poll"
;
usleep
(
40
);
/*SDK 无效 Cache保证数据一致性*/
// *(args.output.scale_address) = reg_readq(REG_SCALE_PARAMETER);
output_scale
=
reg_readq
(
REG_SCALE_PARAMETER
);
output_scale
=
(
output_scale
<<
32
)
|
(
output_scale
>>
32
);
fpga_copy
(
args
.
output
.
scale_address
,
&
output_scale
,
sizeof
(
float
)
*
2
);
//*(args.output.timer_cnt) = reg_readq(REG_TIMER_COUNTER);
pthread_mutex_unlock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
return
ret
;
#endif
return
0
;
}
...
...
@@ -103,8 +614,73 @@ int ComputeFpgaEWAdd(const struct EWAddArgs &args) {
DLOG
<<
" out_address:"
<<
args
.
output
.
address
<<
" out_scale_address:"
<<
args
.
output
.
scale_address
;
#endif
#ifndef PADDLE_MOBILE_ZU5
return
0
;
#ifdef PADDLE_MOBILE_ZU5
DLOG
<<
"Conv"
;
// return 0;
int
ret
=
0
;
uint64_t
output_scale
=
0
;
uint64_t
timer_cnt
=
0
;
uint64_t
image0_address_phy
=
0
;
uint64_t
image1_address_phy
=
0
;
uint64_t
output_address_phy
=
0
;
uint64_t
cmd
=
args
.
relu_enabled
?
USE_RELU
:
0
;
uint64_t
datalen
=
(
uint64_t
)
args
.
image0
.
width
*
(
uint64_t
)
args
.
image0
.
height
*
(
uint64_t
)
args
.
image0
.
channels
;
uint64_t
coefficient
=
(
uint64_t
)
args
.
const0
<<
32
|
(
uint64_t
)
args
.
const1
;
pthread_mutex_lock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
if
(
ERROR
==
g_fpgainfo
.
pe_data
->
pes
[
PE_IDX_POOLING
]
->
status
)
{
ret
=
-
EIO
;
DLOG
<<
"Conv Status Error!"
;
pthread_mutex_unlock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
return
ret
;
}
image0_address_phy
=
vaddr_to_paddr
(
args
.
image0
.
address
);
image1_address_phy
=
vaddr_to_paddr
(
args
.
image1
.
address
);
output_address_phy
=
vaddr_to_paddr
(
args
.
output
.
address
);
uint64_t
image_amount_per_row
=
align_to_x
((
uint64_t
)
args
.
image0
.
width
*
(
uint64_t
)
args
.
image0
.
channels
,
IMAGE_ALIGN
);
uint64_t
image_image_pixel
=
((
uint64_t
)
args
.
image0
.
channels
<<
32
)
|
((
uint64_t
)
args
.
image0
.
width
<<
16
)
|
(
uint64_t
)
args
.
image0
.
height
;
/*SDK刷Cache保证数据一致性*/
/*restart scale*/
reg_writeq
(
output_scale
,
REG_SCALE_PARAMETER
);
reg_writeq
(
image0_address_phy
,
REG_EW_IMAGE0_BASE_ADDR
);
reg_writeq
(
image1_address_phy
,
REG_EW_IMAGE1_BASE_ADDR
);
reg_writeq
(
datalen
,
REG_EW_DATA_LEN
);
reg_writeq
(
image_image_pixel
,
REG_EW_IMAGE_PIXEL
);
reg_writeq
(
image_amount_per_row
,
REG_EW_IMAGE_AMOUNT_PER_ROW
);
reg_writeq
(
output_address_phy
,
REG_EW_RESULT_BASE_ADDR
);
reg_writeq
(
coefficient
,
REG_EW_COEFFICIENT
);
reg_writeq
(
cmd
,
REG_EW_CMD
);
if
(
0
!=
fpga_regpoll
(
REG_INTERRUPT
,
INTERRUPT_POOLING
,
PE_IRQ_TIMEOUT
))
{
g_fpgainfo
.
pe_data
->
pes
[
PE_IDX_POOLING
]
->
status
=
ERROR
;
ret
=
-
EIO
;
DLOG
<<
"EW Wait Irq Timeout!"
;
}
usleep
(
40
);
/*SDK 无效 Cache保证数据一致性*/
output_scale
=
reg_readq
(
REG_SCALE_PARAMETER
);
output_scale
=
(
output_scale
<<
32
)
|
(
output_scale
>>
32
);
fpga_copy
(
args
.
output
.
scale_address
,
&
output_scale
,
sizeof
(
float
)
*
2
);
//*(args.output.scale_address) = reg_readq(REG_SCALE_PARAMETER);
//*(args.output.timer_cnt) = reg_readq(REG_TIMER_COUNTER);
pthread_mutex_unlock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
return
ret
;
#endif
return
0
;
}
...
...
@@ -126,8 +702,117 @@ int PerformBypass(const struct BypassArgs &args) {
DLOG
<<
" out_address:"
<<
args
.
output
.
address
<<
" out_scale_address:"
<<
args
.
output
.
scale_address
;
#endif
#ifndef PADDLE_MOBILE_ZU5
return
0
;
#ifdef PADDLE_MOBILE_ZU5
DLOG
<<
"Bypass"
;
// return 0;
struct
fpga_pe
*
pe
;
uint64_t
output_scale
=
0
;
uint64_t
timer_cnt
=
0
;
uint64_t
cmd
=
0
;
uint64_t
datalen
=
0
;
uint64_t
input_address_phy
=
0
;
uint64_t
output_address_phy
=
0
;
uint8_t
data_cell_in
=
0
;
uint8_t
data_cell_out
=
0
;
int
ret
=
0
;
datalen
=
(
uint64_t
)
args
.
image
.
width
*
(
uint64_t
)
args
.
image
.
height
*
(
uint64_t
)
args
.
image
.
channels
;
datalen
=
align_to_x
(
datalen
,
16
);
input_address_phy
=
vaddr_to_paddr
(
args
.
image
.
address
);
output_address_phy
=
vaddr_to_paddr
(
args
.
output
.
address
);
DLOG
<<
"input_phy:"
<<
input_address_phy
;
DLOG
<<
"output_phy:"
<<
output_address_phy
;
switch
(
args
.
input_data_type
)
{
case
DATA_TYPE_FP16
:
{
switch
(
args
.
output_data_type
)
{
case
DATA_TYPE_FP16
:
data_cell_in
=
SIZE_FP16
;
data_cell_out
=
SIZE_FP16
;
cmd
=
CMD_FP16_TO_FP16
;
break
;
case
DATA_TYPE_FP32
:
data_cell_in
=
SIZE_FP16
;
data_cell_out
=
SIZE_FP32
;
cmd
=
CMD_FP16_TO_FP32
;
break
;
default:
break
;
}
}
break
;
case
DATA_TYPE_FP32
:
{
switch
(
args
.
output_data_type
)
{
case
DATA_TYPE_FP16
:
data_cell_in
=
SIZE_FP32
;
data_cell_out
=
SIZE_FP16
;
cmd
=
CMD_FP32_TO_FP16
;
break
;
case
DATA_TYPE_FP32
:
data_cell_in
=
SIZE_FP32
;
data_cell_out
=
SIZE_FP32
;
cmd
=
CMD_FP32_TO_FP32
;
break
;
default:
break
;
}
}
break
;
default:
break
;
}
if
(
cmd
!=
CMD_FP16_TO_FP16
&&
cmd
!=
CMD_FP16_TO_FP32
&&
cmd
!=
CMD_FP32_TO_FP16
&&
cmd
!=
CMD_FP32_TO_FP32
)
{
return
-
EFAULT
;
}
if
((
data_cell_in
!=
SIZE_FP16
&&
data_cell_in
!=
SIZE_FP32
)
||
(
data_cell_out
!=
SIZE_FP16
&&
data_cell_out
!=
SIZE_FP32
))
{
return
-
EFAULT
;
}
pthread_mutex_lock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
if
(
ERROR
==
g_fpgainfo
.
pe_data
->
pes
[
PE_IDX_BYPASS
]
->
status
)
{
ret
=
-
EIO
;
DLOG
<<
"Bypass Status Error!"
;
pthread_mutex_unlock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
return
ret
;
}
/*restart scale*/
reg_writeq
(
output_scale
,
REG_SCALE_PARAMETER
);
reg_writeq
(
input_address_phy
,
REG_CONVERT_SRC_ADDR
);
reg_writeq
(
output_address_phy
,
REG_CONVERT_DST_ADDR
);
reg_writeq
(
datalen
,
REG_CONVERT_LENGTH
);
/*SDK刷Cache保证数据一致性*/
reg_writeq
(
cmd
,
REG_CONVERT_CMD
);
DLOG
<<
"before reg poll"
;
if
(
0
!=
fpga_regpoll
(
REG_INTERRUPT
,
INTERRUPT_BYPASS
,
PE_IRQ_TIMEOUT
))
{
g_fpgainfo
.
pe_data
->
pes
[
PE_IDX_BYPASS
]
->
status
=
ERROR
;
ret
=
-
EIO
;
DLOG
<<
"BYPASS Wait Irq Timeout!"
;
}
DLOG
<<
"after reg poll"
;
usleep
(
40
);
/*SDK 无效 Cache保证数据一致性*/
output_scale
=
reg_readq
(
REG_SCALE_PARAMETER
);
output_scale
=
(
output_scale
<<
32
)
|
(
output_scale
>>
32
);
fpga_copy
(
args
.
output
.
scale_address
,
&
output_scale
,
sizeof
(
float
)
*
2
);
//*(args.output.scale_address) = reg_readq(REG_SCALE_PARAMETER);
//*(args.output.timer_cnt) = reg_readq(REG_TIMER_COUNTER);
pthread_mutex_unlock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
return
ret
;
#endif
return
0
;
...
...
@@ -138,11 +823,14 @@ int ComputeFPGAConcat(const struct ConcatArgs &args) {
DLOG
<<
"=============ComputeFpgaConcat==========="
;
DLOG
<<
" Image_num: "
<<
args
.
image_num
<<
" out_address:"
<<
args
.
image_out
<<
" out_scale_address:"
<<
args
.
scale_out
;
<<
" out_scale_address:"
<<
args
.
scale_out
<<
" out_channel:"
<<
args
.
out_channel
;
DLOG
<<
" image_height:"
<<
args
.
height
<<
" image_width:"
<<
args
.
width
;
for
(
int
i
=
0
;
i
<
args
.
image_num
;
i
++
)
{
DLOG
<<
" "
<<
i
<<
"th: "
;
DLOG
<<
" channel_num:"
<<
args
.
channel_num
[
i
]
DLOG
<<
" channel_num:"
<<
args
.
channel_num
[
i
]
// << " aligned_channel_num:" << args.aligned_channel_num[i]
<<
" image_address:"
<<
args
.
images_in
[
i
]
<<
" image_scale_address:"
<<
args
.
scales_in
[
i
];
}
...
...
@@ -154,6 +842,82 @@ int ComputeFPGAConcat(const struct ConcatArgs &args) {
return
0
;
}
void
deconv_post_process
(
half
**
data_in
,
int
sub_conv_n
,
int
num
,
int
channel
,
int
sub_height
,
int
sub_width
,
int
omit_size
)
{
int
origin_h
=
sub_height
*
sub_conv_n
;
int
origin_w
=
sub_width
*
sub_conv_n
;
int
align_origin_w
=
align_to_x
(
origin_w
*
channel
,
16
);
int
deconv_h
=
origin_h
-
2
*
omit_size
;
int
deconv_w
=
origin_w
-
2
*
omit_size
;
int
deconv_row_len
=
deconv_w
*
channel
;
int
align_deconv_row_len
=
align_to_x
(
deconv_row_len
,
16
);
half
*
ptr_tmp
=
*
data_in
;
half
*
ptr_deconv
=
(
half
*
)
fpga_malloc
(
num
*
align_deconv_row_len
*
deconv_h
*
sizeof
(
half
));
memset
(
ptr_deconv
,
0
,
num
*
align_deconv_row_len
*
deconv_h
*
sizeof
(
half
));
int
deconv_idx
=
0
;
for
(
int
nn
=
0
;
nn
<
num
;
++
nn
)
{
for
(
int
hh
=
0
;
hh
<
origin_h
;
++
hh
)
{
int
hx
=
(
hh
%
sub_conv_n
);
half
*
sub_t
=
ptr_tmp
+
hx
*
sub_height
*
align_origin_w
;
// sub(hx,:);
int
hi
=
(
hh
/
sub_conv_n
);
if
((
hh
<
omit_size
)
||
(
hh
>=
(
origin_h
-
omit_size
)))
continue
;
// for (int ww = 0; ww < origin_w; ++ww){
// if((ww < omit_size) )// || (ww >= (origin_w-omit_size))
// continue;
int
sidx
=
(
nn
*
origin_h
*
align_origin_w
+
hi
*
align_origin_w
+
omit_size
*
channel
);
fpga_copy
(
ptr_deconv
+
deconv_idx
,
sub_t
+
sidx
,
sizeof
(
half
)
*
deconv_row_len
);
deconv_idx
+=
align_deconv_row_len
;
//}
}
}
*
data_in
=
ptr_deconv
;
fpga_free
(
ptr_tmp
);
}
int
ComputeFpgaDeconv
(
const
struct
DeconvArgs
&
args
)
{
#ifdef FPGA_TEST_MODE
DLOG
<<
"=============ComputeFPGADeConv==========="
;
DLOG
<<
" filter_num:"
<<
args
.
filter_num
<<
" group_num:"
<<
args
.
group_num
<<
" sub_conv_num:"
<<
args
.
sub_conv_num
;
#endif
int
sub_conv_num
=
args
.
sub_conv_num
;
for
(
int
i
=
0
;
i
<
sub_conv_num
;
i
++
)
{
//#if CPU_SIMULATE
//#else
ComputeBasicConv
(
args
.
conv_args
[
i
]);
//#endif
}
if
(
sub_conv_num
>
1
)
{
float
max_scale
=
-
1.0
;
for
(
int
i
=
0
;
i
<
sub_conv_num
;
i
++
)
{
float
ptr_scale
=
(
args
.
conv_args
[
i
].
output
.
scale_address
)[
0
];
if
(
ptr_scale
>
max_scale
)
{
args
.
output
.
scale_address
[
0
]
=
ptr_scale
;
args
.
output
.
scale_address
[
1
]
=
(
args
.
conv_args
[
i
].
output
.
scale_address
)[
1
];
}
}
deconv_post_process
((
half
**
)(
&
(
args
.
output
.
address
)),
args
.
sub_conv_num
,
1
,
args
.
filter_num
,
(
args
.
sub_output_height
),
(
args
.
sub_output_width
),
args
.
omit_size
);
}
return
0
;
}
int
ComputeFPGASplit
(
const
struct
SplitArgs
&
args
)
{
#ifdef FPGA_PRINT_MODE
DLOG
<<
"=============ComputeFpgaSplit==========="
;
...
...
@@ -173,6 +937,5 @@ int ComputeFPGASplit(const struct SplitArgs &args) {
args
.
height
,
args
.
width
);
return
0
;
}
}
// namespace fpga
}
// namespace paddle_mobile
src/fpga/common/driver.cpp
浏览文件 @
6b14134f
...
...
@@ -137,11 +137,13 @@ int fpga_regpoll(uint64_t reg, uint64_t val, int time) {
for
(
i
=
0
;
i
<
timeout
;
i
++
)
{
if
(
val
==
reg_readq
(
reg
))
{
std
::
cout
<<
"fpga_regpoll:"
<<
i
<<
"val:"
<<
val
<<
"reg:"
<<
reg
<<
std
::
endl
;
break
;
}
}
if
(
i
<
=
timeout
)
{
if
(
i
<
timeout
)
{
return
0
;
}
else
{
return
-
1
;
...
...
@@ -153,6 +155,12 @@ int memory_request(struct fpga_memory *memory, size_t size, uint64_t *addr) {
uint64_t
_nr
=
DIV_ROUND_UP
(
size
,
FPGA_PAGE_SIZE
);
unsigned
int
nr
=
(
unsigned
int
)
_nr
;
int
ret
=
0
;
DLOG
<<
size
;
DLOG
<<
_nr
;
DLOG
<<
nr
;
uint64_t
a_size
=
FPGA_PAGE_SIZE
*
nr
;
DLOG
<<
a_size
;
pthread_mutex_lock
(
&
memory
->
mutex
);
...
...
@@ -166,6 +174,7 @@ int memory_request(struct fpga_memory *memory, size_t size, uint64_t *addr) {
*
addr
=
address_ofset
;
}
else
{
DLOG
<<
"memory request failed!"
;
ret
=
-
ENOMEM
;
}
...
...
@@ -282,7 +291,7 @@ uint64_t vaddr_to_paddr(void *address) {
if
(
iter
!=
g_fpgainfo
.
fpga_vaddr2paddr_map
.
end
())
{
paddr
=
iter
->
second
;
}
else
{
DLOG
<<
"Invalid pointer
"
;
DLOG
<<
"Invalid pointer
: "
<<
address
;
}
return
paddr
;
...
...
@@ -348,6 +357,11 @@ void fpga_free_driver(void *ptr) {
fpga_bitmap
::
bitmap_clear
(
g_fpgainfo
.
memory_info
->
bitmap
,
pos
,
g_fpgainfo
.
memory_info
->
nr
[
pos
]);
pthread_mutex_unlock
(
&
g_fpgainfo
.
memory_info
->
mutex
);
auto
iter
=
g_fpgainfo
.
fpga_vaddr2paddr_map
.
find
(
ptr
);
if
(
iter
!=
g_fpgainfo
.
fpga_vaddr2paddr_map
.
end
())
{
g_fpgainfo
.
fpga_vaddr2paddr_map
.
erase
(
iter
);
}
}
else
{
DLOG
<<
"Invalid pointer"
;
}
...
...
src/fpga/common/driver.h
浏览文件 @
6b14134f
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <cstring>
#include <map>
...
...
@@ -44,7 +45,7 @@ const int PE_IDX_POOLING = 1;
const
int
PE_IDX_EW
=
2
;
const
int
PE_IDX_BYPASS
=
3
;
enum
pe_status
{
IDLE
=
0
,
BUSY
=
1
};
enum
pe_status
{
IDLE
=
0
,
BUSY
=
1
,
ERROR
=
2
};
struct
MemoryCacheArgs
{
void
*
offset
;
...
...
@@ -58,7 +59,7 @@ struct MemoryCacheArgs {
struct
fpga_pe
{
char
type_name
[
MAX_TYPE_NAME_LENTH
+
1
];
struct
pe_data_s
*
outer
;
pe_status
status
;
// 0=idle 1=busy -1=fail
pe_status
status
;
uint64_t
interrupt_cnt
;
};
...
...
@@ -106,6 +107,8 @@ inline uint64_t reg_readq(uint32_t offset) {
uint64_t
value
=
*
(
volatile
uint64_t
*
)((
uint8_t
*
)
g_fpgainfo
.
FpgaRegVirAddr
+
// NOLINT
offset
);
// NOLINT
// DLOG << "read end";
usleep
(
10
);
return
value
;
}
...
...
@@ -114,6 +117,8 @@ inline void reg_writeq(uint64_t value, uint32_t offset) {
// DLOG << "offset : " << offset << ", value : " << value;
*
(
volatile
uint64_t
*
)((
uint8_t
*
)
g_fpgainfo
.
FpgaRegVirAddr
+
// NOLINT
offset
)
=
value
;
// DLOG << "write end";
usleep
(
10
);
}
int
open_device_driver
();
...
...
src/fpga/common/fpga_common.h
浏览文件 @
6b14134f
...
...
@@ -74,12 +74,21 @@ struct ConcatArgs {
void
*
image_out
;
float
*
scale_out
;
uint32_t
*
channel_num
;
//
uint32_t* aligned_channel_num;
//
uint32_t out_channel;
uint32_t
*
aligned_channel_num
;
uint32_t
out_channel
;
uint32_t
height
;
uint32_t
width
;
};
struct
SplitConvArgs
{
uint32_t
split_num
;
uint32_t
group_num
;
uint32_t
filter_num
;
struct
ImageOutputArgs
output
;
struct
ConvArgs
*
conv_arg
;
struct
ConcatArgs
concat_arg
;
};
struct
SplitArgs
{
uint32_t
image_num
;
int16_t
*
image_in
;
...
...
@@ -91,15 +100,6 @@ struct SplitArgs {
uint32_t
width
;
};
struct
SplitConvArgs
{
uint32_t
split_num
;
uint32_t
group_num
;
uint32_t
filter_num
;
struct
ImageOutputArgs
output
;
struct
ConvArgs
*
conv_arg
;
struct
ConcatArgs
concat_arg
;
};
struct
PoolingArgs
{
int16_t
mode
;
// mode: 0:max, 1:avg
int16_t
kernel_reciprocal
;
...
...
@@ -127,7 +127,14 @@ struct BypassArgs {
};
struct
DeconvArgs
{
struct
ConvArgs
conv_arg
;
uint32_t
sub_conv_num
;
uint32_t
group_num
;
uint32_t
filter_num
;
uint32_t
omit_size
;
uint32_t
sub_output_width
;
uint32_t
sub_output_height
;
struct
ImageOutputArgs
output
;
struct
ConvArgs
*
conv_args
;
};
static
inline
int
align_to_x
(
int
num
,
int
x
)
{
return
(
num
+
x
-
1
)
/
x
*
x
;
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录