Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
467bbfe7
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
467bbfe7
编写于
11月 28, 2018
作者:
X
xiebaiyuan
提交者:
GitHub
11月 28, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1319 from yangfei963158659/develop
imp googlenet for gpu
上级
067eaef4
fa03e011
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
718 addition
and
34 deletion
+718
-34
src/framework/cl/cl_image.h
src/framework/cl/cl_image.h
+7
-0
src/operators/feed_op.cpp
src/operators/feed_op.cpp
+0
-1
src/operators/fusion_fc_op.cpp
src/operators/fusion_fc_op.cpp
+3
-0
src/operators/kernel/cl/cl_kernel/concat_kernel.cl
src/operators/kernel/cl/cl_kernel/concat_kernel.cl
+25
-25
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
+232
-0
src/operators/kernel/cl/cl_kernel/lrn_kernel.cl
src/operators/kernel/cl/cl_kernel/lrn_kernel.cl
+136
-0
src/operators/kernel/cl/cl_kernel/pool_kernel.cl
src/operators/kernel/cl/cl_kernel/pool_kernel.cl
+4
-2
src/operators/kernel/cl/concat_kernel.cpp
src/operators/kernel/cl/concat_kernel.cpp
+75
-0
src/operators/kernel/cl/conv_add_kernel.cpp
src/operators/kernel/cl/conv_add_kernel.cpp
+10
-2
src/operators/kernel/cl/conv_add_relu_kernel.cpp
src/operators/kernel/cl/conv_add_relu_kernel.cpp
+10
-0
src/operators/kernel/cl/fusion_fc_kernel.cpp
src/operators/kernel/cl/fusion_fc_kernel.cpp
+130
-0
src/operators/kernel/cl/lrn_kernel.cpp
src/operators/kernel/cl/lrn_kernel.cpp
+79
-0
src/operators/lrn_op.cpp
src/operators/lrn_op.cpp
+4
-1
src/operators/op_param.h
src/operators/op_param.h
+3
-3
未找到文件。
src/framework/cl/cl_image.h
浏览文件 @
467bbfe7
...
...
@@ -68,6 +68,13 @@ class CLImage {
InitCLImage
(
context
,
command_queue
,
folder_converter
);
}
void
InitNormalCLImage
(
cl_context
context
,
cl_command_queue
command_queue
)
{
PADDLE_MOBILE_ENFORCE
(
tensor_data_
!=
nullptr
,
" need call SetTensorData first"
);
CLImageConverterNormal
*
normal_converter
=
new
CLImageConverterNormal
();
InitCLImage
(
context
,
command_queue
,
normal_converter
);
}
void
InitCLImage
(
cl_context
context
,
cl_command_queue
command_queue
,
CLImageConverterBase
*
converter
)
{
if
(
image_converter_
!=
nullptr
)
{
...
...
src/operators/feed_op.cpp
浏览文件 @
467bbfe7
...
...
@@ -22,7 +22,6 @@ void FeedOp<DeviceType, T>::InferShape() const {
auto
out_dims
=
this
->
param_
.
Out
()
->
dims
();
out_dims
[
0
]
=
this
->
param_
.
BatchSize
();
auto
input_dims
=
this
->
param_
.
InputX
()
->
dims
();
DLOG
<<
input_dims
.
size
();
if
(
input_dims
.
size
()
==
4
)
{
this
->
param_
.
Out
()
->
Resize
(
input_dims
);
}
else
{
...
...
src/operators/fusion_fc_op.cpp
浏览文件 @
467bbfe7
...
...
@@ -60,6 +60,9 @@ REGISTER_FUSION_MATCHER(fusion_fc, ops::FusionFcMatcher);
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU
(
fusion_fc
,
ops
::
FusionFcOp
);
#endif
#ifdef PADDLE_MOBILE_CL
REGISTER_OPERATOR_CL
(
fusion_fc
,
ops
::
FusionFcOp
);
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
REGISTER_OPERATOR_MALI_GPU
(
fusion_fc
,
ops
::
FusionFcOp
);
#endif
...
...
src/operators/kernel/cl/cl_kernel/concat_kernel.cl
浏览文件 @
467bbfe7
...
...
@@ -13,7 +13,27 @@ See the License for the specific language governing permissions and
limitations
under
the
License.
*/
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
/*
__kernel
void
concatByC0
(
__read_only
image2d_t
input_image,
__write_only
image2d_t
output_image,
__private
const
int
out_W
)
{
const
int
in_c
=
get_global_id
(
0
)
;
const
int
in_w
=
get_global_id
(
1
)
;
const
int
in_nh
=
get_global_id
(
2
)
;
int2
input_pos
;
input_pos.x
=
in_c
*
out_W
+
in_w
;
input_pos.y
=
in_nh
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
half4
input
;
input
=
read_imageh
(
input_image,
sampler,input_pos
)
;
write_imageh
(
output_image,
input_pos,
input
)
;
}
__kernel
void
concatByC
(
__read_only
image2d_t
input_image1,
__read_only
image2d_t
input_image2,
...
...
@@ -24,13 +44,13 @@ __kernel void concatByC(__read_only image2d_t input_image1,
__private
const
int
out_C_Start,
__private
const
int
in_W,
__private
const
int
in_H,
__private
const
int
in
t
_C1,
__private
const
int
in
t
_C2
)
{
__private
const
int
in_C1,
__private
const
int
in_C2
)
{
const
int
in_c
=
get_global_id
(
0
)
;
const
int
in_w
=
get_global_id
(
1
)
;
const
int
in_nh
=
get_global_id
(
2
)
;
int
out_c1
=
(
out_C_Start
)
/4
+
in_c
;
int
out_c1
=
(
out_C_Start
+
3
)
/4
-1
+
in_c
;
int
out_c2
=
out_c1
+
1
;
...
...
@@ -45,7 +65,7 @@ __kernel void concatByC(__read_only image2d_t input_image1,
int2
input_pos1
;
if
(
in_c==0
)
{
input_pos1.x
=
((
in_C1
-1
)
/4
)
*
in_W
+
in_w
;
input_pos1.x
=
((
in_C1
+
3
)
/4-1
)
*
in_W
+
in_w
;
}else{
input_pos1.x
=
(
in_c
-
1
)
*
in_W
+
in_w
;
}
...
...
@@ -103,26 +123,6 @@ __kernel void concatByC(__read_only image2d_t input_image1,
write_imageh
(
output_image,
output_pos2,
output2
)
;
}
__kernel
void
concatByW0
(
__read_only
image2d_t
input_image,
__write_only
image2d_t
output_image,
__private
const
int
out_W
)
{
const
int
in_c
=
get_global_id
(
0
)
;
const
int
in_w
=
get_global_id
(
1
)
;
const
int
in_nh
=
get_global_id
(
2
)
;
int2
input_pos
=
in_c
*
out_W
+
in_w
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
half4
input
;
input
=
read_imageh
(
input_image,
sampler,input_pos
)
;
write_imageh
(
output_image,
input_pos,
input
)
;
}
*/
__kernel
void
concatByH
(
__read_only
image2d_t
input_image,
__write_only
image2d_t
output_image,
...
...
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
浏览文件 @
467bbfe7
...
...
@@ -692,6 +692,238 @@ __kernel void conv_1x1_4(__private const int global_size_dim0,
*/
__kernel void conv_7x7(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input_image,
__read_only image2d_t filter_image,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height,/* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
if (out_c >= global_size_dim0 ||
out_w >= global_size_dim1 ||
out_nh >= global_size_dim2) {
return;
}
const filter_n0 = 4 * out_c + 0;
const filter_n1 = 4 * out_c + 1;
const filter_n2 = 4 * out_c + 2;
const filter_n3 = 4 * out_c + 3;
int2 stride_xy;
stride_xy.x = stride;
stride_xy.y = stride;
int2 ouput_pos_in_one_block;
ouput_pos_in_one_block.x = out_w;
ouput_pos_in_one_block.y = out_nh;
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
|
CLK_FILTER_NEAREST;
int2 in_pos_in_one_block;
in_pos_in_one_block.x = ouput_pos_in_one_block.x * stride + offset;
in_pos_in_one_block.y = ouput_pos_in_one_block.y * stride + offset;
#ifdef BIASE
half4 output = read_imageh(bias, sampler, (int2)(out_c, 0));
#else
half4 output = 0.0f;
#endif
half4 input;
half4 filter[4];
int2 filter_pos0;
int2 filter_pos1;
int2 filter_pos2;
int2 filter_pos3;
for (int i = 0; i < input_c; ++i) {
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
for(int j = 0; j < 7; j++){
for(int k = 0; k < 7; k++){
input = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + (j - 3) * dilation, pos_in.y + (k - 3) * dilation)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x + (j - 3) * dilation < 0 || in_pos_in_one_block.y + (k - 3) * dilation < 0 || in_pos_in_one_block.x + (j - 3) * dilation >= input_width || in_pos_in_one_block.y + (k - 3) * dilation >= input_height) << 15));
int filter_h = k;
int filter_w = j;
int filter_c = i;
filter_pos0.x = filter_c * 7 + filter_w;
filter_pos0.y = filter_n0 * 7 + filter_h;
filter_pos1.x = filter_c * 7 + filter_w;
filter_pos1.y = filter_n1 * 7 + filter_h;
filter_pos2.x = filter_c * 7 + filter_w;
filter_pos2.y = filter_n2 * 7 + filter_h;
filter_pos3.x = filter_c * 7 + filter_w;
filter_pos3.y = filter_n3 * 7 + filter_h;
filter[0] = read_imageh(filter_image, sampler, filter_pos0);
filter[1] = read_imageh(filter_image, sampler, filter_pos1);
filter[2] = read_imageh(filter_image, sampler, filter_pos2);
filter[3] = read_imageh(filter_image, sampler, filter_pos3);
output.x += dot(input, filter[0]);
output.y += dot(input, filter[1]);
output.z += dot(input, filter[2]);
output.w += dot(input, filter[3]);
}
}
}
#ifdef BATCH_NORM
output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output = activation(output);
#endif
write_imageh(output_image, (int2)(out_c * global_size_dim1 + out_w, out_nh), output);
}
__kernel void conv_5x5(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input_image,
__read_only image2d_t filter_image,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height,/* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
if (out_c >= global_size_dim0 ||
out_w >= global_size_dim1 ||
out_nh >= global_size_dim2) {
return;
}
const filter_n0 = 4 * out_c + 0;
const filter_n1 = 4 * out_c + 1;
const filter_n2 = 4 * out_c + 2;
const filter_n3 = 4 * out_c + 3;
int2 stride_xy;
stride_xy.x = stride;
stride_xy.y = stride;
int2 ouput_pos_in_one_block;
ouput_pos_in_one_block.x = out_w;
ouput_pos_in_one_block.y = out_nh;
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
|
CLK_FILTER_NEAREST;
int2 in_pos_in_one_block;
in_pos_in_one_block.x = ouput_pos_in_one_block.x * stride + offset;
in_pos_in_one_block.y = ouput_pos_in_one_block.y * stride + offset;
#ifdef BIASE
half4 output = read_imageh(bias, sampler, (int2)(out_c, 0));
#else
half4 output = 0.0f;
#endif
half4 input;
half4 filter[4];
int2 filter_pos0;
int2 filter_pos1;
int2 filter_pos2;
int2 filter_pos3;
for (int i = 0; i < input_c; ++i) {
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
for(int j = 0; j < 5; j++){
for(int k = 0; k < 5; k++){
input = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + (j - 2) * dilation, pos_in.y + (k - 2) * dilation)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x + (j - 2) * dilation < 0 || in_pos_in_one_block.y + (k - 2) * dilation < 0 || in_pos_in_one_block.x + (j - 2) * dilation >= input_width |
|
in_pos_in_one_block.y
+
(
k
-
2
)
*
dilation
>=
input_height
)
<<
15
))
;
int
filter_h
=
k
;
int
filter_w
=
j
;
int
filter_c
=
i
;
filter_pos0.x
=
filter_c
*
5
+
filter_w
;
filter_pos0.y
=
filter_n0
*
5
+
filter_h
;
filter_pos1.x
=
filter_c
*
5
+
filter_w
;
filter_pos1.y
=
filter_n1
*
5
+
filter_h
;
filter_pos2.x
=
filter_c
*
5
+
filter_w
;
filter_pos2.y
=
filter_n2
*
5
+
filter_h
;
filter_pos3.x
=
filter_c
*
5
+
filter_w
;
filter_pos3.y
=
filter_n3
*
5
+
filter_h
;
filter[0]
=
read_imageh
(
filter_image,
sampler,
filter_pos0
)
;
filter[1]
=
read_imageh
(
filter_image,
sampler,
filter_pos1
)
;
filter[2]
=
read_imageh
(
filter_image,
sampler,
filter_pos2
)
;
filter[3]
=
read_imageh
(
filter_image,
sampler,
filter_pos3
)
;
output.x
+=
dot
(
input,
filter[0]
)
;
output.y
+=
dot
(
input,
filter[1]
)
;
output.z
+=
dot
(
input,
filter[2]
)
;
output.w
+=
dot
(
input,
filter[3]
)
;
}
}
}
#
ifdef
BATCH_NORM
output
=
output
*
read_imageh
(
new_scale,
sampler,
(
int2
)(
out_c,
0
))
+
read_imageh
(
new_biase,
sampler,
(
int2
)(
out_c,
0
))
;
#
endif
#
ifdef
RELU
output
=
activation
(
output
)
;
#
endif
write_imageh
(
output_image,
(
int2
)(
out_c
*
global_size_dim1
+
out_w,
out_nh
)
,
output
)
;
}
...
...
src/operators/kernel/cl/cl_kernel/lrn_kernel.cl
0 → 100644
浏览文件 @
467bbfe7
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
__kernel
void
lrn
(
__read_only
image2d_t
input_image,
__write_only
image2d_t
output_image,
__private
const
int
out_C,
__private
const
int
out_W,
__private
const
int
n,
__private
const
float
k,
__private
const
float
alpha,
__private
const
float
beta
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
const
int
out_c0
=
out_c
*
4
;
const
int
out_c1
=
out_c
*
4
+
1
;
const
int
out_c2
=
out_c
*
4+
2
;
const
int
out_c3
=
out_c
*
4+
3
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
const
int
start
=
-
(
n-1
)
/2
;
const
end
=
start
+
n
;
float
sqr_sum0
=
0.0f
;
float
sqr_sum1
=
0.0f
;
float
sqr_sum2
=
0.0f
;
float
sqr_sum3
=
0.0f
;
int
input_c0,input_c1,input_c2,input_c3
;
int2
input_pos0,input_pos1,input_pos2,input_pos3
;
float4
input0,input1,input2,input3
;
for
(
int
i
=
start
; i < end ;i++){
if
(
out_c0
+
i>=0&&out_c0
+
i<out_C
)
{
input_c0
=
(
out_c0
+
i
)
/4
;
input_pos0.x
=
input_c0
*
out_W
+
out_w
;
input_pos0.y
=
out_nh
;
input0
=
convert_float4
(
read_imageh
(
input_image,
sampler,input_pos0
))
;
if
((
out_c0
+
i
)
%4
==
0
)
{
sqr_sum0
+=
input0.x
*
input0.x
;
}else
if
((
out_c0
+
i
)
%4
==
1
)
{
sqr_sum0
+=
input0.y
*
input0.y
;
}else
if
((
out_c0
+
i
)
%4
==
2
)
{
sqr_sum0
+=
input0.z
*
input0.z
;
}else{
sqr_sum0
+=
input0.w
*
input0.w
;
}
}
if
(
out_c1
+
i>=0&&out_c1
+
i<out_C
)
{
input_c1
=
(
out_c1
+
i
)
/4
;
input_pos1.x
=
input_c1
*
out_W
+
out_w
;
input_pos1.y
=
out_nh
;
input1
=
convert_float4
(
read_imageh
(
input_image,
sampler,input_pos1
))
;
if
((
out_c1
+
i
)
%4
==
0
)
{
sqr_sum1
+=
input1.x
*
input1.x
;
}else
if
((
out_c1
+
i
)
%4
==
1
)
{
sqr_sum1
+=
input1.y
*
input1.y
;
}else
if
((
out_c1
+
i
)
%4
==
2
)
{
sqr_sum1
+=
input1.z
*
input1.z
;
}else{
sqr_sum1
+=
input1.w
*
input1.w
;
}
}
if
(
out_c2
+
i>=0&&out_c2
+
i<out_C
)
{
input_c2
=
(
out_c2
+
i
)
/4
;
input_pos2.x
=
input_c2
*
out_W
+
out_w
;
input_pos2.y
=
out_nh
;
input2
=
convert_float4
(
read_imageh
(
input_image,
sampler,input_pos2
))
;
if
((
out_c2
+
i
)
%4
==
0
)
{
sqr_sum2
+=
input2.x
*
input2.x
;
}else
if
((
out_c2
+
i
)
%4
==
1
)
{
sqr_sum2
+=
input2.y
*
input2.y
;
}else
if
((
out_c2
+
i
)
%4
==
2
)
{
sqr_sum2
+=
input2.z
*
input2.z
;
}else{
sqr_sum2
+=
input2.w
*
input2.w
;
}
}
if
(
out_c3
+
i>=0&&out_c3
+
i<out_C
)
{
input_c3
=
(
out_c3
+
i
)
/4
;
input_pos3.x
=
input_c3
*
out_W
+
out_w
;
input_pos3.y
=
out_nh
;
input3
=
convert_float4
(
read_imageh
(
input_image,
sampler,input_pos3
))
;
if
((
out_c3
+
i
)
%4
==
0
)
{
sqr_sum3
+=
input3.x
*
input3.x
;
}else
if
((
out_c3
+
i
)
%4
==
1
)
{
sqr_sum3
+=
input3.y
*
input3.y
;
}else
if
((
out_c3
+
i
)
%4
==
2
)
{
sqr_sum3
+=
input3.z
*
input3.z
;
}else{
sqr_sum3
+=
input3.w
*
input3.w
;
}
}
}
float4
output
=
(
float4
)
0.0f
;
float4
input
;
int2
output_pos
;
output_pos.x
=
out_c
*
out_W
+
out_w
;
output_pos.y
=
out_nh
;
input
=
convert_float4
(
read_imageh
(
input_image,
sampler,output_pos
))
;
output.x
=
input.x
/
(
pow
(
k
+
alpha
*
(
sqr_sum0
)
,
beta
))
;
if
(
out_C
-
4
*
out_c>=2
)
{
output.y
=
input.y
/
(
pow
(
k
+
alpha
*
(
sqr_sum1
)
,
beta
))
;
}
if
(
out_C
-
4
*
out_c>=3
)
{
output.z
=
input.z
/
(
pow
(
k
+
alpha
*
(
sqr_sum2
)
,
beta
))
;
}
if
(
out_C
-
4
*
out_c>=4
)
{
output.w
=
input.w
/
(
pow
(
k
+
alpha
*
(
sqr_sum3
)
,
beta
))
;
}
half4
tmp
=
convert_half4
(
output
)
;
write_imageh
(
output_image,
output_pos,
tmp
)
;
}
\ No newline at end of file
src/operators/kernel/cl/cl_kernel/pool_kernel.cl
浏览文件 @
467bbfe7
...
...
@@ -31,11 +31,13 @@ __kernel void pool_max(
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
| CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
int
start_h
=
max
(
out_h
*
stride_h
-
pad_top,
0
)
;
int
start_h
=
out_h
*
stride_h
-
pad_top
;
int
end_h
=
min
(
start_h
+
ksize_h,
in_height
)
;
start_h
=
max
(
start_h,0
)
;
int
start_w
=
max
(
out_w
*
stride_w
-
pad_left,
0
)
;
int
start_w
=
out_w
*
stride_w
-
pad_left
;
int
end_w
=
min
(
start_w
+
ksize_w,
in_width
)
;
start_w
=
max
(
start_w,0
)
;
const
int
pos_in_x
=
out_c
*
in_width
;
const
int
pos_in_y
=
out_n
*
in_height
;
...
...
src/operators/kernel/cl/concat_kernel.cpp
浏览文件 @
467bbfe7
...
...
@@ -23,12 +23,17 @@ template <>
bool
ConcatKernel
<
GPU_CL
,
float
>::
Init
(
ConcatParam
<
GPU_CL
>
*
param
)
{
if
(
param
->
Out
()
->
dims
().
size
()
<
4
)
{
this
->
cl_helper_
.
AddKernel
(
"concatByH"
,
"concat_kernel.cl"
);
}
else
if
(
param
->
Out
()
->
dims
().
size
()
==
4
)
{
this
->
cl_helper_
.
AddKernel
(
"concatByC0"
,
"concat_kernel.cl"
);
this
->
cl_helper_
.
AddKernel
(
"concatByC"
,
"concat_kernel.cl"
);
}
return
true
;
}
template
<
>
void
ConcatKernel
<
GPU_CL
,
float
>::
Compute
(
const
ConcatParam
<
GPU_CL
>
&
param
)
{
DLOG
<<
"yangfei50"
;
DLOG
<<
param
.
Out
()
->
dims
();
if
(
param
.
Out
()
->
dims
().
size
()
<
4
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
inputs
=
param
.
Inputs
();
...
...
@@ -62,6 +67,76 @@ void ConcatKernel<GPU_CL, float>::Compute(const ConcatParam<GPU_CL> ¶m) {
out_H_Start
+=
inputs
[
i
]
->
dims
()[
0
];
}
}
}
else
{
auto
kernel0
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
kernel1
=
this
->
cl_helper_
.
KernelAt
(
1
);
auto
inputs
=
param
.
Inputs
();
auto
*
output_image
=
param
.
Out
()
->
GetCLImage
();
int
out_C_Start
=
0
;
auto
input_image
=
inputs
[
0
]
->
GetCLImage
();
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
inputs
[
0
]);
int
out_W
=
param
.
Out
()
->
dims
()[
3
];
cl_int
status
;
status
=
clSetKernelArg
(
kernel0
,
0
,
sizeof
(
cl_mem
),
&
input_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel0
,
1
,
sizeof
(
cl_mem
),
&
output_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel0
,
2
,
sizeof
(
int
),
&
out_W
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel0
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
out_C_Start
+=
inputs
[
0
]
->
dims
()[
1
];
for
(
int
i
=
1
;
i
<
inputs
.
size
();
i
++
)
{
auto
input_image1
=
inputs
[
i
-
1
]
->
GetCLImage
();
auto
input_image2
=
inputs
[
i
]
->
GetCLImage
();
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
inputs
[
i
]);
int
out_C
=
param
.
Out
()
->
dims
()[
1
];
int
out_H
=
param
.
Out
()
->
dims
()[
2
];
int
in_W
=
inputs
[
i
]
->
dims
()[
3
];
int
in_H
=
inputs
[
i
]
->
dims
()[
2
];
int
in_C1
=
inputs
[
i
-
1
]
->
dims
()[
1
];
int
in_C2
=
inputs
[
i
]
->
dims
()[
1
];
DLOG
<<
"第"
<<
i
<<
"个"
;
DLOG
<<
"out_C="
<<
out_C
;
DLOG
<<
"out_H="
<<
out_H
;
DLOG
<<
"in_W="
<<
in_W
;
DLOG
<<
"in_H="
<<
in_H
;
DLOG
<<
"in_C1="
<<
in_C1
;
DLOG
<<
"in_C2="
<<
in_C2
;
DLOG
<<
"out_C_Start = "
<<
out_C_Start
;
status
=
clSetKernelArg
(
kernel1
,
0
,
sizeof
(
cl_mem
),
&
input_image1
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel1
,
1
,
sizeof
(
cl_mem
),
&
input_image2
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel1
,
2
,
sizeof
(
cl_mem
),
&
output_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel1
,
3
,
sizeof
(
int
),
&
out_C
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel1
,
4
,
sizeof
(
int
),
&
out_H
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel1
,
5
,
sizeof
(
int
),
&
out_W
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel1
,
6
,
sizeof
(
int
),
&
out_C_Start
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel1
,
7
,
sizeof
(
int
),
&
in_W
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel1
,
8
,
sizeof
(
int
),
&
in_H
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel1
,
9
,
sizeof
(
int
),
&
in_C1
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel1
,
10
,
sizeof
(
int
),
&
in_C2
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel1
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
out_C_Start
+=
inputs
[
i
]
->
dims
()[
1
];
}
}
}
...
...
src/operators/kernel/cl/conv_add_kernel.cpp
浏览文件 @
467bbfe7
...
...
@@ -51,8 +51,16 @@ bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
this
->
cl_helper_
.
AddKernel
(
"conv_3x3"
,
"conv_add_kernel.cl"
);
}
else
{
PADDLE_MOBILE_THROW_EXCEPTION
(
" not support "
);
}
else
if
(
param
->
Filter
()
->
dims
()[
2
]
==
7
&&
param
->
Filter
()
->
dims
()[
3
]
==
7
)
{
param
->
Filter
()
->
InitCLImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
this
->
cl_helper_
.
AddKernel
(
"conv_7x7"
,
"conv_add_kernel.cl"
);
}
else
if
(
param
->
Filter
()
->
dims
()[
2
]
==
5
&&
param
->
Filter
()
->
dims
()[
3
]
==
5
)
{
param
->
Filter
()
->
InitCLImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
this
->
cl_helper_
.
AddKernel
(
"conv_5x5"
,
"conv_add_kernel.cl"
);
}
return
true
;
...
...
src/operators/kernel/cl/conv_add_relu_kernel.cpp
浏览文件 @
467bbfe7
...
...
@@ -52,6 +52,16 @@ bool ConvAddReluKernel<GPU_CL, float>::Init(
this
->
cl_helper_
.
AddKernel
(
"conv_3x3"
,
"conv_add_relu_kernel.cl"
);
}
else
if
(
param
->
Filter
()
->
dims
()[
2
]
==
7
&&
param
->
Filter
()
->
dims
()[
3
]
==
7
)
{
param
->
Filter
()
->
InitCLImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
this
->
cl_helper_
.
AddKernel
(
"conv_7x7"
,
"conv_add_relu_kernel.cl"
);
}
else
if
(
param
->
Filter
()
->
dims
()[
2
]
==
5
&&
param
->
Filter
()
->
dims
()[
3
]
==
5
)
{
param
->
Filter
()
->
InitCLImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
this
->
cl_helper_
.
AddKernel
(
"conv_5x5"
,
"conv_add_relu_kernel.cl"
);
}
else
{
PADDLE_MOBILE_THROW_EXCEPTION
(
" not support "
);
}
...
...
src/operators/kernel/cl/fusion_fc_kernel.cpp
0 → 100644
浏览文件 @
467bbfe7
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_FC_OP
#include "operators/kernel/fusion_fc_kernel.h"
#include "operators/math/math_function.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
FusionFcKernel
<
GPU_CL
,
float
>::
Init
(
FusionFcParam
<
GPU_CL
>
*
param
)
{
param
->
InputY
()
->
InitNormalCLImage
(
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
());
param
->
InputZ
()
->
InitNormalCLImage
(
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
());
this
->
cl_helper_
.
AddKernel
(
"fetch"
,
"fetch_kernel.cl"
);
this
->
cl_helper_
.
AddKernel
(
"feed"
,
"feed_kernel.cl"
);
return
true
;
}
template
<
typename
P
>
void
FusionFcCompute
(
const
FusionFcParam
<
GPU_CL
>
&
param
,
cl_context
context
,
cl_command_queue
commandQueue
,
cl_kernel
kernel0
,
cl_kernel
kernel1
)
{
auto
*
input_x_image
=
param
.
InputX
();
auto
*
input_y_image
=
param
.
InputY
();
auto
*
input_z_image
=
param
.
InputZ
();
int
axis
=
param
.
Axis
();
auto
*
out_image
=
param
.
Out
();
Tensor
*
input_x
=
new
Tensor
();
input_x
->
Resize
(
input_x_image
->
dims
());
input_x
->
mutable_data
<
float
>
();
framework
::
CLImageToTensor
(
input_x_image
,
input_x
,
context
,
commandQueue
,
kernel0
);
Tensor
*
input_y
=
new
Tensor
();
input_y
->
Resize
(
input_y_image
->
dims
());
input_y
->
mutable_data
<
float
>
();
framework
::
CLImageToTensor
(
input_y_image
,
input_y
,
context
,
commandQueue
,
kernel0
);
Tensor
*
input_z
=
new
Tensor
();
input_z
->
Resize
(
input_z_image
->
dims
());
input_z
->
mutable_data
<
float
>
();
framework
::
CLImageToTensor
(
input_z_image
,
input_z
,
context
,
commandQueue
,
kernel0
);
auto
*
input_z_data
=
input_z
->
data
<
float
>
();
DLOG
<<
*
input_x
;
DLOG
<<
*
input_y
;
DLOG
<<
*
input_z
;
Tensor
*
out
=
new
Tensor
();
out
->
Resize
(
out_image
->
dims
());
out
->
mutable_data
<
float
>
();
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
const
Tensor
x_matrix
=
input_x
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
input_x
,
param
.
XNumColDims
())
:
*
input_x
;
const
Tensor
y_matrix
=
input_y
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
input_y
,
param
.
YNumColDims
())
:
*
input_y
;
auto
out_dim
=
out
->
dims
();
if
(
out_dim
.
size
()
!=
2
)
{
out
->
Resize
({
x_matrix
.
dims
()[
0
],
y_matrix
.
dims
()[
1
]});
}
PADDLE_MOBILE_ENFORCE
(
out_dim
.
size
()
==
2
,
" out_dim.size must be 2."
);
PADDLE_MOBILE_ENFORCE
(
input_z
->
dims
().
size
()
==
1
,
"inpu_z size must be 1"
);
PADDLE_MOBILE_ENFORCE
(
out_dim
[
1
]
==
input_z
->
dims
()[
0
],
" out_dim.size must be 2."
);
axis
=
(
axis
==
-
1
?
out_dim
.
size
()
-
input_z
->
dims
().
size
()
:
axis
);
PADDLE_MOBILE_ENFORCE
(
axis
==
1
,
" to fit broadcast, axis = 1. "
);
int64_t
classes
=
input_z
->
numel
();
for
(
int
i
=
0
;
i
<
out_dim
[
0
];
i
++
)
{
memory
::
Copy
(
out_data
+
i
*
classes
,
input_z_data
,
sizeof
(
float
)
*
classes
);
}
// for (int i = 0; i < out->numel(); i++) {
// DLOG << out_data[i];
// }
// bias_data的维度和out的维度一致
math
::
matmul
<
float
>
(
x_matrix
,
false
,
y_matrix
,
false
,
static_cast
<
float
>
(
1
),
out
,
static_cast
<
float
>
(
1
),
false
);
out_image
->
InitEmptyImage
(
context
,
commandQueue
,
out
->
dims
());
framework
::
TensorToCLImage
(
out
,
out_image
,
context
,
commandQueue
,
kernel1
);
DLOG
<<
*
out
;
delete
(
input_x
);
delete
(
input_y
);
delete
(
input_z
);
delete
(
out
);
PADDLE_MOBILE_ENFORCE
(
out_dim
.
size
()
==
2
,
" out_dim.size must be 2."
);
// if (out_dim.size() != 2) {
// out->Resize(out_dim);
// }
}
template
<
>
void
FusionFcKernel
<
GPU_CL
,
float
>::
Compute
(
const
FusionFcParam
<
GPU_CL
>
&
param
)
{
auto
kernel0
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
kernel1
=
this
->
cl_helper_
.
KernelAt
(
1
);
FusionFcCompute
<
float
>
(
param
,
this
->
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
(),
kernel0
,
kernel1
);
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/cl/lrn_kernel.cpp
0 → 100644
浏览文件 @
467bbfe7
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef LRN_OP
#include "operators/kernel/lrn_kernel.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
LrnKernel
<
GPU_CL
,
float
>::
Init
(
LrnParam
<
GPU_CL
>
*
param
)
{
this
->
cl_helper_
.
AddKernel
(
"lrn"
,
"lrn_kernel.cl"
);
return
true
;
}
template
<
>
void
LrnKernel
<
GPU_CL
,
float
>::
Compute
(
const
LrnParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Out
());
auto
input_image
=
param
.
InputX
()
->
GetCLImage
();
auto
x_dims
=
param
.
InputX
()
->
dims
();
auto
output_image
=
param
.
Out
()
->
GetCLImage
();
const
int
N
=
x_dims
[
0
];
const
int
C
=
x_dims
[
1
];
const
int
H
=
x_dims
[
2
];
const
int
W
=
x_dims
[
3
];
const
int
n
=
param
.
N
();
const
float
alpha
=
param
.
Alpha
();
const
float
beta
=
param
.
Beta
();
const
float
k
=
param
.
K
();
DLOG
<<
"n="
<<
n
;
DLOG
<<
"alpha="
<<
alpha
;
DLOG
<<
"beta="
<<
beta
;
DLOG
<<
"k="
<<
k
;
DLOG
<<
default_work_size
;
DLOG
<<
C
;
DLOG
<<
W
;
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
input_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
output_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
C
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
int
),
&
W
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
&
n
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
float
),
&
k
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
float
),
&
alpha
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
float
),
&
beta
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/lrn_op.cpp
浏览文件 @
467bbfe7
...
...
@@ -14,7 +14,7 @@ limitations under the License. */
#ifdef LRN_OP
#include "lrn_op.h"
#include "
operators/
lrn_op.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -32,6 +32,9 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU
(
lrn
,
ops
::
LrnOp
);
#endif
#ifdef PADDLE_MOBILE_CL
REGISTER_OPERATOR_CL
(
lrn
,
ops
::
LrnOp
);
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
REGISTER_OPERATOR_MALI_GPU
(
lrn
,
ops
::
LrnOp
);
#endif
...
...
src/operators/op_param.h
浏览文件 @
467bbfe7
...
...
@@ -1631,11 +1631,11 @@ class FusionFcParam : public OpParam {
y_num_col_dims_
=
GetAttr
<
int
>
(
"y_num_col_dims"
,
attrs
);
axis_
=
GetAttr
<
int
>
(
"axis"
,
attrs
);
}
const
GType
*
InputX
()
const
{
return
input_x_
;
}
GType
*
InputX
()
const
{
return
input_x_
;
}
const
RType
*
InputY
()
const
{
return
input_y_
;
}
RType
*
InputY
()
const
{
return
input_y_
;
}
const
RType
*
InputZ
()
const
{
return
input_z_
;
}
RType
*
InputZ
()
const
{
return
input_z_
;
}
GType
*
Out
()
const
{
return
out_
;
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录